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Given a family of r-uniform hypergraphs F (or r-graphs for brevity), the Turán number ex(n,F) of
F is the maximum number of edges in an r-graph on n vertices that does not contain any member
of F . A pair {u,v} is covered in a hypergraph G if some edge of G contains {u,v}. Given an r-
graph F and a positive integer p � n(F), where n(F) denotes the number of vertices in F , let HF

p
denote the r-graph obtained as follows. Label the vertices of F as v1, . . . ,vn(F). Add new vertices
vn(F)+1, . . . ,vp. For each pair of vertices vi,v j not covered in F , add a set Bi, j of r−2 new vertices

and the edge {vi,v j}∪Bi, j , where the Bi, j are pairwise disjoint over all such pairs {i, j}. We call

HF
p the expanded p-clique with an embedded F . For a relatively large family of F , we show that

for all sufficiently large n, ex(n,HF
p ) = |Tr(n, p−1)|, where Tr(n, p−1) is the balanced complete

(p−1)-partite r-graph on n vertices. We also establish structural stability of near-extremal graphs.
Our results generalize or strengthen several earlier results and provide a class of hypergraphs for
which the Turán number is exactly determined (for large n).

2010 Mathematics subject classification: Primary 05C65
Secondary 05C35

1. Introduction

Given an r-uniform hypergraph (or r-graph for brevity) G, we use n(G) and |G| to denote
the number of vertices and number of edges in G, respectively. Given a family of r-graphs
F , the Turán number ex(n,F) of F is the maximum number of edges in an r-graph on n
vertices that does not contain any member of F . The Turán density π(F) of F is defined to be
limn→∞ ex(n,F)/

(n
r

)
; such a limit is known to exist. Determining Turán numbers of graphs and

† Research supported in part by NSF GK-12 Transforming Experiences Grant DGE-0742434.
‡ Research supported in part by National Science Foundation grant DMS-1400249.



368 A. Brandt, D. Irwin and T. Jiang

hypergraphs is one of the central problems in extremal combinatorics. For r = 2, the problem was
asymptotically solved for all non-bipartite graphs in the form of the Erdős–Stone–Simonovits
theorem, which states that if F is a family of graphs and the minimum chromatic number among
all members is p � 3, then

π(F) =
p−2
p−1

.

For r � 3, not too much is known. There are very few exact or asymptotic results. For a recent
survey on hypergraph Turán numbers, the reader is referred to the survey by Keevash [13]. In
this paper, we build on earlier works by Sidorenko [24], Pikhurko [20, 21], Mubayi [15] and
Mubayi and Pikhurko [16] to obtain a general theorem that determines the exact Turán numbers
of a class of hypergraphs for all sufficiently large n. Our main theorems substantially generalize
or strengthen several earlier results.

2. History

2.1. Cancellative hypergraphs
The study of Turán numbers dates back to Mantel’s theorem, which states that ex(n,K3) = �n/2�·
�n/2�. Katona [12] suggests an extension of the problem to hypergraphs. An r-graph G is called
cancellative if, for any three edges A,B,C satisfying A∪B = A∪C, we have B = C. Equivalently,
G is cancellative if it does not contain three distinct members A,B,C such that one contains
the symmetric difference of the other two. When r = 2 the condition is equivalent to saying
that G is triangle-free. Katona asked to determine the largest size of a cancellative 3-graph on
n vertices. The problem was solved by Bollobás [2], who showed that for all n, the largest size
of a cancellative 3-graph on n vertices is the balanced complete 3-partite 3-graph on n vertices.
Keevash and Mubayi [14] gave a new proof of Bollobás’s result and established stability of
near-extremal graphs, showing that all cancellative 3-graphs on n with close to the maximum
number of edges must be structurally close to the complete balanced 3-partite 3-graph. Bollobás
[2] conjectured that for all r � 4, the largest cancellative r-graph on n vertices is the balanced
complete r-partite r-graph on n vertices. This was proved to be true for r = 4 by Sidorenko [24].
However, Shearer [22] gave counter-examples showing that the conjecture is false for r � 10.

2.2. Generalized triangles
Frankl and Füredi [7, 8] considered a strengthening of cancellative r-graphs. For each r � 2, let
∑r consist of all r-graphs with three edges D1,D2,D3 such that |D1 ∩D2| = r−1 and D1
D2 ⊆
D3, where D1
D2 denotes the symmetric difference of D1 and D2. Let the generalized triangle
Tk be the member of ∑r with edges

{1, . . . ,r}, {1,2, . . . ,r−1,r +1} and {r,r +1,r +2, . . . ,2r−1}.

For sufficiently large n, Frankl and Füredi [7] showed that

ex
(

n,∑3

)
= ex(n,T3) =

⌊
n
3

⌋
·
⌊

n+1
3

⌋
·
⌊

n+2
3

⌋
,

with the extremal graph being the balanced 3-partite 3-graph on n vertices. In [8], Frankl and
Füredi determined the exact value of ex(n,∑5) for all n divisible by 11 and the exact value of
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ex(n,∑6) for all n divisible by 12. For these n, the extremal graphs are blow-ups of the unique
(11,5,4) and (12,6,5) Steiner systems. Frankl and Füredi [8] conjectured that for all r � 4, if
n � n0(r) is sufficiently large then ex(n,∑r) = ex(n,Tr). Pikhurko [20] proved the conjecture for
r = 4, showing that

ex
(

n,∑4

)
= ex(n,T4) =

⌊
n
4

⌋
·
⌊

n+1
4

⌋
·
⌊

n+2
4

⌋
·
⌊

n+3
4

⌋
,

with the balanced complete 4-partite 4-graph on n vertices being the unique extremal graph.
Recently, Norin and Yepremyan [18] proved Frankl and Füredi’s conjecture for r = 5 and r = 6.

2.3. Expanded cliques and generalized fans
Given a hypergraph H and a pair {x,y} of vertices in H, we say that {x,y} is covered in H if some
edge in H contains both x and y. Let Tr(n, �) denote the complete �-partite r-graph on n vertices
where no two parts differ by more than one in size. Mubayi [15] considered the Turán problem
for the following family of r-graphs. For all p � r � 2, let Kr

p denote the family of r-graphs H
that contains a set C of p vertices such that every pair in C is covered in H. Let Hr

p denote the
unique member of Kr

p with edge set{
{i, j}∪Bi, j : {i, j} ∈

(
[p]
2

)}
,

where the Bi, j are pairwise disjoint (r−2)-sets outside [p]. We call Hr
p the r-uniform expanded p-

clique. For all n, p,r, Mubayi [15] showed that ex(n,Kr
p) = |Tr(n, p−1)| with the unique extremal

graph being Tr(n, p−1). Mubayi further established structural stability of near-extremal Kr
p-free

graphs. Using this stability property, Pikhurko [21] later strengthened Mubayi’s result to show
that ex(n,Hr

p) = |Tr(n, p−1)| for all sufficiently large n.
Mubayi and Pikhurko [16] considered the Turán problem for so-called generalized fans. Let

Fanr be the r-graph comprising r+1 edges e1, . . . ,er,e such that ei∩e j = {x} for all i = j, where
x /∈ e, and |ei∩e|= 1 for all i. Note that Fan2 is precisely a triangle. Mubayi and Pikhurko showed
that for all r � 3 and all sufficiently large n,

ex(n,Fanr) = |Tr(n,r)| =
r

∏
i=1

⌊
n+ i−1

r

⌋
.

3. The general problem on KF
p and HF

p

The problems mentioned in the previous section can be generalized as follows, as discussed in
Keevash [13]. Let r � 3. Let F be an r-graph. Let p � n(F). Let KF

p denote the family of r-graphs
H that contains a set C of p vertices, called the core, such that the subgraph of H induced by C
contains a copy of F and such that every pair in C is covered in H. Let HF

p be the member of KF
p

obtained as follows. We label the vertices of F as v1, . . . ,vn(F). Add new vertices vn(F)+1, . . . ,vp.
Let C = {v1, . . . ,vp}. For each pair of vertices vi,v j ∈ C not covered in F , we add a set Bi, j of
r− 2 new vertices and the edge {vi,v j}∪Bi, j, where the Bi, j are pairwise disjoint over all such
pairs {i, j}. We call HF

p an expanded p-clique with an embedded F . We call C the core of HF
p .

Using this notation, we can describe the families of graphs considered in the last section as
follows. Let L denote the r-graph on r+1 vertices consisting of two edges sharing r−1 vertices.
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Then KL
r+1 = ∑r and HL

r+1 = Tr, the generalized triangle. If F is the r-uniform empty graph
then KF

p = Kr
p and HF

p = Hr
p, the r-uniform expanded p-clique. Let e denote a single r-set, then

He
r+1 = Fanr, the r-uniform generalized fan. More recently, Hefetz and Keevash [10] studied

ex(n,HM2
6

) and determined its exact value for all large n (together with stability), where M2

consists of two disjoint triples.
Our main results in this paper show that for a large family of F , ex(n,KF

p ) = ex(n,HF
p ) =

|Tr(n, p− 1)| for all sufficiently large n, and that all near-extremal n-vertex HF
p -free r-graphs

G must be structurally close to Tr(n, p− 1). In fact, we establish this stability of near-extremal
graphs first and then use stability to obtain the exact value of ex(n,HF

p ). See Theorems 6.2 and 6.3
for a detailed description of our main results. Let us point out that for this family of r-graphs F ,
π(n,HF

p ) can already be determined using the hypergraph Lagrangian notion (see Theorem 5.7,
which was given in [13]). However, the main challenge is to establish stability for near-extremal
graphs and to apply such stability to establish the exact value of ex(n,HF

p ) for the single graph
HF

p for all sufficiently large n. This is also a feature of some earlier works such as those on
expanded cliques and generalized fans, where determining π(HF

p ) is quite straightforward and
most of the work goes into establishing stability and determining the exact value of ex(n,HF

p ).
From our general theorems, some earlier results follow as corollaries. The contribution of the

two main theorems also lies in the fact that, under suitable assumptions about F , they reduce
the determination of the exact value of ex(n,HF

p ) for large n, together with structural stability
of near-extremal graphs, to determining (or just bounding) the Lagrangian density πλ (F). Our
main method is the stability method used by Pikhurko [20], which was influenced by some earlier
work by Sidorenko [24].

