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Abstract. Given a positive integer n and a graph F , the Turán number ex(n, F ) is the maximum
number of edges in an n-vertex simple graph that does not contain F as a subgraph. Let H be a
graph and p a positive even integer. Let H(p) denote the graph obtained from H by subdividing each
of its edges p−1 times. We prove that ex(n,H(p)) = O(n1+(16/p)). This follows from a more general
result that we establish, where different edges of H are allowed to be subdivided different numbers of
times. Our result is closely related to the results of Jiang [J. Graph Theory, 67 (2011), pp. 139–152]
and of Kostochka and Pyber [Combinatorica, 8 (1988), pp. 83–86] on topological minors.
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1. Introduction. We consider only simple graphs in this paper unless otherwise
specified. In extremal graph theory, we are typically interested in studying thresholds
on edge density beyond which certain substructures are forced to appear. The well-
known Turán problem is one of this kind. Given a family F of graphs and a positive
integer n, the Turán number ex(n,F) of F is the maximum number of edges in an
n-vertex graph not containing any member of F as a subgraph. Hence, if an n-vertex
graph G has more than ex(n,F) edges, then it must contain some member of F as a
subgraph.

Let F be a family of graphs, and let p = min{χ(F ) : F ∈ F}. The celebrated
Erdős–Stone–Simonovits theorem says that ex(n,F) = (1 − 1

p−1 )
(
n
2

)
+ o(n2), where

p = min{χ(F ) : F ∈ F}. This determines ex(n,F) asymptotically when F consists
solely of nonbipartite graphs. When F contains a bipartite graph, however, our
knowledge about ex(n,F) is quite limited with only a few exceptions, most notably
that concerning ex(n, {C4}), where the exact value is determined for infinitely many
values of n. As a starting point, it is natural to focus on ex(n,F) when F consists of
a single graph F , in which case, we will write ex(n, F ) for ex(n, {F}).

The determination of ex(n, F ) for a bipartite graph F turns out to be very dif-
ficult. It is known that there are positive constants c1, c2 depending on F such that
Ω(n1+c1) ≤ ex(n, F ) ≤ O(n2−c2). However, only for very few bipartite graphs F is
the order of magnitude of ex(n, F ) even determined. Kövári, Sós, and Turán [16]
showed that for fixed r, s, where 2 ≤ r ≤ s, ex(n,Kr,s) = O(n2−1/r) as a function
of n. Kollár, Rónyai, and Szabó [15] showed that for fixed r, s, where r ≥ 4 and
s ≥ r! + 1, ex(n,Kr,s) = Ω(n2−1/r) as a function of n, thus establishing the order of
magnitude for such Kr,s.

More generally, Alon, Krivelevich, and Sudakov [1] showed that if F is a bipartite
graph in which vertices in one partite set all have degree at most r, then ex(n, F ) =
O(n2−1/r). This verifies a special case of a long-standing conjecture of Erdős and
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TURÁN NUMBERS OF SUBDIVIDED GRAPHS 1239

Simonovits that ex(n, F ) = O(n2−1/r) for every r-degenerate bipartite graph, where
F is r-degenerate if its vertices can be linearly ordered so that every vertex has a most
r earlier neighbors. Equivalently, F is r-degenerate if maxH⊆F δ(H) ≤ r. Towards
proving the Erdős–Simonovits conjecture, Alon, Krivelevich, and Sudakov [1] showed
that ex(n, F ) = O(n2−1/4r) for r-degenerate bipartite graphs F .

Erdős and Rényi [8] established a general lower bound on ex(n, F ) using random
graphs, showing that ex(n, F ) = Ω(n2−m/e) if F has m vertices and e edges. Us-
ing the deletion method, it is not too hard to improve their bound to ex(n, F ) =
Ω(n2−m/e+1/e) as described below. First, we introduce a definition.

Definition 1.1. For a graph F , we define the local-density γ(F ) of F as γ(F ) =

maxH⊆F
e(H)

n(H)−1 .

Proposition 1.2. Let F be a bipartite graph with m vertices and e edges. Then

ex(n, F ) = Ω(n2−m
e + 1

e ). More generally, we have ex(n, F ) = Ω(n2− 1
γ ), where γ =

γ(F ) is the local-density of F .
The proof of Proposition 1.2 is a standard application of the deletion method. We

postpone its proof to Appendix A. This improved lower bound is quite useful in some
cases. For instance, when F = C2k, the Erdős–Rényi bound gives only ex(n,C2k) =
Ω(n), but Proposition 1.2 gives ex(n,C2k) = Ω(n1+1/2k), which was earlier obtained
by Erdős [6]. The best known lower bound on ex(n,C2k) is Ω(n1+2/(3k−3)), due to
Lazebnik, Ustimenko, and Woldar [18] using an explicit construction. A long-standing
conjecture of Erdős [7] states that ex(n,C2k) = Ω(n1+1/k).

It is worth noting the following connection between Proposition 1.2 and the conjec-
ture of Erdős and Simonovits on r-degenerate bipartite graphs. For an r-degenerate
graph F , it is easy to see that e(H) ≤ r(n(H) − 1) holds for all H ⊆ F . Hence
γ(F ) ≤ r. Furthermore, Kr,s, where s � r, shows that γ can be made arbitrarily
close to r. This suggests that one possible motivation behind the Erdős–Simonovits
conjecture was based on the local density of F . One might be tempted to make a
stronger conjecture that ex(n, F ) = O(n2−1/γ) holds for all bipartite graphs F with
local-density γ. This, however, is not true, as shown by the even cycles C2k.

It is easy to see that a graph F with local-density γ is �2γ�-degenerate. The
Alon–Krivelevich–Sudakov bound and Proposition 1.2 thus yield the following result.

Proposition 1.3. Let F be a bipartite graph. Let γ = maxH⊆F
e(H)

n(H)−1 . Then

there exist constants c1, c2 such that c1n
2− 1

γ ≤ ex(n, F ) ≤ c2n
2− 1

8γ .
In this paper, we study bipartite graphs F , where ex(n, F ) is small (close to being

linear in n). The only graphs F with ex(n, F ) = O(n) are forests. For nonforests
F , we may iteratively remove all vertices of degree 0 or 1, since doing so affects
the Turán number by at most O(n) and hence has no effect on the leading term in
ex(n, F ). Thus, we may restrict our attention to bipartite graphs F with δ(F ) ≥ 2.
By Proposition 1.2, for ex(n, F ) to be close to being linear, the local density γ(F ) of
F must be close to 1. Since δ(F ) ≥ 2, this means that most vertices of F must have
their degree equal to 2. Recall that the operation of subdividing an edge uv in a graph
means replacing uv with uwv through a new vertex w of degree 2, and that a graph F
is a subdivision of another graph H if F is obtained from H by subdividing edges of
H . When a graph F has most of its vertices having degree 2, we may naturally view
it as a subdivision of a much smaller graph H . Therefore, we will focus on studying
ex(n, F ) when F is a subdivided graph.

Another motivation behind our study comes from the works by Jiang [14] and by
Kostochka and Pyber [17] on topological minors (i.e., subdivisions). A well-known
theorem of Mader [19] shows that for any graph H there is a constant cH such that
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1240 TAO JIANG AND ROBERT SEIVER

every n-vertex graph G with at least cHn edges contains a subdivision of H . However,
there is no control on the order (number of vertices) of such a subdivision. It is easy to
see by girth-type results that, to guarantee a subdivision of H of bounded order, O(n)
edges are not enough. It is thus natural to ask how many edges in G are sufficient to
force a subdivision ofH of bounded order. Erdős et al. [5] raised a question of this type
by asking whether it is true that every n-vertex graph with at least n1+ε edges contains
a nonplanar subgraph of order at most c(ε), where c(ε) depends only on ε. This is
equivalent to asking whether n1+ε edges suffice to force a subdivision of K5 or K3,3 of
order at most c(ε). Kostochka and Pyber [17] answered the question in the affirmative,
proving a more general result (with the t = 5 case answering Erdős’s question).

Theorem 1.4 (Kostochka and Pyber [17]). Let ε be a positive real such that

0 < ε < 1. Let n, t be positive integers. Every n-vertex graph G with at least 4t
2

n1+ε

edges contains a subdivision of Kt on at most 7t2 ln t
ε vertices.

It is well known that for each 0 < ε < 1 and infinitely many n there are n-
vertex graphs with Ω(n1+ε) edges and girth at least 1

ε (see [2, Chapter 3]). In such

a graph, any subdivision of Kt, where t ≥ 3, must contain at least Ω( t
2

ε ) vertices.

Kostochka and Pyber [17] asked whether their O( t
2 ln t
ε ) bound on the order of a

smallest subdivision of Kt in G can be improved to the optimal O( t
2

ε ). Recently,
Jiang [14] answered Kostochka and Pyber’s question in the affirmative, by showing
that in an n-vertex graph G with Ω(n1+ε) edges, there exists a subdivision of Kt in
which each edge of Kt is subdivided O(1ε ) times. (Note that such a subdivision has

O( t
2

ε ) vertices.)
Theorem 1.5 (Jiang [14]). Let t be a positive integer and 0 < ε < 1 be a real. Let

n be a sufficiently large positive integer as a function of t and ε. If G is an n-vertex
graph with at least n1+ε edges, then G contains a subdivision of Kt in which each edge
of Kt is subdivided fewer than � 10

ε � times.
Remark 1.6. Due to the girth result mentioned above, the � 10

ε �-bound cannot be
improved to be smaller than � 1

3 (� 1
ε � − 1)�.

Given positive integers p, t, let K
(≤p)
t denote the family of graphs obtained from

Kt by subdividing each of its edges at most p−1 times. We may rephrase Theorem 1.5
as follows.

Corollary 1.7 (see [14]). Let p, t be fixed positive integers, where p ≥ 2

and t ≥ 3. As a function of n, we have ex(n,K
(≤p)
t ) = O(n1+ 10

p ). Furthermore,

ex(n,K
(≤p)
t ) = Ω(n1+ 1

3p+1 ).

In this paper, we will establish analogous bounds on ex(n,K
(p)
t ), where K

(p)
t is

the single graph obtained from Kt by subdividing each edge of Kt exactly p−1 times.
Before we proceed, we would like to point out that there is a significant difference

between bounding ex(n,K
(≤p)
t ) and bounding ex(n,K

(p)
t ). For instance, it is very

easy to show that every n-vertex graph with at least cn1+1/k edges contains a cycle
of length at most 2k. However, it is much harder to establish a similar result on
guaranteeing a cycle of length exactly 2k. Bondy and Simonovits [3] (and indepen-
dently Erdős) showed that ex(n,C2k) = O(n1+1/k). Subsequent improvements on the
leading coefficient were found by Verstraëte [23] and more recently by Pikhurko [20].

Our bounds on ex(n,K
(p)
t ) follow from the more general bounds on ex(n, F ) for

subdivided bipartite graphs F , described as below. Suppose a graph F is a obtained
from another graph H by subdividing the edges of H . Then vertices of H form the
set W of the branch vertices in F . For every pair x, y ∈ W = V (H) ⊆ V (F ) such
that xy ∈ E(H), there is a unique x, y-path in F that is internally disjoint from W .
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We will call it the strict x, y-path in F and let lx,y denote its length. So, l(x, y) − 1
is the number of times the edge xy in H is subdivided in forming F . We call lx,y the
stretch of xy in F . Our main result is as follows.

Theorem 1.8. Let F be a subdivision of another graph H. For each edge xy ∈
E(H), let lx,y denote the stretch of xy in F . Suppose that lx,y is even for all x, y, where

xy ∈ E(H), and that min{lx,y : xy ∈ E(H)} = 2m. Then ex(n, F ) = O(n1+ 8
m ).

Theorem 1.8 and Proposition 1.2 immediately yield the following result.
Corollary 1.9. Let p, t be positive integers, where p is even. As a function of

n, we have ex(n,K
(p)
t ) = O(n1+ 16

p ). Also, ex(n,K
(p)
t ) = Ω(n1+ 1−1/t

p ).
Note that it is natural to restrict our attention to the even p case since when p

is odd, K
(p)
t is nonbipartite and ex(n,K

(p)
t ) = Ω(n2). For convenience, we will prove

the following equivalent version of Theorem 1.8.
Theorem 1.10. Let ε be a real where 0 < ε < 1. Let F be a subdivision of

another graph H. For every edge xy ∈ E(H), let lx,y denote the stretch of xy in F .
Suppose that lx,y is even and lx,y ≥ 2� 8

ε � for all x, y ∈ W , where xy ∈ E(H). Then
for some positive constant cF , depending on F , every n-vertex graph G with at least
cFn

1+ε edges contains F as a subgraph.
We would like to mention that in establishing the O(n1+ 8

m ) bound in Theorem 1.8

and hence the O(n1+ 16
p ) bound on ex(n,K

(p)
t ), our main goal was to establish an

O(n1+ c
m ) bound for an absolute constant c, and thus we did not spend too much

effort optimizing the constant c. Indeed, at first glance, it is not clear at all whether

one should expect a O(n1+ c
p ) bound on ex(n,K

(p)
t ), where c is an absolute constant

independent of t. It would be a very interesting problem to substantially reduce this
constant c. By Corollary 1.9, c cannot be reduced to be smaller than 1.

For the rest of the paper, we prove Theorem 1.10. Our approach builds upon that
of Jiang [14], which in turn incorporated ideas in [10] and [17]. Several crucial new
ideas will be used to overcome the greater technical challenges (compared to those
in [14]). The rest of the paper is organized as follows. In section 2, we prove some
preliminary lemmas. In section 3, the most technical section, we solve the main case.
Then in section 4, we put all the pieces together.

2. Preliminaries. As mentioned in the introduction, Alon, Krivelevich, and
Sudakov [1] proved the following result.

Theorem 2.1 (see [1]). Let F be a bipartite graph with maximum degree r on
one side. Then there exists a constant cF > 0, depending on F , such that ex(n, F ) ≤
cFn

2− 1
r .

Theorem 2.1 is also implicit in Füredi [12]. From the proof of Theorem 2.2 in [1],
one can check that cF ≤ n(F ) when r = 2. Note that if F is obtained from another
graph H by subdividing each edge an odd number of times, then the branch vertices
all lie in the same partite set of F , and vertices in the other partite set have degree
at most 2. We have the following.

Corollary 2.2. Let F be a bipartite graph with v vertices such that vertices in
one partite set all have degree at most 2; then ex(n, F ) ≤ vn

3
2 . In particular, if F

is obtained from another graph H by subdividing each edge an odd number of times,
then ex(n, F ) ≤ vn

3
2 .

By Corollary 2.2, Theorem 1.10 holds whenever 1
2 < ε < 1. Thus, we henceforth

restrict our attention to ε ≤ 1
2 . The next two lemmas were used in [14]. We include

their proofs here.
Lemma 2.3. Let a,m, q be positive integers. Let A1, . . . , Am be a collection of
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sets of size a. Suppose each element of A =
⋃

i Ai lies in at most q different Ai’s.
Then for each i ∈ [m] there exists Bi ⊆ Ai of size �a/q� such that B1, . . . , Bm are
pairwise disjoint.

Proof. Let p = �a/q�. Create a bipartite graphH with a bipartition (X,A), where
|X | = mp as follows. Label the vertices ofX by x1

1, . . . , x
p
1, x

1
2, . . . , x

p
2, . . . , x

1
m, . . . , xp

m.
For each i ∈ [m] and y ∈ A, if y ∈ Ai, then we add edges between y and x1

i , . . . , x
p
i .

By our construction, each vertex in X has degree a. Also, since each y ∈ A lies in
at most q different Ai’s, each vertex in A has degree at most pq ≤ a in H . By Hall’s
theorem, H has a matching M saturating all of X . For each i ∈ [m], the elements of
A that x1

i , . . . , x
p
i are matched to by M are elements of Ai. Hence, we obtain disjoint

B1, . . . , Bm each of size p = �a/q�, with Bi ⊆ Ai for each i ∈ [m].
The depth of a vertex x in a rooted tree T is the distance between the root and x.

The depth of the tree is the maximum depth of a vertex in T . If T ′ is a tree rooted
at u in which for every pair of leaves x and x′ the unique x, x′-path goes through u,
then we call T ′ a spider with center u. The paths from u to the leaves are called the
legs of the spider.

Lemma 2.4. Let p,m be positive integers. Let T be a tree rooted at u of depth
m. Let W be a set of pm vertices in V (T )− u at depth m. Then there exists a subset
W ′ ⊆ W of size p and a vertex z at some depth j ≤ m − 1 such that the union of
the paths in T from z to vertices in W ′ forms a spider T ′ whose set of leaves is W ′.
Furthermore, each leg of T ′ has length m− j.

Proof. We use induction on the depth m. The claim holds trivially when m = 1.
For the induction step, assume that m > 1 and that the claim holds for trees of depth
at most m− 1. For each child x of u, let Tx denote the subtree of T under x. If for at
least p different children x of u, V (Tx) ∩W 
= ∅, then let W ′ be a set of p vertices of
W , each from a different Tx. The union of the paths from u to these vertices forms a
spider T ′ with center u whose set of leaves is W ′. Each leg of T ′ has length t.

Next, we may assume that |V (Tx) ∩ W | 
= ∅ for fewer than p children x of u.
Then for some child z of u, |V (Tz) ∩W − z| ≥ |W |/(p− 1)− 1 ≥ pm−1. Since Tz is a
rooted tree of depth m− 1 and W ∩ V (Tz) is a set of vertices at depth m− 1 in Tz,
We can apply induction hypothesis to find the desired W ′ and T ′.

The following lemma is folklore and can be easily proved using induction on k.
Lemma 2.5. Let k be a positive integer, G a graph with minimum degree at least

k, and T a rooted tree with k edges. Let x be any vertex in G. There exists a copy of
T in G with x being the image of the root.

In the next section, we will first establish some useful results for “almost regular”
graphs, namely graphs in which the maximum degree is within a constant factor of
the minimum degree. In order to extend such results to general graphs, we need a
variant of the following lemma of Erdős and Simonovits [9].

Lemma 2.6 (see [9]). Let ε be a real satisfying 0 < ε < 1. Let n be a positive
integer that is sufficiently large as a function of ε. Let G be an n-vertex graph with

e(G) ≥ n1+ε. Then G contains a subgraph G′ on m ≥ nε 1−ε
1+ε vertices such that

e(G′) ≥ 2
5m

1+ε and Δ(G′)
δ(G′) ≤ cε, where cε = 10 · 2 1

ε2
+1.

By slightly modifying Erdős and Simonovits’s proof, we obtain the following vari-
ant.

Proposition 2.7. Let ε, c be positive reals, where ε < 1 and c ≥ 1. Let n be a
positive integer that is sufficiently large as a function of ε. Let G be an n-vertex graph

with e(G) ≥ cn1+ε. Then G contains a subgraph G′ on m ≥ n
ε
2

1−ε
1+ε vertices such that

e(G′) ≥ 2c
5 m

1+ε and Δ(G′)
δ(G′) ≤ cε, where cε = 20 · 2 1

ε2
+1.
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For completeness, we give a proof of Proposition 2.7 in Appendix B.