4. Notations and definitions

Before introducing our main results, we give some notations and definitions that will be used
throughout the paper. Given a hypergraph G and a set S of vertices, the link graph of S in G,
denoted by LG(S), is the hypergraph with edge set { f : f ⊆V (G)\S, f ∪S ∈ G}. We write LG(u)
for LG({u}). The degree of S in G, denoted by dG(S), is the number of edges of G that contain
S, that is, dG(S) = |LG(S)|. We denote the minimum vertex degree of G by δ (G) and the number
of vertices of G by n(G).

Let p � 1 be an integer. The p-shadow of G, denoted by ∂p(G), is the set of p-sets that are
contained in edges of G, that is, ∂p(G) = { f : | f | = p, f ⊆ e for some e ∈ G}. Let m � r � 1 be
positive integers. Let [m]r denote the falling factorial m(m−1) · · ·m(m− r +1).

A hypergraph G covers pairs if every pair of its vertices is contained in some edge. If G is a
hypergraph and S is a set of vertices in G, then G[S] denotes the subgraph of G induced by S.

5. Hypergraph Lagrangians and Lagrangian density

In order to describe our results, we need the notion of Lagrangians for hypergraphs. To motivate
the notion of hypergraph Lagrangians, we first review the usual hypergraph symmetrization
process and some of its properties. Two vertices u,v in a hypergraph H are non-adjacent if
{u,v} is not covered in H. Given a hypergraph H and two non-adjacent vertices u and v in H,
symmetrizing v to u is the operation that removes all the edges of H containing v and replaces
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them with {v∪D : D ∈ LH(u)}. In other words, we make v a clone of u. The following property
is implicit in [13]. We re-establish it for completeness.

Proposition 5.1. Let p,r be positive integers, where p � r+1. Let F be an r-graph with n(F) �
p and let G be an r-graph that is KF

p -free. Let u,v be two non-adjacent vertices in G. Let G′ be
obtained from G by symmetrizing v to u. Then G′ is also KF

p -free.

Proof. First note that u,v have codegree 0 in G′. Suppose for contradiction that G′ contains a
member H of KF

p with C being its core. Since u,v have codegree 0 in G′ and every pair in C is
covered in H ⊆ G′, C contains at most one of u and v. For each e ∈ H, if v /∈ e let f (e) = e and
if v ∈ e let f (e) = (e \ {v})∪{u}. Let L = { f (e) : e ∈ H}. Then L ⊆ G and L is a member of
KF

p with either C (if v /∈C) or (C \{v})∪{u} (if v ∈C) being the core. This contradicts G being
KF

p -free.

Given an r-graph G and two non-adjacent vertices u,v, if LG(u) = LG(v) then we say that u
and v are equivalent, and write u ∼ v. Otherwise we say that u,v are non-equivalent. Note that ∼
is an equivalence relation on V (G). The equivalence class of a vertex v consists of all the vertices
that are equivalent to v.

Algorithm 5.2 (symmetrization without cleaning). Let G be an r-graph. We perform the
following as long as G contains two non-adjacent non-equivalent vertices. Let u,v be two such
vertices where d(u) � d(v); we symmetrize each vertex in the equivalence class of v to u. We
terminate the process when there exist no more non-adjacent non-equivalent pairs.

Note that the algorithm always terminates since the number of equivalence classes strictly
decreases after each step that can be performed.

As usual, if V1, . . . ,Vs are disjoint sets of vertices then

Πs
i=1Vi = V1 ×V2 ×·· ·×Vs = {(x1,x2, . . . ,xs) : xi ∈Vi for all i = 1, . . . ,s}.

We will abuse notation and use Πs
i=1Vi also to denote the set of the corresponding unordered

s-sets. If L is a hypergraph on [m], then a blowup of L is a hypergraph G whose vertex set can be
partitioned into V1, . . . ,Vm such that

E(G) =
⋃

e∈E(L)
∏
i∈e

Vi.

The next proposition follows immediately from the algorithm.

Proposition 5.3. Let G be an r-graph and let G∗ be the graph obtained at the end of the
symmetrization process applied to G. Then we have the following.

(i) |G| � |G∗|.
(ii) Let S consist of one vertex from each equivalence class of G∗ under ∼. Then G∗[S] covers

pairs and G∗ is a blowup of G∗[S].
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Let G be an r-graph on [n]. A weight function, or weight assignment, f on G is a mapping
from V (G) to [0,∞). We say that f is a 1-sum weight assignment if ∑v∈V (G) f (v) = 1. For every
edge e in G, define f (e) = ∏v∈e f (v) and call it the weight of e. We may describe f using the
vector x̃ = (x1, . . . ,xn), where xi = f (i) for each i ∈ [n]. Now, define a polynomial in the variables
x̃ = (x1, . . . ,xn) by

pG(x̃) = pG(x1, . . . ,xn) = r! · ∑
e∈E(G)

∏
i∈e

xi.

We define the Lagrangian of G to be

λ (G) = max

{
pG(x1, . . . ,xn) : xi � 0 for all i = 1, . . . ,n,

n

∑
i=1

xi = 1

}
.

A 1-sum weight assignment x̃ on G with pG(x̃) = λ (G) is called an optimal weight assignment
on G. Given an r-graph F , we define the Lagrangian density πλ (F) of F to be

πλ (F) = sup{λ (G) : F ⊆ G}. (5.1)

Note that our definition of the Lagrangian follows that of Sidorenko [24], and differs from the
definition given by Keevash [13] by a factor of r!. The following proposition follows immediately
from the definition of πλ (F).

Proposition 5.4. Let F be an r-graph. Let L be an F-free r-graph. Let G be an r-graph on [n]
that is a blowup of L. Then |G| � πλ (F)nr/r!.

Proof. Suppose V (L) = [s] and let V1, . . . ,Vs be the partition of V (G) with Vi corresponding to i.
For each i ∈ [s], let xi = |Vi|/n. Let x̃ = (x1, . . . ,xn). Then xi � 0 for all i ∈ [s], and ∑s

i=1 xi = 1.
Since G is a blowup of L, we have

|G| = ∑
e∈L

∏
i∈e

|Vi| = nr ∑
e∈L

∏
i∈e

xi =
nr

r!
· pL(x̃) � nr

r!
πλ (F),

where the last inequality follows from the definition of πλ (F) and the fact that L is F-free.

Given r-graphs F and G we say f : V (F) → V (G) is a homomorphism if it preserves edges,
that is, for every e ∈ E(F) we have f (e) ∈ E(G). We say that G is F-hom-free if there is no
homomorphism from F to G. The following proposition is given in the first few paragraphs of
[13, Section 3].

Proposition 5.5 ([13]). If F,G are r-graphs and G is F-hom-free, then π(F)� λ (G). Moreover,
π(F) = sup{λ (G) : G is F-hom-free}.

The next proposition is implicit in the proof of [13, Theorem 3.1].

Proposition 5.6 ([13]). If F is an r-graph that covers pairs, then π(F) = πλ (F).

Proof. Clearly, if G is an r-graph that is F-hom-free then it is also F-free. We claim that the
converse is also true in this case. Let G be F-free. If there were a homomorphism f from F to
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G, then the fact that every two vertices in F lie in an edge of F , and that f preserves edges,
forces f to be injective, contradicting G being F-free. So, G is F-hom-free. Now, by (5.1) and
Proposition 5.5,

πλ (F) = sup{λ (G) : F ⊆ G} = sup{λ (G) : G is F-hom-free} = π(F).

As mentioned in the Introduction, the notion of hypergraph Lagrangians already yields the
following tight bounds on ex(n,KF

m+1) for certain r-graphs F . We describe the bounds in the
following theorem, which is a more specific version of Theorem 3.1 of [13]. We give a proof
using our language.

Theorem 5.7 ([13]). Let F be an r-graph with n(F) � m + 1. Suppose that πλ (F) � [m]r/mr.
Then for every n we have

ex(n,KF
m+1) � [m]r

mr
· nr

r!
.

Equality holds if r divides n. In particular,

π(KF
m+1) =

[m]r
mr

.

Proof. If L is a member of KF
m+1 with core C, then ∂2(L) contains an (m+1)-clique since every

pair in C is covered in L. Since ∂2(T
r

m(n)) does not contain an (m + 1)-clique, then L ⊆ T r
m(n).

Hence T r
m(n) is KF

m+1-free and ex(n,KF
m+1) � e(T r

m(n)). Since

lim
n→∞

|T r
m(n)|

/(
n
r

)
=

[m]r
mr

,

we have

π(KF
m+1) � [m]r

mr
.

Next, let G be a KF
m+1-free r-graph on [n]. Let G∗ be the final graph obtained at the end of

the symmetrization process applied to G. By Propositions 5.1 and 5.3, G∗ is KF
m+1-free and

e(G∗) � e(G). Let S consist of one vertex from each equivalence class of G∗. By Proposition 5.3,
G∗[S] covers pairs and G∗ is a blowup of G∗[S]. If F ⊆ G∗[S], then since G∗[S] covers pairs, G∗

(in fact, G∗[S]) contains a member of KF
m+1, a contradiction. Hence F ⊆ G∗[S].

By Lemma 5.4, we have

|G| � |G∗| � πλ (F)
nr

r!
� [m]r

mr
· nr

r!
.

Since this holds for every KF
m+1-free G on [n], we have

ex(n,KF
m+1) � [m]r

mr
· nr

r!
.

Note that when r divides n,

|T r
m(n)| = [m]r

mr
· nr

r!
.
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Hence

ex(n,KF
m+1) =

[m]r
mr

· nr

r!

in this case. Finally, a straightforward calculation shows that

π(KF
m+1) = lim

n→∞
ex(n,KF

m+1)
/(

n
r

)
� [m]r

r!
.

Hence

π(KF
m+1) =

[m]r
mr

.