3. Dense graphs with no dense compact subgraphs. For convenience, in
this section, we will assume our host graph G to be bipartite. We lose little generality
in doing so, since G contains a bipartite subgraph with at least half of the edges. To
prove Theorem 1.10, we first prove in this section that if a (bipartite) graph is quite
dense itself but contains no large dense subgraph of small radius, then we can find a
copy of the desired subdivided graph F . The following notion will be used frequently
in our proofs.

Definition 3.1. Let c, ε be positive reals, where ε < 1. A graph G is called
(c, ε)-dense if e(G) ≥ c[n(G)]1+ε.

Given two disjoint subsets A,B ⊆ V (G), we use eG(A,B) to denote the number
of edges in G with one end in A and the other end in B. We omit the subscript G
when the context is clear.

Lemma 3.2. Let c, λ, ε be positive reals with ε ≤ 1
2 . Let R be a positive integer.

Let n be a positive integer. Let G be an n-vertex graph that contains no ( c
27 , ε)-dense

subgraph of radius at most R.
1. Let H be a subgraph of G of radius at most R − 1 and order n(H) ≤ λna,

where a < 1. Let W be a set of neighbors of V (H) outside V (H) such that

e(W,V (H)) ≥ c
16n

a+ε. Then |W | ≥ 4na+ ε
1+ε (1−a) − λna. In particular, if

λ ≤ 2, then |W | ≥ 2na+ ε
1+ε (1−a).

2. Suppose further that δ(G) ≥ cnε. If H is a subgraph of radius at most R− 1
and W is the set of vertices outside H that have neighbors in V (H), then

|W | ≥ 9n
ε

1+ε · [n(H)]
1

1+ε .
Proof. 1. Let F denote the subgraph of G induced by V (H) ∪ W . Since H

has radius at most R − 1, F has radius at most R. By our assumption, F is not
( c
27 , ε)-dense. Suppose n(F ) = nb. We have

c

16
na+ε ≤ e(F ) ≤ c

27
(nb)1+ε.(1)

From this, we get

nb ≥ 8
1

1+εn
a+ε
1+ε ≥ 4na+ ε

1+ε (1−a).

Hence, |W | = n(F ) − n(H) ≥ 4na+ ε
1+ε (1−a) − λna. If λ ≤ 2, then |W | ≥

2na+ ε
1+ε (1−a).
2. Let H ′ be the subgraph of G induced by V (H) ∪W . Since δ(G) ≥ cnε, there

are at least 1
2n(H) · cnε edges of G that are incident to V (H), all of which lie in H ′.

Since H ′ has radius at most R, H ′ is not ( c
27 , ε)-dense. Hence we have

1

2
cnε · n(H) ≤ e(H ′) ≤ c

27
[n(H ′)]1+ε.

Solving the inequalities for n(H ′) and using 2
6

1+ε ≥ 10, we get n(H ′) ≥ 10n
ε

1+ε ·
[n(H)]

1
1+ε . Hence, |W | = n(H ′)− n(H) ≥ 9n

ε
1+ε · [n(H)]

1
1+ε .

The following lemma deals with a recurrence that will be frequently used in our
proofs.

Lemma 3.3. Let ε be a real with 0 < ε ≤ 0.5. The recurrence relation ai+1 = ai+
ε

1+ε (1−ai), i ≥ 1, has the solution ai = 1− 1−a1

(1+ε)i−1 . Thus, ai ≥ 1−(1−a1)e
−0.8ε(i−1).

Proof. The first part can be directly verified by induction. For 0 < ε ≤ 0.5, we
have ln(1 + ε) ≥ 0.8ε and hence 1 + ε ≥ e0.8ε. Thus, we conclude ai = 1− 1−a1

(1+ε)i−1 ≥
1− 1−a1

e0.8ε(i−1) .
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1244 TAO JIANG AND ROBERT SEIVER

The next structural lemma is crucial to our arguments in this section.
Lemma 3.4. Let c, ε, b be positive reals, where ε ≤ 1

2 and ε ≤ b ≤ 0.9. Let γε be
a positive real depending on ε. Let k, r, R be positive integers, where r ≤ R. Let G be
an n-vertex bipartite graph with δ(G) ≥ cnε that contains no ( c

27 , ε)-dense subgraph of
radius at most R, where n is sufficiently large as a function of ε and k. Let (X,Y ) be
a bipartition of G. Let F be a subgraph of G of radius at most r and S ⊆ X ∩ V (F )
such that |S| = nb and n(F ) ≤ γε|S|. Then there exist disjoint sets L1, . . . , LR−r+1,
where L1 = S, outside V (F )− S satisfying the following:

1. Each Li is called a level and will be designated as strong or weak. Set L1 will
be strong.

2. Each Li is partitioned into some di subsets Lj
i called sectors of equal size. If

Li is a strong level, then each sector consists of only a single vertex. For i ≥ 2,
if Li is strong, then di ≥ di−1, and if Li is weak, then 1

8di−1 ≤ di ≤ di−1.
3. Let i ≥ 2. If Li is a strong level, then each vertex in Li has neighbors in at

least k sectors of Li−1. If Li is a weak level, then there is an injection f from
the collection of sectors of Li into the collection of sectors of Li−1 such that if
Lj
i is a sector of Li, then each vertex in Lj

i has at least one neighbor in f(Lj
i ).

We call f(Lj
i ) the parent sector of Lj

i in Li−1. Furthermore, |Lj
i | ≥ 2|f(Lj

i )|.
4. Let i ≥ 2. If x1, . . . , xm, where m ≤ k, all belong to different sectors of Li,

then there exist y1, . . . , ym belonging to different sectors of Li−1 such that
x1y1, . . . , xmym ∈ E(G).

5. For each i, suppose |Li| = nai and di = nλi . Then |Li+1| ≥ 2|Li| ·n ε
1+ε (1−ai).

Thus, ai+1 ≥ ai+
ε

1+ε(1− ai). Further, if Li+1 is a weak level, then |Li+1| ≥
|Li| · n ε

1+ε (1−ai+0.99λi).

Furthermore, if 0.2 ≤ b ≤ 0.9 and R− r ≥ l(b, ε) =  ln((1−b)/0.19)
0.8ε �+  0.2

b (1ε +1)�,
then for some s, 2 ≤ s ≤ l(b, ε) + 1, Ls is a strong level and |Ls|, |Ls−1| ≥ n0.81.

Proof. Let L0 = V (F )− S. We iteratively define the Li’s that satisfy conditions
1–5. Note that condition 4 follows immediately from condition 3. Thus, we need to
verify only conditions 1–3 and 5 in our constructions. As we construct Li, we will
also let Hi denote the subgraph of G induced by L0 ∪ L1 ∪ · · · ∪ Li.

To start, let L1 = S. Designate L1 as a strong level, and designate each vertex
in L1 as a sector on its own. Fix 2 ≤ i ≤ R − r, and suppose for all j ≤ i that we
have defined Lj that satisfy 1–5. We describe how to construct Li+1. The numerical
details are slightly different for i = 1 versus for i ≥ 2.

For i = 1, we have n(H1) = |L0| + |L1| ≤ (γε + 1)|L1| by our assumption.

For i ≥ 2, we note that, by condition 5, |L2| ≥ 2|L1|n ε
1+ε (1−a1) ≥ 2|L1|n 0.1ε

1+ε ≥
2(γε + 1)|L1| ≥ 2(|L0|+ |L1|) for large n, and for each 3 ≤ j ≤ i, |Lj | ≥ 2|Lj−1|. So,
n(Hi) = |L0|+ |L1|+ · · ·+ |Li| ≤ |Li|(1 + 1

2 + 1
4 + · · ·) ≤ 2|Li|.

By 3 and 4, for each i, each vertex in Li has at least one neighbor in Li−1. Since
F has radius at most r, Hi has radius at most r + i− 1 ≤ R− 1.

Let d denote the minimum degree of G. We have d ≥ cnε. We say that a
vertex x in Li is bad if at least d

2 of its neighbors lie inside Hi. Otherwise we say

it is good. Note that a good vertex has at least d
2 neighbors outside Hi. Let Bi

denote the set of bad vertices in Li, and Ci the set of good vertices in Li. Consider
first the case when i = 1. Suppose |B1| ≥ 1

4 |L1|. Then |B1| ≥ 1
4(γε+1)n(H1) and

e(H1) ≥ 1
2

1
4(γε+1)n(H1) · cnε

2 ≥ c[n(H1)]
1+ε, for large n (noting that n(H1) = O(nb)

and b ≤ 0.9). This contradicts G having no (c/27, ε)-dense subgraph of radius at most
R. So |B1| ≤ 1

4 |L1| and |C1| ≥ 3
4 |L1|. Next, suppose i ≥ 2. If |Bi| > 1

4 |Li|, then
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|Bi| ≥ 1
8n(Hi) and e(Hi) ≥ 1

2 |Bi| · d
2 ≥ 1

16n(Hi) · c
2n

ε ≥ c
32 [n(Hi)]

1+ε, contradicting
G containing no ( c

27 , ε)-subgraph with radius at most R. Hence |Bi| ≤ 1
4 |Li| and

|Ci| ≥ 3
4 |Li|.

Let W denote the set of vertices outside Hi that have neighbors in Li. We now
analyze the vertices in Li ∪W and the edges between Li and W . We say a vertex y
in W is heavy if it has neighbors in at least k different sectors Lj

i of Li. Otherwise we
say y is light. Let W+ denote the set of heavy vertices in W , and W− the set of light
vertices in W .