6. Main results

6.1. Main theorems
As mentioned in the Introduction, our main results determine the exact value of ex(n,HF

m+1)
for certain r-graphs F for sufficiently large n and establish stability of near-extremal HF

m+1-free
graphs.

Definition 6.1. Let m,r � 2 be positive integers. Let F be an r-graph on at most m+1 vertices
with πλ (F) � [m]r/mr. We say that KF

m+1 is m-stable if, for every real ε > 0, there are a real
δ1 > 0 and an integer n1 such that, if G is a KF

m+1-free r-graph with n � n1 vertices and more than(
[m]r
mr

−δ1

)(
n
r

)

edges, then G can be made m-partite by deleting at most εn vertices.

Theorem 6.2 (stability). Let m,r be positive integers. Let F be an r-graph that either has at
most m vertices or has m+1 vertices one of which has degree 1. If πλ (F) < [m]r/mr, then KF

m+1

is m-stable.

Theorem 6.3 (stability to exactness). Let F be an r-graph that either has at most m vertices
or has m+1 vertices one of which has degree 1. If KF

m+1 is m-stable, then there exists an integer
n2 such that, for all n � n2, ex(n,HF

m+1) = |Tr(n,m)|. Also, Tr(n,m) is the unique extremal graph.

Theorems 6.2 and 6.3 immediately imply our main theorem.

Theorem 6.4 (main theorem). Let m,r be positive integers. Let F be an r-graph that either
has at most m vertices or has m+1 vertices one of which has degree 1. Suppose either πλ (F) <

[m]r/mr or πλ (F) = [m]r/mr and KF
m+1 is m-stable. Then there exists a positive integer n3

such that for all n � n3 we have ex(n,HF
m+1) = |Tr(n,m)|. Also, Tr(n,m) is the unique extremal

graph.

By Proposition 5.6, we have the following corollary.
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Corollary 6.5. Let m,r be positive integers. Let F be an r-graph that either has at most m
vertices or has m+1 vertices one of which has degree 1. Suppose F covers pairs. Suppose either
π(F) < [m]r/mr or π(F) = [m]r/mr and KF

m+1 is m-stable. Then there exists a positive integer n4

such that for all n � n4 we have ex(n,HF
m+1) = |Tr(n,m)|. Also, Tr(n,m) is the unique extremal

graph.

To introduce our next main theorem, we need a definition. Given a 2-graph G and an integer
r � 2, the (r−2)-fold enlargement of G is an r-graph F obtained by taking an (r−2)-set D that
is vertex-disjoint from G and letting F = {e∪D : e ∈ G}.

Define the function

fr(x) = ∏r−1
i=1 (x+ i−2)
(x+ r−3)r

.

Note that fr(x) > 0 on [0,∞) and limx→∞ fr(x) = 0. Let Mr denote the last (i.e. rightmost)
maximum of the function fr on the interval [2,∞). As pointed out in [24], Mr is non-decreasing
in r, and can be specifically calculated. For instance, M2 = M3 = 2, M4 = 2 +

√
3. Also, we

will define M1 = 2. The well-known Erdős–Sós conjecture says that if T is a k-vertex tree or
forest, then ex(n,T ) � n(k− 2)/2. The conjecture has been verified for many families of trees.
The conjecture has also been verified when k is large [1]. The following theorem was proved by
Sidorenko [24].

Theorem 6.6 ([24]). Let r,k � 2 be integers where k � Mr. Let T be a tree on k vertices that
satisfies the Erdő–Sós conjecture. Let F be the (r−2)-fold enlargement of T . Then

π(KF
k+r−2) = πλ (F) =

[k + r−3]r
(k + r−3)r

= (k−2) fr(k).

In fact, Sidorenko’s arguments showed that

ex(n,KF
r+k−2) � [k + r−3]r

(k + r−3)r

nr

r!
,

where equality is attained if r +k−3 divides n. However, no structural stability of near-extremal
families was established and neither was the exact value of ex(n,HF

r+k−2) determined. Recall
that HF

k+r−2 is a specific member of the family KF
k+r−2. We strengthen Sidorenko’s result by

establishing structural stability of near-extremal KF
k+r−2-free families and then using this stability

to establish the exact value of ex(n,HF
k+r−2) for all sufficiently large n. The k = 2 case is trivial.

We henceforth assume k � 3.

Theorem 6.7 (stability of enlarged trees). Let k � 3,r � 2 be integers, where k � Mr. Let T
be a k-vertex tree that satisfies the Erdős–Sós conjecture. Let F be the (r−2)-fold enlargement
of T . Then KF

k+r−2 is (k + r−3)-stable.

Theorems 6.7 and 6.3 together imply the following theorem.
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Theorem 6.8 (exact result on enlarged trees). Let k � 3,r � 2 be integers, where k � Mr. Let
T be a k-vertex tree that satisfies the Erdős–Sós conjecture. Let F be the (r−2)-fold enlargement
of T . There exists a positive integer n5 such that for all n � n5 we have

ex(n,HF
r+k−2) = |Tr(n,r + k−3)|.

Also, Tr(n,m) is the unique extremal graph.

To show that KF
k+r−2 is (k + r − 3)-stable, we first establish some useful properties of the

Lagrangian function of a 2-graph not containing a given tree T . These properties (see Section 10)
may be of independent interest.

For the rest of the paper, we prove Theorems 6.2, 6.3 and 6.7.

6.2. Applications of the main theorems and related remarks
We deduce a few earlier results using our main theorems, and give a few new examples.

Corollary 6.9 ([21]). Let

Hr
p =

{
{i, j}∪Bi, j : {i, j} ∈

(
[p]
2

)}
,

where Bi, j are pairwise disjoint (r− 2)-sets outside [p]. Then ex(n,Hr
p) = |Tr(n, p− 1)| for all

sufficiently large n.

Proof. Let F denote the r-uniform empty graph. Then

πλ (F) = 0 <
[p−1]r
(p−1)r

.

By Theorem 6.4, ex(n,Hr
p) = ex(n,HF

p ) = |Tr(n, p−1)| for all sufficiently large n.

Corollary 6.10 ([16]). Let r � 3. Let Fanr consist of r +1 edges e1, . . . ,er,e such that ei ∩e j =
{x} for all i = j, where x /∈ e, and |ei∩e|= 1 for all i. Then ex(n,Fanr) = |Tr(n,r)| for sufficiently
large n.

Proof. Note that Fanr = HF
r+1, where F consists of a single edge. Clearly, πλ (F) = 0 < [r]r/rr.

By Theorem 6.4, ex(n,Fanr) = |Tr(n,r)| for all sufficiently large n.

Corollary 6.11 ([7]). Let T3 = {{1,2,3},{1,2,4},{3,4,5}}. Then ex(n,T3) = |T3(n,3)| for all
sufficiently large n.

Proof. Let F = {{1,2,3},{1,2,4}}. Then F is the 1-fold enlargement of the 2-tree K1,2, which
is known to satisfy the Erdős–Sós conjecture. Let k = 3. Recall that M3 = 2 (see the discussion
before Theorem 6.6). So k � M3. Note that T3 = HF

4 . By Theorem 6.8, ex(n,T3) = |T3(n,3)| for
all sufficiently large n.

Note, however, that Theorem 6.6 cannot be applied to Tr, for r � 4, where Tr = {{1,2, . . . ,r},
{2,3, . . . ,r + 1},{r,r + 1,r + 2, . . . ,2r − 1}}, since Mr > 3 for r � 4. In fact, for r = 5,6 we
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saw in the Introduction that the extremal graph is no longer the Turán graph Tr(n,r). Rather, the
extremal graphs are blowups of certain designs.

Theorems 6.4 and 6.8 give rise to numerous new graphs whose Turán number is exactly
determined, with the Turán graph being the unique extremal graph. Indeed, by Corollary 6.5, if
F covers pairs, n(F) � m, and π(F) < [m]r/mr, then ex(n,HF

m+1) = |Tr(n,m)| for all sufficiently
large n. So we can construct as many such examples as we want. Using Theorem 6.8, we can
construct such examples very easily. For instance, let

F = {{1,2,m+1},{2,3,m+1}, . . . ,{m−1,m,m+1}},

where m � 3. Then F is the 1-fold enlargement of the path Pm. By Theorem 6.8, ex(n,HF
m+1) =

T3(n,m) for all sufficiently large n.
In general, to apply Theorem 6.4, we need a bound on πλ (F), rather than π(F). If πλ (F) <

[m]r/mr, then we get stability and the exact result right away. If πλ (F) = [m]r/mr, then es-
tablishing stability (if it is applicable) can take more work. We also want to point out that
determining πλ (F) (rather than just bounding it) is generally open and should provide a rich
collection of problems for further study. We give a few recent examples for πλ (F). Let Mr

t denote
the r-uniform matching of t edges (i.e. t disjoint edges). Hefetz and Keevash [10] showed that
πλ (M3

2) � 12
25 and that

ex(n,HM3
2

6
) = |T3(n,5)|, for all sufficiently large n.

Jiang, Peng and Wu [11] later gave a short new proof of this result. They also generalized the
result to show that, for all t � 2,

πλ (M3
t ) =

[3t −1]3
[3t −1]3

,

and that

λ (G) <
[3t −1]3
[3t −1]3

− c

for some small positive real c for all M3
t -free graph G = K3

3t−1. Using this, one can show that HM3
t

3t
is (3t −1)-stable and hence, by Theorem 6.4,

ex(n,HM3
t

3t
) = |T3(n,3t −1)|

for all sufficiently large n. Jiang, Peng and Wu [11] also determined πλ (F) for a few other r-
graphs F , and applied Theorem 6.4 to obtain the exact value of ex(n,HF

m+1) for all sufficiently
large n.

The survey by Keevash [13] included a list of r-graphs whose Turán number is determined
exactly (for large n). That list was short. Our results give a rather large infinite family of r-graphs
of the form HF

m+1 whose extremal graph turns out to be Tr(n,m). To the best of our knowledge,
we are not aware of r-graphs not of the form HF

m+1 whose extremal graph is the Turán graph
Tr(n,m). It would be an interesting problem to characterize r-graphs H for which the extremal
graph for the Turán number ex(n,H) is Tr(n,m).
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7. Reduction from HF
m+1-free graphs to KF

m+1-free graphs

In this short section, we establish the fact that every HF
m+1-free r-graph on [n] can be made KF

m+1-
free by removing O(nr−1) edges. In particular, this implies that to establish stability of near-
extremal HF

m+1-free graphs it suffices to establish stability of near-extremal KF
m+1-free graphs.

We need the following result by Frankl on the Turán number of a matching. As is well known,
for sufficiently large n, the Turán number ex(n,Ms+1) of an r-uniform matching Ms+1 of size
s+1 is (

n
r

)
−

(
n− s

r

)
,

as was shown by Erdős [4]. However, for our purposes we will use the following slightly weaker
but simpler bound which applies to all n.

Lemma 7.1 ([6]). If H is an r-graph on [n] that contains no (s + 1)-matching, then |H| �
s
( n

r−1

)
.

In fact, Frankl [6] showed that if H is an r-graph that has no (s + 1)-matching, then |H| �
s|∂r−1(H)|. For an integer s � 2, an s-sunflower with kernel D is a collection of s distinct sets
A1, . . . ,As such that, for all i, j ∈ [s], i = j, Ai ∩Aj = D. Given an r-graph G and a set D, define
the kernel degree of D in G, denoted by d∗

G(D), to be

d∗
G(D) = max{s : G contains an s-sunflower with kernel D}.

Lemma 7.2. Given an r-graph G on [n] and integers p,d > 0, where d < r, there exists a
subgraph G′ of G with

|G′| � |G|− p

(
n
d

)(
n

r−d −1

)

such that, for every d-set D in [n], if dG′(D) > 0 then d∗
G′(D) > p.

Proof. Starting with G, as long as there exists a d-set D of vertices such that the degree of D in
the remaining graph is non-zero but is at most p

( n
r−d−1

)
, we remove all the edges containing D.

Let G′ denote the final remaining subgraph of G. Then

|G′| � |G|− p

(
n

r−d −1

)(
n
d

)
.

It is possible that G′ is empty. If G′ is non-empty, then for every d-set D that has non-zero degree
in G′, we have

|LG′(D)| = dG′(D) > p

(
n

r−d −1

)
.

Since LG′(D) is an (r− d)-graph on [n], by Lemma 7.1, it contains a (p + 1)-matching. Hence,
d∗

G′(D) > p.
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Lemma 7.3. Let p = n(HF
m+1). If G is an HF

m+1-free graph on [n], then G contains a KF
m+1-free

subgraph G′ with

|G′| � |G|− p

(
n

r−3

)(
n
2

)
.

In particular, π(HF
m+1) = π(KF

m+1).

Proof. Let G be the given HF
m+1-free graph on [n]. By Lemma 7.2, G contains a subgraph G′

with

|G′| � |G|− p

(
n

r−3

)(
n
2

)

such that for every pair {a,b} of vertices, if dG′({a,b}) > 0 then d∗
G′({a,b}) > p. We show that

G′ is KF
m+1-free. Suppose for contradiction that G′ contains a member H of KF

m+1. Let C denote
the core of L. Then H[C] contains a copy of F . Let {x,y} be any pair in C that is uncovered
by F . By definition, {x,y} is covered by some edge of H and hence by some edge of G′. So
dG′({x,y}) = 0 and thus d∗

G′({x,y}) > p. So G′ contains a (p+1)-sunflower S with kernel {x,y}.
Since p = n(HF

m+1) � |C|, we can find an edge e of S containing {x,y} that intersects C only in
{x,y}. We can continue the process and cover each uncovered pair {a,b} in C using an edge that
intersects the current partial copy H ′ of HF

m+1 only in a and b. We can do so since {a,b} is the
kernel of a (p+1)-sunflower and H ′ has at most p vertices. Thus we can find a copy of HF

m+1 in
G′, and thus in G, contradicting our assumption that G is HF

m+1-free. Hence G′ is KF
m+1-free and

|G| � ex(n,KF
m+1)+ p

(
n

r−3

)(
n
2

)
.

Since

ex(n,KF
m+1) � ex(n,HF

m+1) � ex(n,KF
m+1)+ p

(
n

r−3

)(
n
2

)
,

we have π(HF
m+1) = π(KF

m+1).

8. Stability of near-extremal families and proof of Theorem 6.2

We use Pikhurko’s approach [20] to establish stability of near-extremal families. First we de-
scribe a modified symmetrization algorithm used in [20] (and in [10], [18]) that is key to the
approach. Compared to the usual symmetrization algorithm (Algorithm 5.2), the modified al-
gorithm has an extra cleaning stage in each iteration. In the algorithm, at any stage, when we
discuss the equivalence class of a vertex, this refers to the equivalence class under ∼ that we
defined earlier. We always automatically readjust equivalence classes after we apply an operation
to a graph. Given an r-graph L and a real α with 0 < α � 1, we say that L is α-dense if L has
minimum degree at least α

(n(L)−1
r−1

)
.

Algorithm 8.1 (symmetrization and cleaning with threshold α).
Input: An r-graph G.
Output: An r-graph G∗.
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Initiation: Let G0 = H0 = G. Set i = 0.
Iteration: For each vertex u in Hi, let Ai(u) denote the equivalence class that u is in. If either Hi is
empty or Hi contains no two non-adjacent non-equivalent vertices, then let G∗ = Hi and terminate.
Otherwise, let u,v be two non-adjacent non-equivalent vertices in Hi, where dHi

(u) � dHi
(v). We

symmetrize each vertex in Ai(v) to u. Let Gi+1 denote the resulting graph. Note that after the
symmetrization, the equivalence classes may change in Gi+1. But they are still well-defined. If

Gi+1 has minimum degree at least α
(n(Gi+1)−1

r−1

)
, that is, if Gi+1 is α-dense, then let Hi+1 = Gi+1.

Otherwise we let L = Gi+1 and repeat the following: let z be any vertex of minimum degree in L.
We redefine L = L− z unless in forming Gi+1 from Hi we symmetrized the equivalence class of
some vertex v in Hi to some vertex in the equivalence class of z in Hi. In that case, we redefine
L = L−v instead. We repeat the process until L becomes either α-dense or empty. Let Hi+1 = L.
We call the process of forming Hi+1 from Gi+1 ‘cleaning’. Let Zi+1 denote the set of vertices
removed, so that Hi+1 = Gi+1 −Zi+1. By our definition, if Hi+1 is non-empty then it is α-dense.

Let us now give an overview of how the approach roughly works. The statement we establish
will be more general than that of Theorem 6.2. Let F be an r-graph with πλ (F) � [m]r/mr such
that either n(F) � m or n(F) = m + 1 and F contains a degree 1 vertex. We take an n-vertex
KF

m+1-free graph G with |G| ∼ |Tr(n,m)| and wish to show that under certain conditions G can
be made m-partite by deleting o(n) vertices. We choose an appropriately small real γ > 0 and
apply Algorithm 8.1 with threshold [m]r/mr − γ to G to obtain G∗. The fact that G is KF

m+1-free
and that |G| ∼ |Tr(n,m)| easily guarantee that n(G∗) = n− o(n). The condition we need now is
that G∗ has a set W of size n− o(n) such that G∗[W ] is m-partite (if we allow an empty part in
an m-partition). This is readily guaranteed if πλ (F) < [m]r/mr. If πλ (F) = [m]r/mr then we will
need the existence of W as a given condition in our statement. (Later, we will see that if F is the
(r−2)-fold enlargement of a tree T that satisfies the Erdős–Sós conjecture, we can guarantee the
existence of W even when πλ (F) = [m]r/mr.)

The key argument we want to make now is that if G0 = G,G1,G2, . . . ,Gs = G∗ denotes the
sequence of the graphs we obtain in the execution of Algorithm 8.1, then in fact for each i =
0,1 . . . ,s, Gi[W ] is m-partite. In particular, G[W ] is m-partite. Since |W | = n− o(n), this means
that G itself can be made m-partite by deleting o(n) vertices.

To show that for each i = 0,1, . . . ,s, Gi[W ] is m-partite, we use reverse induction on i. By
our earlier discussion, Gs[W ] = G∗[W ] is m-partite. This forms the basis step. Now assume that
Gi+1[W ] is m-partite; we wish to show that Gi[W ] is also m-partite. To accomplish this suppose
that (Ai+1

1 , . . . ,Ai+1
m ) is an m-partition of Gi+1[W ], and suppose that in forming Gi+1 from Gi we

symmetrize the equivalence class Cv of some vertex v to the equivalence class Cu of some vertex
u and perform the cleaning afterwards with the given threshold. After excluding some peripheral
cases, we may assume that both u,v are in W and without loss of generality that u,v ∈ Ai+1

1 .
Let W ′ = W \Cv. Note that since Gi[W

′] = Gi+1[W
′], Gi[W

′] is m-partite with an m-partition
(Ai+1

1 \Cv,Ai+1
2 , . . . ,Ai+1

m ). For convenience, let U1 = Ai+1
1 \Cv,U2 = Ai+1

2 , . . . ,Um = Ai+1
m . Let Ev

be the set of edges in Gi that contain a vertex in Cv. Now, our main goal is to show that there
exists j ∈ [m], such that for each e ∈ Ev, e intersects U� in at most one vertex for each � ∈ [m] and
that e∩Uj = /0. Clearly, by the definition of Cv, |e∩Cv| = 1. Now, we can extend the m-partition
(U1, . . . ,Um) of Gi[W

′] to an m-partition of Gi[W ] by replacing Uj with Uj ∪ (Cv ∩W ).
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To establish the existence of such an index j ∈ [m], we will make full use of the fact that the
condition on the density of Gi+1 forces Gi+1[W

′] to be an almost complete m-partite r-graph. In
such an almost complete environment, any edge not in Gi+1[W

′] that contains two vertices from
the same U� would force the occurrence of a member of KF

m+1, a contradiction. This shows that
each e ∈ Ev intersects each U� in at most one vertex. Since m � r and e intersects Ev, e misses
some U�. In essence, we will let Uj be the part of Gi+1[W

′] that the largest number of edges in
Ev miss. But the actual choice of Uj will be slightly more technical than given here. Once Uj is
chosen, we will make use of the almost-completeness of Gi+1[W

′] to show that in fact all edges
in Ev must miss Uj.