Recall that each vertex x in Ci sends at least
d
2 edges to W . If at least d

4 of these

edges go to W+, we say that x is heavy-leaning. Otherwise at least d
4 of these edges

go to W− and we say that x is light-leaning. Let C+
i denote the set of heavy-leaning

vertices in Ci and C−
i the set of light-leaning vertices in Ci. We consider two cases.

Recall that |Li| = nai .
Case 1. |C+

i | ≥ |Ci|/2. In this case, we have |C+
i | ≥ 3

8 |Li|. We have e(V (Hi),W
+)

≥ e(C+
i ,W+) ≥ 3

8 |Li| · d
4 ≥ 3c

32n
ai+ε. Suppose first that i = 1. Then n(H1) ≤

(γε + 1)|L1| = (γε + 1)na1 and H1 has radius at most R − 1. By Lemma 3.2,

|W+| ≥ 4na1+
ε

1+ε (1−a1) − (γε + 1)na1 ≥ 2na1+
ε

1+ε (1−a1) = 2|L1| · n ε
1+ε (1−a1) for large

n. Next, suppose i ≥ 2. Then n(Hi) ≤ 2|Li| = 2nai, and Hi has radius at most

R − 1. By Lemma 3.2, |W+| ≥ 2nai+
ε

1+ε (1−ai) = 2|Li| · n ε
1+ε (1−ai). Let Li+1 = W+,

and designate Li+1 as a strong level. Let each vertex be a sector by itself. It is
straightforward to see that Li+1 satisfies 1–5.

Case 2. |C−
i | ≥ |Ci|/2. This case is more involved. Our plan is to define Li+1

inside W−. Roughly speaking, sectors of Li+1 will be defined using neighborhoods of
certain sectors of Li in W−. We will use Lemma 2.3 to handle the overlaps between
these neighborhoods.

First, we decide which sectors of Li to use. We know |C−
i | ≥ |Ci|

2 ≥ 3
8 |Li|. Let

J = {j : |Lj
i ∩ C−

i | ≥ |Lj
i |
4 }. Since all the di sectors L

i
j of Li have the same size and∑

j |Lj
i ∩C−

i | ≥ 3
8 |Li|, we have |J | ≥ di

8 . We will use the neighborhoods of Lj
i in W−

for those j ∈ J .
For each j ∈ J , let W j

i = N(Lj
i )∩W−. Suppose |Lj

i | = nai,j . First we argue that

there is a subgraph T j
i of order at most 2nai,j and radius at most R − 1 containing

Lj
i . If Li is a strong level, then this is trivial, since Lj

i consists of a single vertex

and we can let T j
i be that vertex. If Li is a weak level, then i ≥ 2, and by 3, each

vertex in Lj
i has some neighbor in its parent sector f(Lj

i ) in Li−1. Furthermore,

|f(Lj
i )| ≤ 1

2 |Lj
i |. We can continue backtracking, moving up the levels, until we hit a

strong level (where a sector is just a single vertex). This gives us a subgraph T j
i of

order at most |Lj
i |(1 + 1

2 + 1
22 + · · ·) ≤ 2nai,j that has radius at most i − 1 ≤ R − 1.

Now, since j ∈ J , we have e(Lj
i ,W

j
i ) = e(Lj

i ,W
−) ≥ |Lj

i ∩ C−
i | · d

4 ≥ 1
4 |Lj

i | · d
4 ≥

c
16n

ai,j+ε. By Lemma 3.2, |W j
i | ≥ 2nai,j+

ε
1+ε (1−ai,j). Let Y j

i be a subset of W j
i of

size 2nai,j+
ε

1+ε (1−ai,j). Since |Lj
i | = 2nai,j is the same for all j, |Y j

i | is the same for
all j ∈ J .

Note that
⋃

i∈J Y j
i ⊆ W− and by the definition of W− each element of W− lies

in at most k different Y j
i ’s. By Lemma 2.3, for each j ∈ J , there exists a subset

Aj
i ⊆ Y j

i of size |Y j
i |/k such that the Aj

i ’s so obtained are pairwise disjoint. We let

Li+1 =
⋃

j∈J Aj
i . Let di+1 = |J |. The Aj

i ’s for j ∈ J form a partition of Li+1 into di+1

many subsets of equal size. We define them to be the sectors of Li+1 and designate
Li+1 as a weak level. It remains to verify that 2, 3, and 5 hold for Li+1. We have
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1246 TAO JIANG AND ROBERT SEIVER

di+1 = |J | ≥ 1
8di, so 2 holds. For 3, for each j ∈ J we let f(Aj

i ) = Lj
i . Finally, we

rename the Aj
i ’s, j ∈ J , as L1

i+1, . . . , L
di+1

i+1 .

Recall that |Li| = nai and di = nλi . For each j ∈ J , |Li
j| = |Li|/di = nai−λi .

Thus, ai,j = ai−λi. By 2, di ≥ d1

8i−1 = nb

8i−1 ≥ n0.99b for large n. So, λi ≥ 0.99b. Since

|J | ≥ di

8 , and for each j ∈ J , |Ai
j | = 2nai,j+

ε
1+ε (1−ai,j)/k = 2|Li

j| · n
ε

1+ε (1−ai,j)/k, we

have |Li+1| ≥ di

8k · 2|Li
j|n

ε
1+ε (1−ai,j) = 1

4k |Li| · n ε
1+ε (1−ai+λi) ≥ |Li| · n ε

1+ε (1−ai+0.99λi)

for large n. Thus, 5 holds for Li+1.
We have now constructed the sets L1, L2, . . . , LR−r+1 that satisfy conditions 1–5.

Note that, by 5, |Li| is nondecreasing in i. It remains to prove the last statement of the

lemma. So, suppose 0.2 ≤ b ≤ 0.9 and R− r ≥ l(b, ε) =  ln((1−b)/0.19)
0.8ε �+  0.2

b (1ε +1)�.
We first find an i for which ai ≥ 0.81. By Lemma 3.3, ai ≥ 1 − (1 − a1)e

−0.8ε(i−1) =
1 − (1 − b)e−0.8ε(i−1). So it suffices if 1 − (1 − b)e−0.8ε(i−1) ≥ 0.81. Solving for i, we

get i ≥ ln((1−b)/0.19)
0.8ε + 1. Let t = min{i : ai ≥ 0.81}. Then t ≤  ln((1−b)/0.19)

0.8ε � + 1
= l(b, ε) + 1−  0.2

b (1ε + 1)�.
If Ls is a strong level for some s ∈ I = {t + 1, . . . , l(b, ε) + 1}, then 2 ≤ s ≤

l(b, ε) + 1 and |Ls| ≥ |Ls−1| ≥ |Lt| ≥ n0.81, and we are do done. So suppose for

each i ∈ I that Li is a weak level. By 5, |Li|
|Li−1| ≥ n

ε
1+ε (1−ai+0.99λi) > n

ε
1+ε (0.98b)

(recalling that λi ≥ 0.99b). But then, since l(b, ε) + 1 − t ≥  0.2
b (1ε + 1)�, we have

|Ll(b,ε)+1| > |Lt| · n ε
1+ε (0.98b)· 0.2b ( 1

ε +1) > n0.81 · n0.19 = n, a contradiction.
Definition 3.5. Let p, q1, q2 be positive integers, where q1 ≤ q2 and q1, q2 have

the same parity. We define a (p, q1, q2)-path system between two vertices x and y
to be a collection of p( q2−q1

2 + 1) internally disjoint x, y-paths in G such that, for
each integer j between q1 and q2 having the same parity as them, p of these paths
have length j. If a (p, q1, q2)-path system exists between x and y, we say that x, y are
(p, q1, q2)-linked. We also say that x is (p, q1, q2)-linked to y and vice versa.

Let S ⊆ G, where y /∈ S. We say that S is super-(p, q1, q2)-linked to y if for
every vertex x ∈ S there is a (p, q1, q2)-path system between x and y that is internally
disjoint from S.

Lemma 3.6. Let c, ε,D be positive reals, where ε ≤ 0.5 and c ≥ 2. Let m be a
positive integer. Let R = � 4.3

ε �+ 1
4ε�+1. Let n be a positive integer that is sufficiently

large as a function of ε and m . Let G be an n-vertex bipartite graph satisfying (a)
δ(G) ≥ cnε, (b) Δ(G) ≤ Dnε, and (c) G contains no ( c

27 , ε)-dense subgraph of radius
at most R. Then there exist at least n0.74 vertices (called supervertices) z satisfying
that for some positive integer q(z) ≤ R− 1 depending on z there is a set Uz of size at
least n0.6 that is super-(m, q(z), q(z))-linked to z.