Now we present the details. First, in Section 8.1, we develop a series of lemmas that essentially
say that Gi[W ] is an almost complete m-partite r-graph with almost equal parts for each i. After
the lemmas we will present our main stability theorem, Theorem 8.7, in Section 8.2.

8.1. Lemmas on the structure of the graphs obtained in Algorithm 8.1
First let us mention a routine fact, which is established in [15] and can be verified straightfor-
wardly.

Lemma 8.2 (Claim 1 in [15]). For any integers m � r � 2 and real γ > 0, there exist a real
β = β (ε) > 0 and an integer M1 such that, for any m-partite r-graph G of order n � M1 and
size at least ([m]r/mr −β )

(n
r

)
, the number of vertices in each part is between (n/m)− εn and

(n/m)+ εn.

We may assume that ε is sufficiently small. First, we choose small positive reals

1 � c2 � c1 � γ0 > 0,

and an integer n1. Our first condition on n1 is that n1 � M1, where M1 is given in Lemma 8.2, and
that n1 satisfies (8.1) given below. Other conditions on n1 will be stated implicitly throughout
the proofs. We now describe the conditions on the constants as follows. First we choose c1 to be
sufficiently small and n1 sufficiently large such that for all N � n1 we have

(
[m]r
mr

− c1

)(
N −1
r−1

)
�

(
[m]r
mr

−2c1

)
Nr−1

(r−1)!
=

(
m−1
r−1

)(
N
m

)r−1

−2c1
Nr−1

(r−1)!
. (8.1)

Next, subject to (8.1), we choose c1,c2 to be sufficiently small and n1 sufficiently large such that,
for N � n1,

(
[m]r
mr

−c1

)(
N −1
r−1

)
−

(
m−2
r−1

)(
N
m

+c2N

)r−1

>
1
2

(
m−2
r−2

)(
N
m

)r−1

>
1

2mr−1
Nr−1. (8.2)

Such choices exist by (8.1) and the fact that

(
m−1
r−1

)
−

(
m−2
r−1

)
=

(
m−2
r−2

)
.
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In addition, we can make our choice of c1,c2 solely dependent on m and r. Now, subject to (8.1)
and (8.2), we choose c1,c2,γ0 to satisfy

c2 <
1

6m

(
1

10m

)m−1

, c2 <
1

(2m)mr
, c1 < min

{
c2

8
,β

(
c2

2m

)}
, γ0 +4γ0(r−1) < c1,

(8.3)

where the function β is defined as in Lemma 8.2. Note that all c1,c2,γ0 can be defined to be
solely dependent on m and r.

Now, let γ < γ0 be given. Choose δ > 0 to be sufficiently small that

γ −δ
γ +δ

� 1− γ. (8.4)

Let n0 = 2n1. Let G be a KF
m+1-free graph on [n], where n � n0, such that

|G| >
(

[m]r
mr

−δ
)(

n
r

)
.

Let G∗ be the final graph obtained by applying Algorithm 8.1 to G with threshold [m]r/mr −γ .
Suppose the algorithm terminates after s steps. So, G∗ = Gs.

Lemma 8.3. Let Z∗ =
⋃s

i=1 Zi, that is, Z∗ is the set of vertices removed by Algorithm 8.1 with
threshold [m]r/mr − γ . Then |Z∗| < γn. Hence, n(G∗) � (1− γ)n and G∗ is ([m]r/mr − γ)-dense.

Proof. Let p = |Z∗|. Let α = [m]r/mr. By the algorithm, when symmetrizing, the number of
edges does not decrease. When deleting a vertex, the number of edges we lose is at most (α −
γ)

(x−1
r−1

)
, where x is the number of vertices remaining in the graph before the deletion of that

vertex. Hence

|Gs| � |G|− (α − γ)
p

∑
i=1

(
n− i
r−1

)

� (α −δ )
(

n
r

)
− (α − γ)

[(
n
r

)
−

(
n− p

r

)]
.

Since symmetrizing preserves KF
m+1-freeness and deletion of vertices certainly also does, Gs is

KF
m+1-free. By Theorem 5.7,

|Gs| � α
(n− p)r

r!
< (α +δ )

(
n− p

r

)
,

for sufficiently large n. Hence we have

(α +δ )
(

n− p
r

)
� (α −δ )

(
n
r

)
− (α − γ)

[(
n
r

)
−

(
n− p

r

)]
.

This yields

(γ +δ )
(

n− p
r

)
� (γ −δ )

(
n
r

)
.
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Hence (
n− p

n

)r

�
(

n− p
r

)/(
n
r

)
� γ −δ

γ +δ
� 1− γ,

where the last inequality holds by (8.4). Hence

1− p
n

� (1− γ)1/r � 1− γ.

So p � γn. Hence n(G∗) � (1− γ)n. Since the algorithm terminates with a non-empty G∗, G∗ is
([m]r/mr − γ)-dense.

Suppose now that there exists W ⊆V (G∗) with |W |� (1−γ0)|V (G∗)| such that W is the union
of at most m equivalence classes of G∗. Let N = |W |. Then

N � (1− γ0)(1− γ)n � n−2γ0n. (8.5)

Since n � n0, certainly N � n/2 � n1.

Lemma 8.4. For each i ∈ [s], we have

δ (Gi[W ]) = δ (Hi[W ]) �
(

[m]r
mr

− c1

)(
N −1
r−1

)
.

Hence, in particular,

|Gi[W ]| = |Hi[W ]| �
(

[m]r
mr

− c1

)(
N
r

)
.

Proof. Note that for every i ∈ [s], Gi[W ] = Hi[W ], since Hi = Gi −Zi and Zi ⊆ Z∗ ⊆ [n]\W . For
convenience, let α = [m]r/mr. Let i ∈ [s]. By the algorithm, Hi is (α − γ)-dense, that is,

δ (Hi) � (α − γ)
(

n(Hi)−1
r−1

)
.

For each vertex x in W , by (8.5), there are at most 2γ0n
(n(Hi)−2

r−2

)
edges of Hi that contain x and a

vertex outside W . For each i ∈ [s], since n(Hi) � |W | > (1−2γ0)n, we have

n � 1
1−2γ0

n(Hi) � 2(n(Hi)−1).

Then

δ (Hi[W ]) � (α − γ)
(

n(Hi)−1
r−1

)
−2γ0n

(
n(Hi)−2

r−2

)

� (α − γ0)
(

n(Hi)−1
r−1

)
−4γ0(n(Hi)−1)

(
n(Hi)−2

r−2

)

= (α − γ0 −4γ0(r−1))
(

n(Hi)−1
r−1

)
� (α − c1)

(
N −1
r−1

)
,

where the last inequality follows from (8.3).



384 A. Brandt, D. Irwin and T. Jiang

Next, we develop a routine but useful lemma on near-complete m-partite r-graphs. Given an
m-partite r-graph L with parts A1, . . . ,Am, a transversal is a set S of vertices consisting of one
vertex from each part. The transversal S is complete if it induces a complete r-graph on S. A
transversal that is not complete is called non-complete.

Lemma 8.5. Let L be an m-partite r-graph on N � n0 vertices, where

δ (L) �
(

[m]r
mr

− c1

)(
N −1
r−1

)
.

Let A1, . . . ,Am be an m-partition of L. Then

(i) for each j ∈ [m], ||Aj|−N/m| < c2N,

(ii) the number of non-complete transversals is at most c2Nm,
(iii) the number of non-complete transversals containing any one vertex is at most c2Nm−1.

Proof. Since

δ (L) �
(

[m]r
mr

− c1

)(
N −1
r−1

)
,

we have

|L| �
(

[m]r
mr

− c1

)(
N
r

)
.

Since L is m-partite on N � M1 vertices and c1 < β (c2/2m), by Lemma 8.2,∣∣∣∣|Aj|−
N
m

∣∣∣∣ <

(
c2

2m

)
N < c2N, for all j ∈ [m]. (8.6)

Hence item (i) holds. Let K denote the complete m-partite r-graph with parts A1, . . . ,Am. Then

|K| � |Tr(N,m)| �
(

[m]r
mr

+ c1

)(
N
r

)
, for sufficiently large N.

Since

|L| �
(

[m]r
mr

− c1

)(
N
r

)
,

we have

|K \L| < 2c1

(
N
r

)
.

Each non-complete transversal must contain a member of K \L. On the other hand, for a fixed
member of K \L, there are at most (max j |Aj|)m−r � (2N/m)m−r transversals that contain it. So
the number of non-complete transversals is at most

2c1

(
N
r

)(
2N
m

)m−r

< 2c1Nm � c2Nm.

This proves item (ii). It remains to prove item (iii). Let x be any vertex. Without loss of generality,
suppose x ∈ A1. Let Lx denote the link graph of x in L. Let Kx denote the complete (m−1)-partite
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(r − 1)-graph with parts A2, . . . ,Am. A complete (m− 1)-partite (r − 1)-graph K′ with �N/m�
vertices in each part has at most

[m]r
mr

(
N −1
r−1

)

edges. Since ∣∣∣∣|Aj|−
N
m

∣∣∣∣ <

(
c2

2m

)
N, for j = 2, . . . ,m,

we can delete at most (c2/2)N vertices from Kx to obtain a subgraph of K′. Hence,

|Kx| � |K′|+
(

c2

2

)
Nr−1 <

[m]r
mr

(
N −1
r−1

)
+

(
c2

2

)
Nr−1.

Since

|Lx| �
(

[m]r
mr

− c1

)(
N −1
r−1

)
,

we have

|Kx \Lx| <
(

c1 +
c2

2

)
Nr−1 <

(
3c2

4

)
Nr−1.