Proof. Let w be any vertex in G. For each i = 0, . . . , R, let ni denote the number
of vertices at distance at most i from w in G. By Lemma 3.2, for each i = 1, . . . , R,

ni ≥ 10n
ε

1+εn
1

1+ε

i−1 . Since n1 ≥ cnε ≥ 2nε, by induction, one can easily show that

ni ≥ 2n
1− 1−ε

(1+ε)i−1 for each 1 ≤ i ≤ R. Let h = min{i : ni ≥ 2n0.2}. If ε ≥ 0.2,
then clearly h = 1 ≤  1

4ε�. Suppose ε < 0.2. Then 1 + ε > e0.9ε. For i =  1
4ε�, we

have 1 − 1−ε
(1+ε)i−1 ≥ 1 − 1

(1+ε)i > 1 − 1
e0.9εi ≥ 1 − 1

e0.9ε/4ε
≥ 0.2. So h ≤  1

4ε�. Since

Δ(G) ≤ Dnε, nh ≤ nh−1 ·Dnε < 2n0.2 ·Dnε < n0.9 for large n.
Let Tw denote the tree rooted at w obtained by applying the breadth-first search

from w in G for h steps. Then T has radius h ≤  1
4ε�. Let S be the set of all the

vertices in Tw that are at distance h from w. Then S is a set of leaves, and |S| = nb for
some b, 0.2 ≤ b ≤ 0.9. Since G is bipartite, S lies inside one partite set of a bipartition
of G. Also, |S| = nh−nh−1. By our discussion above, nh ≥ 10nh−1. So, n(F ) ≤ 11

10 |S|.
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Let F = Tw, and let k = mh. By Lemma 3.4, there exist disjoint sets L1, . . . , LR−h+1

that satisfy conditions 1–5 of the lemma. Also, by the last statement of Lemma 3.4,
for some s ≤ l(b, ε) + 1, Ls is a strong level and |Ls|, |Ls−1| ≥ n0.81. Note that

l(b, ε) ≤ l(0.2, ε) =  ln(0.8/.19)
0.8ε �+  0.2

0.2 (
1
ε +1)� ≤  1.8

ε �+  1
ε �+1 ≤ 2.8

ε +3 ≤ 4.3
ε , where

the last inequality uses ε ≤ 0.5. So, s ≤ � 4.3
ε �+ 1.

Let x be any vertex in Ls. Since Ls is strong, x has neighbors in at least k different
sectors of Ls−1. By repeatedly applying condition 4 of Lemma 3.4 for i = s − 1, s−
2, . . . , 2, we can build k paths of length s−1 from x to L1 through L1∪· · ·∪Ls−1 such
that every two of them share only x in common. Let P1, . . . , Pk denote such paths,
and let w1, . . . , wk denote their endpoints in L1, respectively. Let W = {w1, . . . , wk}.
Since k = mh, by Lemma 2.4, there exists z in Tw at some depth depth(z) ≤ h − 1
and a subset W ′ ⊆ W of size m such that the union of the paths in Tw from z to W ′

forms a spider of m legs each of length h − depth(z). This spider together with the
Pi’s yields p internally disjoint z, x-paths of length q(z) = (s − 1) + h − depth(z) ≤
� 4.3

ε � +  1
4ε�. Also, by our construction, these paths are internally disjoint from Ls.

By the argument above, we can define a mapping g from Ls into the set of vertices
at depth at most h− 1 in Tw such that for each vertex x ∈ Ls, with z = g(x), there
exists an (m, q(z), q(z))-path system between x and z that is internally disjoint from
Ls. By our choice of h, there are fewer than 2n0.2 vertices at depth h − 1 or less in
Tw. So, by the pigeonhole principle, for some z in Tw at depth depth(z) ≤ h− 1, the
set Uz = {x : x ∈ Ls, g(x) = z} has size at least |Ls|/2n0.2 ≥ n0.81/2n0.2 ≥ n0.6 for
large n. The set Uz is super-(m, q1, q2)-linked to z.

We have shown that for each vertex w, Tw contains a supervertex z. On the
other hand, for each supervertex z, for z to lie in some Tw, w must be within distance

h − 1 ≤  1
4ε� − 1 from z, and there are at most

∑� 1
4ε 	−1

i=0 (Dnε)i < n0.26 such w (for
large n). Hence the number of supervertices is at least n/n0.26 = n0.74.

Lemma 3.7. Let m, p, q be positive integers, where m ≥ pq. Let G be a graph.
Let x ∈ V (G) and S ⊆ V (G), where x /∈ S. Suppose S is super-(m, q, q)-linked to x.
Then for any p vertices y1, . . . , yp ∈ S there exist paths Q1, . . . , Qp of length q such
that, for each i ∈ [p], Qi connects x and yi and such that every two of these paths
share only x in common.

Proof. By our assumption, for each i there exist m internally disjoint x, yi-paths
of length q that are internally disjoint from S. We build the paths Q1, . . . , Qp one
by one. To start, let Q1 be any x, y1-path of length q that is internally disjoint from
S. In general, let 1 ≤ i ≤ p− 1, and suppose that Q1, . . . , Qi have been defined. Let
U = V (Q1 ∪ · · · ∪Qi). Then |U | < iq < m and U ∩ S = {y1, . . . , yi}. Since there are
m internally disjoint x, yi+1-paths of length q that are internally disjoint from S, we
can pick one that doesn’t go through any vertex in U − x and define it to be Qi+1.
We can continue till Q1, . . . , Qp are all defined.

In Lemma 3.6, for each supervertex z there exists some q(z) for which we can
find a large set Uz that is super-(m, q(z), q(z))-linked to z. Here q(z) may vary with
z. With some more work, we can strengthen the result so that each supervertex z is
linked to a large set by internally disjoint paths with prescribed constant lengths (that
do not depend on z). We can then use this to show that there are many well-linked
pairs of vertices. This is described in the next lemma.

Lemma 3.8. Let c, ε,D be positive reals, where ε ≤ 0.5 and c ≥ 22. Let p, q1, q2, R
be positive integers, where � 4.3

ε �+ 1
4ε�+� 2.5

ε � ≤ R ≤ q1 ≤ q2 and q1, q2 have the same
parity. Let n be a positive integer that is sufficiently large as a function of ε, p, q1, q2.
Let G be an n-vertex bipartite graph satisfying (a) δ(G) ≥ cnε, (b) Δ(G) ≤ Dnε, and
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(c) G contains no ( c
27 , ε)-dense subgraph of radius at most R. Then there exist at least

n1.51 pairs of vertices that are (p, q1, q2)-linked.
Proof. Let (X,Y ) be a bipartition of G. Let p∗ = p( q2−q1

2 + 1). Let m =
p∗(� 4.3

ε � +  1
4ε�), and let k = 4p∗q2. For large enough n, by Lemma 3.6, there exist

at least n0.74 supervertices.
Claim 1. For each supervertex z, there is a set Sz of at least n0.8 vertices such

that, for each u ∈ Sz, u and z are (p, q1, q2)-linked.
Proof. Let z be any supervertex. By Lemma 3.6, for some positive integer

q(z) ≤ � 4.3
ε � +  1

4ε� depending on z there is a set Uz of n0.6 vertices that is super-
(m, q(z), q(z))-linked to z. Let r = q(z). Note that m ≥ p∗r. For each x ∈ Uz

there exists a collection Px of m internally disjoint x, z-paths of length r that are
internally disjoint from Uz. Let F be the graph formed by taking the union of the
paths in

⋃
x∈Uz

Px. Then F has radius at most r ≤ � 4.3
ε � +  1

4ε� ≤ R − � 2.5
ε �, and

n(F ) ≤ m(� 4.3
ε � +  1

4ε�)|Uz|. For large enough n, we can apply Lemma 3.4 with
S = Uz, F , k, r defined as above, and γε = m(� 4.3

ε � +  1
4ε�), to obtain sets/levels

L1, . . . , LR−r+1 outside V (F ) − Uz, where L1 = Uz. Note that the Li’s alternate
between being contained in X and being contained in Y . To apply the last state-
ment of Lemma 3.4 with b = 0.6, we need to check that R − r ≥ l(0.6, ε). We have

l(0, 6, ε) =  ln(0.4/0.19)
0.8ε � +  0.2

0.6 (
1
ε + 1)� ≤  0.94

ε � +  1
3ε� + 1 ≤ 2.5

ε , where the last
inequality can be obtained by considering whether ε < 1

3 or 1
3 ≤ ε ≤ 0.5. Since

R − r ≥ � 2.5
ε � by our earlier discussion, we have R − r ≥ l(0.6, ε). By the last state-

ment of Lemma 3.4, for some positive integer t ≤ l(0.6, ε) + 1 ≤ � 2.5
ε � + 1, Lt is a

strong level and |Lt|, |Lt−1| ≥ n0.81. Note that r + (t− 1) ≤ R.
Let B denote the subgraph of G induced by Lt−1 ∪ Lt. Then B is bipartite with

(Lt−1, Lt) being a bipartition. Since Lt is a strong level, when we constructed it in
the proof of Lemma 3.4 we applied Case 1. Thus as in Case 1, e(B) ≥ 3

8 |Lt−1|d4 ≥
3c
32n

at−1+ε, where d ≥ cnε is the minimum degree of G. Also, by condition (c) each
vertex x in Lt has neighbors in at least k different sectors of Lt−1. In particular,
dB(x) ≥ k. So, e(B) ≥ k|Ls|. Starting with B, we iteratively remove vertices whose
degree becomes less than k/4 until no such vertex exists. Let B′ denote the remaining
subgraph of B. Since fewer than kn(B)/4 = k(|Lt−1| + |Lt|)/4 ≤ k|Lt|/2 ≤ e(B)/2
edges are removed in the process, e(B′) ≥ e(B)/2 ≥ 3c

64n
at−1+ε ≥ nat−1+ε, since

c ≥ 22. Let L′
t−1 = Lt−1 ∩ V (B′) and L′

t = Lt ∩ V (B′). Then (L′
t−1, L

′
t) is a

bipartition of B′. We have |L′
t| ≥ e(B′)/Δ(G) ≥ nas−1+ε/Dnε = |Lt−1|/D. Similarly,

|L′
t−1| ≥ |Lt−1|/D. By our definition of B′, δ(B′) ≥ k/4 = p∗q2.
Let q′1 = q1− r− (t− 1) and q′2 = q2− r− (t− 1). Since q2 ≥ q1 ≥ R ≥ r+(t− 1),

q′1, q
′
2 ≥ 0. Since q1, q2 have the same parity, so do q′1 and q′2. Let T = T (p, q′1, q

′
2)

denote the spider with p(
q′2−q′1

2 +1) = p∗ legs such that, for each j between q′1 and q′2
and having the same parity as them, p of these legs have length j. It is possible that
q′1 = 0, in which case p of the p∗ legs of T have length 0. Clearly, e(T ) < p∗q2. Since
δ(B′) ≥ p∗q2, by Lemma 2.5, for any vertex u in V (B′) there is a copy T (u) of T in
B′, where u is the image of the root.