Let T denote the collection of non-complete transversals that contain x. Every member of T
must contain either an edge e ∈ K \L where x /∈ e or an edge {x}∪ f ∈ K \L where f ∈ Kx \Lx.
The number of members of T of the former type is at most

|K \L| ·
(

max
j

|Aj|
)m−1−r

� 2c1

(
N
r

)(
2N
m

)m−1−r

< 2c1Nm−1 �
(

c2

4

)
Nm−1.

The number of members of T2 of the latter type is at most

|Kx \Lx| ·
(

max
j

|Aj|
)m−r

�
(

3c2

4

)
Nr−1

(
2N
m

)m−r

<

(
3c2

4

)
Nm−1.

Hence |T | � c2Nm−1.

Let us also include a fact that will be used in the proof of Theorem 6.2.

Lemma 8.6. Let F be an r-graph such that either n(F) � m or n(F) = m+1 and F contains a
degree 1 vertex. If L is an r-graph obtained from the complete r-graph K on [m] by duplicating
vertex 1 into 1′ and adding an edge e covering {1,1′}, then L contains a member of KF

m+1.

Proof. Let C = [m]∪ {1′}. Whether n(F) � m or n(F) = m + 1 and F contains a vertex of
degree 1, it is easy to see that L[C] contains F and that all pairs in C are covered in L. So L
contains a member of KF

m+1.

8.2. General stability theorem and proof of Theorem 6.2
We now present a stability theorem that is more general than Theorem 6.2. This theorem will be
useful for establishing stability for HF

m+1 even when πλ (F) = [m]r/mr (whereas in Theorem 6.2,
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we assume πλ (F) < [m]r/mr). Since we want the theorem to be as widely applicable as possible,
the statements are rather technical.

Theorem 8.7. Let m � r � 2 be integers. Let F be an r-graph with πλ (F) � [m]r/mr such
that either n(F) � m or n(F) = m + 1 and F contains a vertex of degree 1. There exists a real
γ0 = γ0(m,r) > 0 such that, for every positive real γ < γ0, there exist a real δ > 0 and an integer
n0 such that the following is true for all n � n0. Let G be a KF

m+1-free r-graph on [n] with
|G| > ([m]r/mr − δ )

(n
r

)
. Let G∗ be the final graph produced by Algorithm 8.1 with threshold

[m]r/mr − γ . Then n(G∗) � (1− γ)n and G∗ is ([m]r/mr − γ)-dense. Further, if there is a set
W ⊆ V (G∗) with |W | � (1− γ0)|V (G∗)| such that W is the union of a collection of at most m
equivalence classes of G∗, then G[W ] is m-partite.

Proof. By Lemma 8.3, n(G∗) � (1 − γ)n and G∗ is ([m]r/mr − γ)-dense. By Lemma 5.1,
symmetrizing preserves KF

m+1-freeness. Deletion of vertices certainly also does. So G∗ is KF
m+1-

free. Next, we want to prove that G[W ] is m-partite. To do that, we use reverse induction on i
to prove that for every i ∈ [s], Gi[W ] is m-partite. By our assumption, Gs[W ] is m-partite. This
establishes the basis step. Let i < s. Assume that Gi+1[W ] is m-partite; we prove that Gi[W ] must
also be m-partite. As before, let N = |W |. Let Ai+1

1 , . . . ,Ai+1
m be an m-partition of Gi+1[W ]. By

Lemma 8.4, we have

δ (Gi+1[W ]) = δ (Hi+1[W ]) �
(

[m]r
mr

− c1

)(
N −1
r−1

)
and

|Gi+1[W ]| = |Hi+1[W ]| �
(

[m]r
mr

− c1

)(
N
r

)
.

By Lemma 8.5, ∣∣∣∣|Ai+1
j |− N

m

∣∣∣∣ < c2N, for all j ∈ [m].

In particular, we may assume that N/2m � |Ai+1
j | � 2N/m for all j ∈ [m]. Let Ki+1 denote the

complete m-partite graph on W with parts Ai+1
1 , . . . ,Ai+1

m .
Suppose that in forming Gi+1 from Hi we symmetrized the equivalence class Cv of v in Hi

to some vertex u in Hi. If none of Cv is in W , then Gi[W ] = Gi+1[W ] and there is nothing to
prove. So we may assume that Cv ∩W = /0. Since all the vertices in Cv are the same, we assume
that v ∈ Cv ∩W . By our algorithm this means u ∈ W as well. Indeed, by construction, since we
symmetrized Cv to u, in the subsequent cleaning steps of our algorithm, u would be removed
only if all of Cv were removed. Also, from step i + 1 forward, u and v always lie in the same
equivalence class. Since W is the union of equivalence classes of Gs and v ∈W , we should have
u ∈W as well. Without loss of generality, suppose u ∈ Ai+1

1 . Let U1 = Ai+1
1 \Cv and W ′ = W \Cv.

For each j = 2, . . . ,m, let Uj = Ai+1
j . Then U1, . . . ,Um is an m-partition of Gi+1[W

′] and also
note that Gi+1[W

′] = Hi[W
′] = Gi[W

′]. Let Ev be the set of edges of Hi[W ] that contains v. Let
E ′

v = {e\{v} : e ∈ Ev}. Then |E ′
v| = |Ev|. By Lemma 8.4,

|Ev| = |E ′
v| �

(
[m]r
mr

− c1

)(
N −1
r−1

)
. (8.7)
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Claim 1. For every e ∈ Ev, and for every j ∈ [m], we have |e∩Uj| � 1.

Proof of Claim 1. First we show that for every e ∈ Ev, |e∩U1| � 1. Suppose for contradiction
that there exists e ∈ Ev with |e∩U1| � 2. Let a,b ∈ e∩U1. Let S be the collection of all (m−1)-
sets S obtained by selecting one vertex from U� for each � ∈ [m]\{1}. Then

|S| �
(

N
2m

)m−1

> 2c2Nm−1, (8.8)

where the last inequality follows from (8.3). For each S ∈ S, note that S∪{a} and S∪{b} are
both transversals in Gi+1[W ] (relative to Ai+1

1 , . . . ,Ai+1
m ). By Lemma 8.5 there are at most 2c2Nm−1

non-complete transversals in Gi+1[W ] containing either a or b. Hence, by (8.8) there exists S ∈ S
such that S1 = S∪{a} and S2 = S∪{b} are complete transversals in Gi+1[W ]. That is, S1 and S2

both induce complete r-graphs in Gi+1[W ]. Since S1,S2 ⊆ W ′ and Gi[W
′] = Hi[W

′] = Gi+1[W
′],

S1 and S2 both induce complete r-graphs in Hi[W ] as well. By Lemma 8.6, the union of these two
complete r-graphs plus e contains a member of KF

m+1 in Hi[W ], a contradiction. Hence, for all
e ∈ Ev, |e∩U1| � 1.

Next, let j ∈ [m] \ {1}. Suppose there exists e ∈ Ev such that |e∩Uj| � 2. If |U1| � N/10m,
then we argue as above, the only difference being that we replace (8.8) with |S|� (N/10m)m−1 >

2c2Nm−1, which still holds by (8.3). Hence, we may assume that |U1| < N/10m.
Since Ai+1

1 = U1 ∪ (Cv ∩W ) and |Ai+1
1 | � N/2m, we have |Cv ∩W | � 0.4(N/m). Let a,b ∈

e∩Uj. Recall that u ∈U1. Suppose first that the number of non-complete transversals in Gi+1[W ]
containing both u and a is at least 3mc2Nm−2. Then, since all of Cv ∩W is symmetrized to u in
forming Gi+1 from Hi and Cv∩W and u are both in Ai+1

1 , the number of non-complete transversals
in Gi+1[W ] that contain a is at least

3mc2Nm−2|Cv ∩W | � 3mc2
0.4
m

Nm−1 > c2Nm−1,

contradicting Lemma 8.5. Hence, the number of non-complete transversals containing both u and
a is at most 3mc2Nm−2. Similarly the number of non-complete transversals containing both u and
b is at most 3mc2Nm−2. Let S be the collection of (m−2)-sets S obtained by selecting one vertex
from Uj for each j ∈ [m]\{1, j}. Then

|S| �
(

N
2m

)m−2

> 6mc2Nm−2, (8.9)

where the last inequality follows from (8.3). For each S ∈ S, S1 = S∪{u,a} is a transversal in
Gi+1[W ] containing both u and a, and S2 = S∪{u,b} is a transversal in Gi+1[W ] containing both u
and b. By (8.9), there exists S ∈ S such that both S1 and S2 are complete transversals in Gi+1[W ].
As before they both induce complete r-graphs in Hi[W ] as well. Their union together with e now
contains a member of KF

m+1, a contradiction. Hence, for all e ∈ Ev, j ∈ [m], |e∩Uj| � 1.

By Claim 1, for all f ∈ E ′
v and for all j ∈ [m], | f ∩Uj| � 1. So each member f of E ′

v intersects
some r − 1 parts among U1, . . . ,Um. By an averaging argument, there exist some r − 1 parts
Uj1

, . . . ,Ujr−1
such that at least |E ′

v|/
( m

r−1

)
members of E ′

v intersect these r−1 parts and no other
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parts. Let J = { j1, . . . , jr−1}. Let

EJ = { f ∈ E ′
v : ∀ j ∈ J, f ∩Uj = /0}. (8.10)

By our discussion,

|EJ| � |E ′
v|
/(

m
r−1

)
�

(
[m]r
mr

− c1

)(
N −1
r−1

)/(
m

r−1

)
>

1
(2m)r

Nr−1, (8.11)

for sufficiently large N � n1.
Let

I =
{

i ∈ [m] : |∂1(E
′
v)∩Ui| �

1
(2m)r

N

}
.

By (8.11) and the definition of I, we have J ⊆ I. First, suppose that |I| � m− 2. By our earlier
discussion, for all i ∈ I ⊆ [m], |Ui| � N/m+c2N. Also, for each i /∈ I, the number of members of
E ′

v intersecting Ui is trivially at most

1
(2m)r

N ·Nr−2 =
1

(2m)r
Nr−1.

Hence, by (8.2) (with room to spare),

|E ′
v| �

(
m−2
r−1

)(
N
m

+ c2N

)r−1

+m

[
1

(2m)r
Nr−1

]
<

(
[m]r
mr

− c1

)(
N −1
r−1

)
,

contradicting (8.7). Hence

|I| � m−1.

If |I| = m−1, then let k ∈ [m]\ I. If |I| = m, then let k ∈ I \ J.

Claim 2. For all e ∈ Ev, we have e∩Uk = /0.

Proof of Claim 2. Suppose for contradiction that there exists e∈Ev containing a vertex y∈Uk.
Let T be the collection of (m− r)-sets T obtained by selecting one vertex from ∂1(E

′
v)∩U� for

each � ∈ [m] \ (J ∪{k}) ⊆ I. For each T ∈ T and f ∈ EJ , T ′ = T ∪ f ∪{y} is a transversal in
Gi+1[W ] containing y. The number of different T ′ is at least

|EJ|
[

1
(2m)r

N

]m−r

� Nr−1

(2m)r
·
[

N
(2m)r

]m−r

=
Nm−1

(2m)r(m−r)+r
> c2Nm−1,

where the last inequality follows from (8.3). By Lemma 8.5, the number of non-complete trans-
versals in Gi+1[W ] containing y is less than c2Nm−1. So there exist T ∈ T , f ∈ EJ such that
T ′ = T ∪ f ∪{y} is a complete transversal in Gi+1[W ]. As before, T ′ also induces a complete
r-graph in Hi[W ]. Now we can find a member of KF

m+1 in Hi[W ] as follows. Let C′ = {v}∪T ′.
If n(F) � m, then we map F into T ′. If n(F) = m + 1 and z is a degree 1 vertex in F , then we
map F into C′ with z mapped to v. Such mappings exist since v∪ f ∈ Hi[W ] and T ′ is complete
in Hi[W ]. It remains to check that all pairs in C′ are covered in Hi[W ]. Pairs not containing v are
covered since Hi[T

′] is complete. Pairs of the form {v,a} where a ∈ f are covered by {v}∪ f .
The pair {v,y} is covered by e. The remaining pairs have the form {v,b}, where b ∈ T . By our
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definition of T , b ∈ ∂1(E
′
v). Hence there exist an edge in Ev that contains v and b. We have thus

shown that Hi[W ] contains a member of KF
m+1. This contradicts Hi[W ] being KF

m+1-free.

We have thus far shown that each edge in Ev intersects each Uj in at most one vertex and
intersects Uk in no vertex. Since all the vertices in Sv ∩W behave the same as v in Hi[W ], we see
that Hi[W ] is m-partite with an m-partition U ′

1, . . . ,U
′
m, where U ′

j = Uj for each j ∈ [m]\{k} and
U ′

k = Uk ∪ (Sv ∩W ). This completes the induction and the proof of Theorem 8.7.

Now we can prove Theorem 6.2; namely, we show that if F is an r-graph with πλ (F) < [m]r/mr

such that either n(F) � m or n(F) = m + 1 and F contains a vertex of degree 1, then KF
m+1 is

m-stable.

Proof of Theorem 6.2. Let ε > 0 be given. We may assume that ε is sufficiently small that
ε < γ0, where γ0 is given in Theorem 8.7. Let β = [m]r/mr −πλ (F). Let γ = min{ε,β/3r}. Let
δ ,n0 be the constants guaranteed by Theorem 8.7 for the above-defined γ . Let δ1 = min{δ ,β/3}.
Let n1 � n0 be sufficiently large that for n � n1 we have

(
[m]r
mr

−δ1 − γr

)(
n
r

)
>

(
[m]r
mr

− 2β
3

)(
n
r

)
> πλ (F)

nr

r!
.

Let G be a KF
m+1-free graph of order n � n1 and size more than ([m]r/mr − δ1)

(n
r

)
. Let G∗

be the final graph produced by applying Algorithm 8.1 to G with threshold [m]r/mr − γ . By
Theorem 8.7, n(G∗) � (1−γ)n � (1−ε)n. Since G∗ is the final graph produced by Algorithm 8.1,
if S consists of one vertex from each equivalence class of G∗ then G∗[S] covers pairs and G∗ is a
blowup of G∗[S]. If |S|� m, then W = V (G∗) is the union of at most m equivalence classes of G∗.
By Theorem 8.7, G[W ] is m-partite. So G can be made m-partite by deleting at most εn vertices
and we are done.

We henceforth assume that |S| � m + 1. If F ⊆ G∗[S], then since G∗[S] covers pairs we can
find a member of KF

m+1 in G∗[S] by using any (m + 1)-set that contains a copy of F as the core,
contradicting G∗ being KF

m+1-free. Hence G∗[S] is F-free. In producing G∗ from G, observe that
each time we symmetrize, the number of edges does not decrease. Since at most γn vertices are
deleted in the process,

|G∗| > |G|− γn

(
n−1
r−1

)
�

(
[m]r
mr

−δ1 − γr

)(
n
r

)
> πλ (F)

nr

r!
,

contradicting Lemma 5.4.

9. Establishing exactness from stability

In this section we prove Theorem 6.3. Let F be an r-graph such that either n(F) � m or n(F) =
m+1 and F contains a vertex of degree 1. We prove that if KF

m+1 is m-stable then ex(n,HF
m+1) =

|Tr(n,m)| for sufficiently large n.
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Proof of Theorem 6.3. First we define a few constants. Let

c1 =
1

(2m)m3 , c2 =
c1

2mr
, c3 =

c1

r
, c4 =

c1

2r
(m−1

r−2

) , c5 =
(

c4

2m

)m3

. (9.1)

Let

ε = min

{
c5

2r
,

c1c2

2r2

}
. (9.2)

Since KF
m+1 is m-stable, by Definition 6.1, there exist a real δ1 > 0 and a positive integer n1

such that, for all n � n1, if G is a KF
m+1-free r-graph on [n] with |G| > ([m]r/mr −δ1)

(n
r

)
edges,

then G can be made m-partite by deleting at most εn vertices. By further reducing δ1 if needed,
we may assume that δ1 � ε . Let n2 be sufficiently large that n2 � n1 and that every n � n2

satisfies various inequalities involving n that we will specify throughout the proof. Let G now be
a maximum HF

m+1-free graph on [n] with n � n2. Since Tr(n,m) is HF
m+1-free, we have

|G| � |Tr(n,m)|. (9.3)

Let p = n(KF
m+1). By Lemma 7.3, G contains a subgraph G′ with

|G′| � |G|− p

(
n

r−3

)(
n
2

)

such that G′ is KF
m+1-free. For sufficiently large n � n2 we have

|G′| >
(

[m]r
mr

−δ1

)(
n
r

)
.

Since KF
m+1 is m-stable and n(G′) � n1, G′ can be made m-partite by deleting at most εn vertices.

Hence, in particular, G′ contains an m-partite subgraph with at least

|G′|− εnr � |G|− p

(
n

r−3

)(
n
2

)
− εnr � |G|−2εnr

edges (assuming that n2 is sufficiently large). Among all m-partitions of [n], let V1 ∪ . . .∪Vm be
an m-partition of [n] that maximizes

φ = ∑
e∈G

|{i ∈ [m] : e∩Vi = /0}|. (9.4)

Let K be the complete m-partite r-graph on [n] with parts V1, . . . ,Vm. By the definition of φ , we
have φ � r|G∩K|. By the choice of K, we have |G∩K|� |G|−2εnr and thus φ � r(|G|−2εnr).
On the other hand, φ � r|G|− |G\K|, since each edge of G\K contributes at most r−1 to φ . It
follows that

|G\K| � 2rεnr. (9.5)

We call an edge e on [n] crossing if it contains at most one vertex of each Vi, that is, if e ∈ K.
Let

M = K \G and B = G\K.
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We call edges in M missing edges. We call edges in B bad edges. Since |G| � |Tr(n,m)| � |K|,
we have |B| � |M|. By (9.5), we then have

|M| � |B| � 2rεnr. (9.6)

Our goal for the rest of the proof is to show that in fact B = /0, from which we would have
|G| � |K| � |Tr(n,m)|, which would complete our proof. For the rest of the proof, we suppose
B = /0 and will derive a contradiction.

First, note that

|K| � |K ∩G| = |G|− |G\K| � |Tr(n,m)|−2rεnr, (9.7)

for sufficiently large n. For sufficiently large n, this implies

0.9
n
m

� |Vi| � 1.1
n
m

, for all i ∈ [m]. (9.8)

Let q =
(m+1

2

)
+ r. Let Kr

m(q) denote the complete m-partite r-graph with q vertices in each
part. Let A1, . . . ,Am denote the m parts.

Claim 3. If u,v are two vertices in some part of a copy L of Kr
m(q) in G, then dG({u,v}) = 0.

Proof of Claim 3. Without loss of generality, suppose u,v lie in A1. Suppose for contradiction
that u,v lie in some edge e of G. Let C denote the core of HF

m+1. By our assumption about F ,
there exists z ∈ C such that z lies in 0 or 1 edge of F . Since m + 1 � r, there exists y ∈ C \ {z}
such that dF({y,z}) = 0. We can obtain a copy HF

m+1 in G by mapping y,z to u,v, respectively,
and the other vertices of C into A2, . . . ,Am, one into each part. It remains to cover the pairs in C
that are uncovered by F . The pair {x,y} is covered by e. Since each part of L still has at least(m+1

2

)
vertices outside e, it is easy to cover all such pairs so that the covering edges are pairwise

disjoint outside C. This contradicts G being HF
m+1-free.

Claim 4. Let e ∈ B and suppose |e∩Vi| � 2. Let u,v ∈ e∩Vi. Then either dM(u) � c1nr−1 or
dM(v) � c1nr−1.