We now define our set Sz as follows: If q′1 is odd, we let Sz = L′
t−1. If q

′
1 is even,

we let Sz = L′
t. In either case, |Sz| ≥ |Lt−1|/D ≥ n0.8 for large n. For each u ∈ Sz,

the corresponding T (u) has all of its leaves lying in L′
t ⊆ Lt. Since Lt is strong, each

vertex in L′
t has neighbors in at least k different sectors in Lt−1. Since k ≥ p∗, we

can lengthen each leg of T (u) by one to get a tree T ′(u) so that the leaves of T ′(u) all
lie in different sectors of Lt−1. By repeatedly applying condition 4 of Lemma 3.4, we
can find disjoint paths of length t− 2 through L1∪L2 ∪· · ·∪Lt−1 linking these leaves
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to different vertices of L1 = Uz. Every two of these paths share only u in common.
Denote this new spider by T ′′(u). In forming T ′′(u), each leg of T (u) is lengthened
by t − 1. So for, each j between q1 − r and q2 − r having the same parity as them,
p of the legs of T ′′(u) have length j. Let W ⊆ Uz denote the set of the p∗ leaves of
T ′′(u). Note that V (T ′′(u)) ∩ V (F ) = W . Since Uz is super-(m, r, r)-linked to z in F
and m ≥ p∗r, by Lemma 3.7, we can find p∗ paths of length r in F linking W to z
such that every two of these paths share only z. The union of these paths with T ′′(u)
now yields a (p, q1, q2)-path system in G between z and u. This holds for each u ∈ Sz,
and the claim is proved.

Since there are at least n0.74 supervertices, by Claim 1, the number of (p, q1, q2)-
linked pairs in G is at least 1

2n
0.74 · n0.8 > n1.51 for large n. Thus we have shown the

lemma.
Now, we use Lemma 3.8 to find desired subdivided graphs in dense graphs that

don’t contain dense subgraphs of small radius. To use Lemma 3.8, we need the graph
G to be “almost regular.” We will use Proposition 2.7, introduced in section 2, to
“reduce” a host graph to an almost regular one.

Theorem 3.9. Let c, ε be positive reals, where ε ≤ 1
2 and c ≥ 110. Let F be a

subdivision of another graph H. For every edge xy ∈ E(H), let lx,y denote the stretch
of xy in F . Suppose that lx,y is even and lx,y ≥ 2� 8

ε � for all xy ∈ E(H). There is a
function n0(ε, F ) of ε and F such that for all integers n ≥ n0(ε, F ) if G is an n-vertex
(c, ε)-dense bipartite graph that contains no ( c

5·27 , ε)-dense subgraph of radius at most
� 8
ε �, then G contains a copy of F .

Proof. Let R = � 8
ε �. By our assumption, G contains no ( c

5·27 , ε)-dense subgraph
of radius at most R. Let l = max{lx,y : xy ∈ E(H)}. Let q = l − R. For each
xy ∈ E(H), let qx,y = lx,y − R. Then R ≤ qx,y ≤ q, and qx,y has the same parity
as R and q. Let t = n(H). Let H ′ = H(2) denote the graph obtained from H by
subdividing each edge of H exactly once. Then H(2) has fewer than t2 vertices, and
by Corollary 2.2, ex(n,H(2)) < t2n3/2.

For each xy ∈ E(H), we may split the strict x, y-path in F into a path of length R
and a path of length qx,y. By doing so, we may view F as a subdivision of H ′ = H(2).
For each edge uv ∈ E(H ′), let l′u,v denote the stretch of uv in F . Then by our
discussion in the previous paragraph, l′u,v is between R and q and has the same parity
as R and q.

By removing edges if needed, we may assume that e(G) = cn1+ε. By Proposi-

tion 2.7, G contains a subgraph G′ on m ≥ n
ε
2

1−ε
1+ε vertices such that e(G′) ≥ 2c

5 m
1+ε

and Δ(G′)
δ(G′) ≤ cε, where cε = 20 · 2 1

ε2
+1. Iteratively remove vertices of degree less

than c
5m

ε from G′ until we get stuck; call the remaining subgraph G′′. By our pro-
cedure, e(G′′) ≥ c

5m
1+ε and δ(G′′) ≥ c

5m
ε. Note that in forming G′′ from G′, the

minimum degree does not decrease. This is because either no vertex is removed at all
or, if some vertex is removed, then δ(G′) ≤ c

5m
ε whereas δ(G′′) ≥ c

5m
ε. Obviously,

Δ(G′′) ≤ Δ(G′). Hence, Δ(G′′)
δ(G′′) ≤ cε still holds. Let N = n(G′′). Clearly as n tends

to infinity, m tends to infinity and N tends to infinity. Write δ(G′′) = c
5N

ε′ = c′N ε′ ,

where c′ = c
5 ≥ 22 and ε′ ≥ ε. Then Δ(G′′) ≤ c′cεN ε′ . If ε′ > 1

2 , then for large
enough N we can apply Corollary 2.2 to get F ⊆ G′′. So we may assume that ε′ ≤ 1

2 .
Since G contains no ( c

5·27 , ε)-dense subgraph of radius at most R, G′′ has no

( c′
27 , ε

′)-dense subgraph of radius at most R. By considering whether ε′ < 0.25 or
0.25 ≤ ε′ ≤ 0.5, one can show � 4.3

ε′ �+  1
4ε′ � + � 2.5

ε′ � ≤ 6.8
ε′ + 0.5

ε′ < 8
ε′ . So, R = � 8

ε � ≥� 8
ε′ � ≥ � 4.3

ε′ � +  1
4ε′ � + � 2.5

ε′ �. Recall that t = n(H). Let p = t2q. By Lemma 3.8,
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1250 TAO JIANG AND ROBERT SEIVER

with ε′ in place of ε, c′ in place of c, c′cε in place of D, and R, q in place of q1, q2,
respectively, G′′ contains at least N1.51 many (p,R, q)-linked pairs.

Define a new graph L with V (L) = V (G′′) such that uv ∈ E(L) if and only if u
and v are (p,R, q)-linked in G′′. Then, e(L) ≥ N1.51 ≥ t2N3/2 ≥ ex(N,H ′). Thus, L
contains a copy M of H ′. Note that M has at most 2

(
t
2

)
< t2 edges. By our definition

of L, for every edge uv ∈ E(M) ⊆ E(L), vertices u and v are (p,R, q)-linked in G′′.
In particular, there are p internally disjoint u, v-paths of length l′u,v in G′′. We can
build a copy of F in G′′ by replacing each uv ∈ E(M) with a u, v-path Qu,v of length
l′x,y in G′′. If we can ensure that these paths Qu,v are pairwise vertex disjoint outside
V (M), then their union forms a copy of F . We can accomplish this, since when any
pair (u, v) is processed fewer than t2 · q = p vertices have been used to embed earlier
pairs, and we can choose a u, v-path of length l′u,v that is internally disjoint from all
these vertices.

4. Proof of Theorem 1.10. In this section, we prove Theorem 1.10. Before we
proceed to the main proof, we need one more lemma.

Lemma 4.1. Let k, n,R be positive integers, where k,R ≥ 2. Let ε,M be positive
reals, where ε < 1 and M ≥ (2k)R. Suppose G is an n-vertex bipartite graph with
average degree at least M and radius at most R. There exist a positive integer d,
where 2 ≤ d ≤ R, and disjoint independent sets X,Y ∈ V (G) such that the following
hold:

1. The subgraph H of G induced by X ∪ Y has average degree at least M
(2k)R .

2. For any two vertices a, b ∈ Y and a set S ⊆ X∪Y with |S| ≤ k−2 there exist
a neighbor a′ of a and a neighbor b′ of b in X −S together with an a′, b′-path
of length 2d− 2 that is internally disjoint from V (H).

Proof. Let d denote the smallest positive integer j ≤ R such that G has a subgraph

that has average degree at least M(2k)j

(2k)R and radius j. Since G has average degree at

least M and radius at most R, d is well-defined. Also, d ≥ 2, since any radius-one

subgraph of G is a star and has average degree less than 2 ≤ M(2k)
(2k)R . Let F be a

subgraph of G that has average degree at least M(2k)d

(2k)R and radius d. Let u be a vertex

in the center of F . For each i = 0, 1, . . . , d, let Li denote the set of vertices at distance
i from u in F . Let T be a tree in F rooted at u with V (T ) = L0 ∪ L1 ∪ · · · ∪ Ld−1.
Let v1, . . . , vr denote the children of u in T . For each j = 1, . . . , r, let Tj denote
the subtree of T rooted at vj . For each j = 1, . . . , r, let Aj = V (Tj) ∩ Ld−1 and
Bj = NF (Aj) ∩ Ld. Let

L+
d = {x ∈ Ld : x lies in ≥ k different B′

js},
L−
d = {x ∈ Ld : x lies in < k different B′

js}.

Claim 2. At least half of the edges in F between Ld−1 and Ld are incident to
L+
d .

Proof. Otherwise suppose that fewer than half of these edges are incident to L+
d .

Then e(F −L+
d ) >

1
2e(F ) ≥ 1

2
1
2
M(2k)d

(2k)R n(F ) = 1
4
M(2k)d

(2k)R n(F ), using that F has average

degree at least M(2k)d

(2k)R . For each j = 1, . . . , r, let B−
j = Bj ∩ L−

d , and let Dj denote

the subgraph of F induced by V (Tj) ∪ u ∪ B−
j . Clearly each Dj has radius at most

d− 1. So, by our definition of d, we must have

e(Dj) ≤ 1

2

M(2k)d−1

(2k)R
n(Dj).(2)
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Summing (2) over all j = 1, . . . , r, we have

r∑
j=1

e(Dj) ≤ 1

2

M(2k)d−1

(2k)R

r∑
j=1

n(Dj).(3)

By our definition of Bj and Dj, each vertex of F − L+
d lies in at most k − 1 different

Dj ’s, except that u lies in all r ≤ n(F ) of the Dj’s. Hence (3) yields

e(F − L+
d ) ≤

r∑
j=1

e(Dj) ≤ 1

2

M(2k)d−1

(2k)R
[(k − 1)n(F ) + n(F )] =

1

4

M(2k)d

(2k)R
n(F ),

contradicting our earlier claim that e(F − L+
d ) >

1
4
M(2k)d

(2k)R n(F ).

Now, since F − Ld has radius at most d− 1, by our assumption,

e(F − Ld) ≤ 1

2

M(2k)d−1

(2k)R
n(F − Ld) ≤ 1

2

M(2k)d−1

(2k)R
n(F ).

Hence

eF (Ld−1, Ld) = e(F )− e(F − Ld) ≥
[
1

2

M(2k)d

(2k)R
− 1

2

M(2k)d−1

(2k)R

]
n(F ) ≥ M

(2k)R
n(F ).

Now, let X = Ld−1 and Y = L+
d , and let H denote the subgraph of F induced by

X ∪ Y . By Claim 2, e(H) ≥ 1
2eF (Ld−1, Ld) ≥ 1

2
M

(2k)R
n(F ) ≥ 1

2
M

(2k)R
n(H). So, H

has average degree at least M
(2k)R . To prove the second statement, let a, b ∈ Y = L+

d

and S ⊆ X ∪ Y , where |S| ≤ k − 2. Since a ∈ L+
d and |S| ≤ k − 2, we can find a

neighbor a′ of a in X − S. Suppose a′ ∈ Ai. Since b ∈ L+
d , we can find a neighbor

b′ in X − S that belongs to Aj for some j 
= i. Since Ti and Tj are rooted at two
different children of u, there is an a′, b′-path P of length 2d − 2 through u that lies
inside L0 ∪ · · · ∪ Ld−2 ∪ {a′, b′}. The path P is internally disjoint from H .

Remark 4.2. A subtle but crucial point of Lemma 4.1 is that the same integer d
works for all pairs a, b ∈ Y simultaneously. This fact will play an important role in
our final proof below.

Proof of Theorem 1.10. Recall that F is the desired subdivision of another graph
H . Let R = � 8

ε �. Clearly, R ≥ 2. For each edge xy ∈ E(H), let lx,y denote
the stretch of xy in F ; by our assumption, lx,y is even and lx,y ≥ 2R. Suppose
max{lx,y : xy ∈ E(H)} = 2q. Let t = n(H) and k = t(t − 1)q + 2. Let c = cF =
110n0(ε, F )qt2(5 · 27)t(t−1)(2k)Rt(t−1), where n0(ε, F ), as specified in Theorem 3.9,
depends only on ε and F . Let G be an n-vertex graph with at least cn1+ε edges. We
show F ⊆ G. For convenience, we may assume that H = Kt; otherwise for each pair
x, y ∈ V (H), where xy /∈ E(H), we may set lx,y = 2R. The resulting subdivision F ′

of Kt contains F and also satisfies the conditions of Theorem 1.10 (noting that the
constant cF depends only on ε and t). Hence we may as well assume that H = Kt

and F = F ′.
LetG′ be a spanning bipartite subgraph ofG with e(G′) ≥ 1

2e(G). It is well known
that G′ exists. For each integer i ≥ 0, let ci =

c
(5·27)i(2k)iR and let c′i = ci/(5 · 27).

Then c′i/(2k)
R = ci+1. Let H0 = G′ and n0 = n(H0). We iteratively define a

sequence of subgraphs of G′ as follows. Since G′ is bipartite, all these graphs will be
bipartite. If such a subgraph exists, let G1 be a (c′0, ε)-dense subgraph of H0 that has
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1252 TAO JIANG AND ROBERT SEIVER

radius at most R. Then G1 has average degree at least 2c′0[n(G1)]
ε. By Lemma 4.1,

there exist a positive integer d1 ≤ R and disjoint independent sets X1, Y1 in V (G1)
such that the subgraph H1 of G1 induced by X1 ∪ Y1 has average degree at least
2c′0[n(G1)]

ε/(2k)R ≥ 2c1[n(H1)]
ε. So, H1 is (c1, ε)-dense. Furthermore, for every pair

of vertices u1, v1 in Y1 and a set S1 ⊆ X1 with |S1| ≤ k− 2, there exist a neighbor u′
1

of u1 and a neighbor v′1 of v1 together with a u′
1, v

′
1-path in G1 of length 2d1 − 2 that

is internally disjoint from H1.
In general, suppose we have defined G1, H1, G2, H2, . . . , Gi, Hi. If such a subgraph

exists, let Gi+1 be a (c
′
i, ε)-dense subgraph ofHi that has radius at most R. Then Gi+1

has average degree at least 2c′i[n(Gi+1]
ε. By Lemma 4.1, there exist a positive integer

di+1 ≤ R and disjoint independent sets Xi+1, Yi+1 in V (Gi+1) such that the subgraph
Hi+1 ofGi+1 induced byXi+1∪Yi+1 has average degree at least 2c

′
i[n(Gi+1)]

ε/(2k)R ≥
2ci+1[n(Hi+1)]

ε. Thus, Hi+1 is (ci+1, ε)-dense. Furthermore, for every pair of vertices
ui+1, vi+1 in Yi+1 and a set Si+1 ⊆ Xi+1 with |Si+1| ≤ k − 2 there exist a neighbor
u′
i+1 of ui+1 and a neighbor v′i+1 of vi+1 together with a u′

i+1, v
′
i+1-path in Gi of

length 2di+1 − 2 that is internally disjoint from Hi+1.
Let s = t(t− 1) if we can carry on this process for t(t− 1) steps without getting

stuck. Otherwise, let s be the largest index i < t(t − 1) such that Gi, Hi are defined
but no subgraph Gi+1 of Hi exists that fits the description. We consider two cases.

Case 1. s = t(t−1). We describe how to find a copy of F in G as follows. Let Tq,t

denote the tree obtained from a path P = a1b1a2b2 . . . atbt on 2t vertices by attaching
t−1 (labelled) paths of length q at each vertex of P . Then Tq,t has q(t−1)2t+2t ≤ 2qt2

vertices. Since Hs is (cs, ε)-dense, Hs has average degree has at least 2cs[n(Hs)]
ε. So,

Hs contains a subgraph with minimum degree at least cs[n(Hs)]
ε ≥ cs ≥ 2qt2, by our

definition of c and the fact that s = t(t− 1). By Lemma 2.5, this subgraph contains
a copy of T = Tq,t. Since H1 ⊇ H2 ⊇ · · · ⊇ Hs, T lies in all of H1, . . . , Hs. For
each i ∈ {1, . . . , s}, (Xi ∩ V (T ), Yi ∩V (T )) is a bipartition of T . We must have either
all of a1, . . . , at contained in Xi or all of b1, . . . , bt contained in Xi. Without loss of
generality, we may assume that for at least half of the indices i in {1, . . . , s} the former
holds (otherwise we can rename the ai’s with the bi’s and the bi’s with the ai’s). By

skipping indices if necessary, we may assume for each i ∈ {1, . . . , t(t−1)
2 } that all of

a1, . . . , at are contained in Xi (and thus all of b1, . . . , bt are contained in Yi).
We will now find in G a copy of F with b1, . . . , bt as the branch vertices. Let f be

a bijection between
(
[t]
2

)
and {1, . . . , t(t−1)

2 }. For all pairs i, j ∈ {1, . . . , t}, where i < j,
we do the following. Let m = f(i, j). In T there are t− 1 (labelled) paths of length
q attached to bi. Let zi,j denote the vertex on the jth path whose distance from bi
along the path is li,j − 2dm. Let Pi,j denote the portion of this path between bi and
zi,j . Since bi ∈ Ym and li,j − 2dm is even, zi,j ∈ Ym. Let T ∗ =

⋃
1≤i<j≤t(t−1)/2 Pi,j .

Note that V (T ∗) ⊆ V (T ) ⊆ Xm∪Ym for each m ∈ {1, . . . , t(t−1)
2 }. Next, we complete

T ∗ into a copy of F by adding disjoint paths Qm ⊆ Gm of length 2dm connecting zi,j
to bj .

We define Qm inductively in the decreasing order of m = f(i, j) (where i < j)
satisfying (a) Qm ⊆ Gm, (b) Qm joins zi,j to bj and has length 2dm, and (c) Qm

intersects V (T ∗) ∪ ⋃t(t−1)/2
r=m+1 Qr only in zi,j and bj . For the basis step, let m =

t(t−1)
2 . Let i, j, where i < j, be the pair with f(i, j) = m. By our earlier discussion,

zi,j , bj ∈ Ym. Let S = V (T ∗). Then |S| ≤ t(t − 1)q = k − 2. By Lemma 4.1, we
can find a neighbor z′i,j and a neighbor b′j of bj in Xm − S together with a z′i,j , b

′
j-

path Q′
m of length 2dm − 2 in Gm that is internally disjoint from Hm. Let Qm =
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Q′
m ∪ zi,jz

′
i,j ∪ bjb

′
j . Then Qm joins zi,j and bj and has length 2dm. Furthermore,

since S ⊆ V (Hm) and Q′
m is internally disjoint from Hm, Qm intersects S only

in zi,j and bj . For the induction step, let m < t(t−1)
2 and suppose that Qr has

been defined for r = m + 1, . . . , t(t−1)
2 that satisfies the three conditions. Let i, j,

where i < j, be the pair with f(i, j) = m. By our earlier discussion, zi,j , bj ∈ Ym.

Let S = V (T ∗) ∪ ⋃t(t−1)/2
r=m+1 V (Qr). Since Qr ⊆ Gr ⊆ Hm, S ⊆ V (Hm). Also,

|S| ≤ t(t − 1)q = k − 2. By Lemma 4.1, we can find a neighbor z′i,j and a neighbor
b′j of bj in Xm − S together with a z′i,j , b

′
j-path Q′

m of length 2dm − 2 in Gm that is
internally disjoint from Hm. Let Qm = Q′

m ∪ zi,jz
′
i,j ∪ bjb

′
j . Then Qm joins zi,j and

bj and has length 2dm. Furthermore, since S ⊆ V (Hm) and Q′
m is internally disjoint

from Hm, Qm intersects S only in zi,j and bj. This completes the construction of the
Qm’s and Case 1.

Case 2. s < t(t−1). In this case, by our assumption, Hs is (cs, ε)-dense but has no
(c′s, ε)-dense subgraph of radius at most R (otherwise Gi+1 would have been defined).
In other words, Hs has no ( cs

5·27 , ε)-dense subgraph of radius at most R. Also, clearly
cs ≥ 110 and n(Hs) ≥ cs > n0(ε, t) by our definition of c and s < t(t − 1). By
Theorem 3.9, F ⊆ Hs and hence F ⊆ G. This completes Case 2 and the proof of the
theorem.

5. Further discussions. As mentioned in the introduction, our main goal in

the paper is to establish an O(n1+ c
p ) bound on ex(n,K

(p)
t ). Currently we have c = 16.

A more careful analysis can reduce c by quite a bit. However, to substantially reduce
c, it seems like new ideas are needed. A possible new approach to explore is the one
used by Fox and Sudakov [11].

Appendix A: Proof of Proposition 1.2.
Proposition 1.2. Let F be a bipartite graph with m vertices and e edges. Then

ex(n, F ) = Ω(n2−m
e
+ 1

e ). More generally, we have ex(n, F ) = Ω(n2− 1
γ ), where γ =

γ(F ) is the local-density of F .
Proof. Since ex(n, F ) ≥ ex(n,H) for any H ⊆ F , it suffices to prove the first

statement. Let n be sufficiently large as a function of m and e. Let p = 1
4n

−m−1
e .

Consider the random graph G = G(n, p) (that is, edges are included in G indepen-
dently with probability p). Fixing any set S of n

2 vertices, the number of edges e(G[S])
of G induced by S has the binomial distribution BIN(n2 , p). By Chernoff’s inequality

Prob(e(G[S]) < n2p
16 ) < 2e−λn2

for some constant λ depending on p (and thus on
m and e). Since there are

(
n

n/2

)
< 2n many choices of S, the probability that, for

some set S of n
2 vertices, G[S] has fewer than n2p

16 edges is less than 2n · 2e−λn2

. In
particular, for sufficiently large n, this probability is less than 1

2 .
Let X be the random variable that counts the number of copies of F in G. There

are fewer than nm potential labelled copies of F on V (G), each being a subgraph of

G with probability pe. Hence E(X) < nmpe < (1/4)nm(n−m−1
e )e = n

4 . By Markov’s
inequality, Prob(X > n

2 ) <
1
2 .

By our discussions above, with positive probability G satisfies that (a) for every

set S of n
2 vertices, e(G[S]) has at least n2p

16 edges, and (b) the number of labelled
copies of F in G is at most n

2 . Fix such an n-vertex graph G. If we delete one vertex
from each copy of F in G, we are left with a subgraph G′ of G on at least n

2 vertices

that has no copy of F . By (a), G′ has at least n2p
16 = Ω(n2−m−1

e ) edges. By adding

isolated vertices to G′ if necessary, we see that ex(n, F ) = Ω(n2−m−1
e ).
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Appendix B: Proof of Proposition 2.7.
Proposition 2.7. Let ε, c be positive reals, where ε < 1 and c ≥ 1. Let n be a

positive integer that is sufficiently large as a function of ε. Let G be an n-vertex graph

with e(G) ≥ cn1+ε. Then G contains a subgraph G′ on m ≥ n
ε
2

1−ε
1+ε vertices such that

e(G′) ≥ 2c
5 m

1+ε and Δ(G′)
δ(G′) ≤ cε, where cε = 20 · 2 1

ε2
+1.

Proof. For convenience, we will drop ceilings and floors whenever doing so does
not affect the analysis in an essential way. We say that a graph H is d-good if
Δ(H)
δ(H) ≤ d. Let ε, c be positive reals, where ε < 1 and c ≥ 1. Let n be a positive

integer sufficiently large as a function of ε. Let G be a graph on n vertices with

e(G) ≥ cn1+ε. Set p = 2 1
ε2

+1�. We partition V (G) into 2p almost equal parts
B1, . . . , B2p, where B1 consists of  n

2p� vertices of the highest degrees in G.

Suppose first that at most c
2n

1+ε edges of G are incident to B1. We say that G is of
type 1. Let H = G−B1. Then e(H) ≥ c

2n
1+ε. Successively remove vertices of degree

less than c
10n

ε from H until we get stuck; denote the remaining subgraph by G′. Let
m = n(G′). Since at most c

10n
ε ·n = c

10n
1+ε edges are removed in the process, we have

e(G′) ≥ 4c
10n

1+ε ≥ 2c
5 m

1+ε. Also, δ(G′) ≥ c
10n

ε by the way we obtained G′. By our
assumption of B1, dG(x) ≥ Δ(G′) for all x ∈ B1. Also,

∑
x∈B1

dG(x) ≤ cn1+ε since at

most c
2n

1+ε edges of G are incident to B1. We have Δ(G′)(n/2p) ≤ ∑
x∈B1

dG(x) ≤
cn1+ε, from which we get Δ(G′) ≤ 2pcnε. Thus, Δ(G′)/δ(G′) ≤ 2pcnε/ c

10n
ε = 20p.

So G′ is 20(2
1
ε2

+1)-good. Also, m ≥ 2e(G′)/Δ(G′) ≥ 4c
5 n

1+ε/2pcnε = 2
5pn ≥ n

ε
2

1−ε
1+ε

for large n. So, the claim holds.
Suppose now that more than c

2n
1+ε edges of G are incident to B1. We say that

G is of type 2. By an averaging argument, for some j ∈ {2, . . . , 2p}, the subgraph G1

of G induced by B1 ∪ Bj has more than 1
2p

c
2n

1+ε = c
4pn

1+ε edges. Let n1 = n(G1).

Then n1 ≈ n
p . Note that cn1+ε

1 = c(np )
1+ε = c

pn
1+ε 1

pε ≤ c
4pn

1+ε, using that pε ≥
2(

1
ε2

+1)·ε ≥ 4. So e(G1) ≥ cn1+ε
1 .

We can now replace G with G1 and repeat the analysis. If G1 is of type 1, we
terminate. If G1 of type 2, we define G2 from G1 the way we defined G1 from G.
We continue like this as long as the new graph Gi is of type 2. We terminate when
Gi is of type 1 for the first time. With G0 = G, let k be the smallest i such that
Gi is of type 1. Then n(Gk) ≈ n

pk and e(Gk) ≥ c
(4p)k

n1+ε. Since e(Gk) ≤ [n(Gk)]
2,

we have c
(4p)kn

1+ε ≤ n2

p2k . From this, we get (p4 )
k ≤ 1

cn
1−ε ≤ n1−ε and hence k ≤

(1 − ε) logn/ log p
4 . Since nk = n(Gk) ≈ n/pk, lognk ≥ (1 − (1 − ε) log p

log p
4
) logn.

Plugging in p = 2
1
ε2

+1, we get nk ≥ nε 1−ε
1+ε . Since Gk is of type 1, by our earlier

arguments, it contains a subgraph G′ on m vertices, where m ≥ 2
5pnk ≥ n

ε
2

1−ε
1+ε for

large n. Furthermore, e(G′) ≥ 2c
5 m

1+ε, and G′ is 20(2
1
ε2

+1)-good. This completes the
proof.
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1970, pp. 377–390.

[10] R. Faudree and M. Simonovits, On a class of degenerate extremal graph problems, Combi-
natorica, 3 (1983), pp. 83–93.

[11] J. Fox and B. Sudakov, Density theorems for bipartite graphs and related Ramsey-type results,
Combinatorica, 29 (2009), pp. 153–196.
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[15] J. Kollár, L. Rónyai, and T. Szabó, Norm graphs and bipartite Turán numbers, Combina-

torica, 16 (1996), pp. 399–406.
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