Proof of Claim 4. Without loss of generality, suppose i = 1. Let S be a set of mq vertices
obtained by selecting u,v, q−2 vertices from V1 \e and q vertices from each of V2 \e, . . . ,Vm \e.
By Claim 3, K[S] ⊆ G[S]. Hence, for each such S, there exists f ∈ K[S] \G[S] ⊆ M. There are
at least (n/2m)mq−2 choices of S. Suppose first that for at least half of the choices of S, the
corresponding f is disjoint from {u,v}. For each fixed f ∈ M, there are at most nmq−2−r choices
of S for which f ∈ K[S] \G[S]. Hence, using the definition of c1 in (9.1) and the definition of ε
in (9.2), we have

|M| � (1/2)(n/2m)mq−2/nmq−2−r � c1nr > 2rεnr,

contradicting (9.6). Next, suppose for at least half of the choices of S, K[S] \ G[S], f inter-
sects {u,v}. Without loss of generality, suppose for at least 1/4 of the choices of S, f con-
tains u. Since each such f is contained in at most nmq−1−r many S, there are at
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least

(1/4)(n/2m)mq−2/nmq−1−r � c1nr−1

edges of M that contain u.

Let

W = {w : dM(w) � c1nr−1}.

By the definition of W and (9.6), we have

c1nr−1|W | � ∑
x∈[n]

dM(x) = r|M| � 2r2εnr.

Hence

|W | � 2r2ε
c1

n < c2n, (9.9)

where the last inequality follows from (9.1) and (9.2). We call a pair {u,v} of vertices in G a bad
pair if there exist e ∈ B and i ∈ [m] such that u,v ∈ e∩Vi. By Claim 4, each bad pair must contain
an element of W . Hence, by (9.9), we have the following claim.

Claim 5. The number of bad pairs in G is at most c2n2.

We call vertices in W defect vertices. By Claim 4, each e ∈ B contains a defect vertex in a part
Vi where |e∩Vi| � 2. We pick such a defect vertex, denote it by c(e) and call it the centre of e.
(The choices for c(e) may not be unique, but we will fix one.) For each defect vertex w, let b(w)
denote the number of edges e ∈ B such that c(e) = w. By our discussion above and (9.6), we have

∑
w∈W

b(w) � |B| � |M| = 1
r ∑

x∈[n]
dM(x) � 1

r ∑
w∈W

dM(w).

Hence there exists w0 ∈W such that

b(w0) � 1
r

dM(w0) � c1

r
nr−1 = c3nr−1. (9.10)

Without loss of generality, may assume that w0 ∈V1. Let

L = {e\w0 : e ∈ B,c(e) = w0}.

By definition, any e ∈ B with c(e) = w0 contains at least one other vertex of V1. Hence

f ∩V1 = /0, for all f ∈ L. (9.11)

By Claim 5, for each i ∈ [m], the number of members of L that contain two or more vertices of
Vi is at most c2n2 ·nr−3 = c2nr−1. Hence, using the definition of the constants given in (9.1), the
number of members of L that contains at most one vertex from each Vi is at least

c3nr−1 −mc2nr−1 =
(

c1

r
−m

c1

2mr

)
nr−1 =

c1

2r
nr−1 = c4

(
m−1
r−2

)
nr−1.
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Each such member of L contains a vertex of V1 by (9.11). By the pigeonhole principle, for some
collection of r−2 parts outside V1, without loss of generality, say V2, . . . ,Vr−1, there are at least
c4nr−1 members of L that contain exactly one vertex of each of V1,V2, . . . ,Vr−1. Let L′ denote the
collection of these members. Then L′ is an (r−1)-partite (r−1)-graph with an (r−1)-partition
U1, . . . ,Ur−1, where Ui = V (L′)∩Vi for all i ∈ [r−1], and

|L′| � c4nr−1. (9.12)

Recall that p = n(HF
m+1). Assuming n is sufficiently large, by Lemma 7.2, L′ has a subgraph

L′′ with

|L′′| � |L′|− pn

(
n

r−3

)
� 1

2
c4nr−1 (9.13)

such that for each vertex x with dL′′(x) > 0 we have d∗
L′′(x) > p. Let us remove isolated vertices

from L′′. Then the condition implies that

d∗
G({w0,x}) � p+1, for all x ∈V (L′′). (9.14)

For each i = r, . . . ,m, let

Di =
{

x ∈Vi : dG({x,w0}) > p

(
n−3
r−3

)}
.

By the definition of Di and Lemma 7.1, we have

d∗
G({w0,x}) � p+1, for all i = r +1, . . . ,m, x ∈ Di. (9.15)

Claim 6. For each i = r, . . . ,m, |Di| � 1
2 c4n.

Proof of Claim 6. Suppose for contradiction that for some i, |Di| < 1
2 c4n. Without loss of

generality, suppose that |Dm| < 1
2 c4n. Let us consider a different m-partition of V (G) by moving

w0 from V1 to Vm. Let us consider the change to the value of φ , defined in (9.4). The only edges e
of G whose contributions to φ are decreased by the move are those satisfying e∩V1 = {w0} and
e∩Vm = /0. The decrease is 1 per edge. We can bound the number of such edges as follows. The
number of edges of G containing w0 and a vertex of Dm is at most

|Dm| ·nr−2 <
1
2

c4nr−1.

For each vertex x of Vm \Dm we have

dG({x,w0}) < p

(
n−1
r−3

)
.

Hence the number of edges of G containing w0 and a vertex of Vm \Dm is at most

n · p

(
n−1
r−3

)
<

1
4

c4nr−1, for sufficiently large n.
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Hence there are fewer than

1
2

c4nr−1 +
1
4

c4nr−1 < c4nr−1

such edges.
On the other hand, the contribution to φ from each in {w0 ∪ f : f ∈ L′} is increased by 1 by

moving w0 to Vm. By (9.12), |L′| � c4nr−1. Hence V1\,V2, . . . ,Vm−1,Vm+1 ∪w0 is a partition that
has a higher φ -value than V1, . . . ,Vm, contradicting our choice of V1, . . . ,Vm.

We are now ready to complete the proof of the theorem. Let S be the collection of all mq-sets
S obtained by picking the vertex set of an edge f of L′′, then picking q− 1 vertices from Vi \ f ,
for each i ∈ [r− 1], and then picking q vertices from each of Dr, . . . ,Dm By (9.1), (9.8), (9.13)
and Claim 6,

|S| � 1
2

c4nr−1 ·
(

n
2m

)(r−1)(q−1)

·
(

1
2

c4n

)(m−r+1)q

� c5nmq.

Claim 7. For each S ∈ S, K[S] ⊆ G[S].

Proof of Claim 7. Suppose for contradiction that K[S] ⊆ G[S]. Let C denote the core of HF
m+1.

By our assumption, C contains a vertex z that lies in 0 or 1 edge of F . Let f be a member
of L′′ contained in S. Let S′ ⊆ S contain V ( f ) and one vertex from each of Vr, . . . ,Vm. By our
assumption, G[S′] is complete. Thus G[S′ ∪w0] contains a copy F ′ of F , where w0 plays the role
of z and if z has degree 1 in F then w0 ∪ f plays the role of the unique edge of F containing z.
With C = S′ ∪ {w0}, we can obtain a copy of HF

m+1 in G as follows. It suffices to cover the pairs
{a,b} in C that are uncovered by F ′ using edges that intersect C only in a,b and are pairwise
disjoint outside C. Let {a,b} be such pair. If a,b = w0, then we can use an edge in G[S] ⊇ K[S]
to cover {a,b} as in the proof of Claim 3. To cover a pair of the form {w0,a}, we use (9.14) if
a ∈V ( f ) or (9.15) if a ∈ S′ \V ( f ). Hence HF

m+1 ⊆ G, a contradiction.

Now, for each S ∈ S, by Claim 7, K[S] contains a member of K \G. On the other hand, each
member of K \G trivially is contained in at most nmq−r different S. Hence,

|K \G| � |S|/nmq−r � c5nmq/nmq−r = c5nr � 2rεnr,

contradicting (9.6). The contradiction completes our proof of Theorem 6.3.

10. Stability of expanded cliques with embedded enlarged trees

In this section we prove Theorem 6.7. The main work in proving Theorem 6.7 is to estab-
lish stability-type properties of Lagrangian functions of r-graphs that do not contain (r − 2)-
enlargement of a 2-tree. These properties may be of independent interest. Given an r-graph G on
[t] and variables x̃ = (x1, . . . ,xt), recall that

pG(x̃) = r! · ∑
e∈G

∏
i∈e

xi,
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and that λ (G) is the maximum pG(x̃) over all 1-sum weight assignments x̃. For each i ∈ [t], let

λi =
∂ (pG(x̃))

∂ (xi)
.

Then it is straightforward to verify that

λi = r! · ∑
f∈LG(i)

∏
j∈ f

x j and pG(x̃) =
1
r

n

∑
i=1

λixi. (10.1)

By (10.1), we have

pG(x̃) � 1
r

max
i

λi, and thus max
i

λi � r · pG(x̃). (10.2)

The following lemma will be useful for our analysis.

Lemma 10.1. Let η > 0 be a real. Let G be an r-graph on [t] and x̃ = (x1, . . . ,xt) a 1-sum weight
assignment on G with pG(x) � λ (G)−η . Then there exists i ∈ [t] such that xi � max j∈[t] x j −
2r!

√η and λi � max j∈[t] λ j −2r!
√η .

Proof. Suppose xa = max j x j and λb = max j λ j. If a = b then the claim holds with i = a = b. So
assume a = b. If λa > λb−2r!

√η , then the claim holds with i = a. Similarly, if xb > xa−2r!
√η ,

then the claim holds with i = b. So we may assume that λa < λb −2r!
√η and xb < xa − r!

√η .
That is, xa − xb > 2r!

√η and λb −λa > 2r!
√η .

Let

wa = ∑
e∈L(a)\L(b)

∏
i∈e

xi, wb = ∑
e∈L(b)\L(a)

∏
i∈e

xi and w∗ = ∑
e∈L({a,b})

∏
i∈e

xi.

It is easy to see that 0 � wa,wb,w
∗ � 1. Note that λa = r!(wa + xbw∗) and λb = r!(wb + xaw∗).

Hence,

λb −λa = r![wb −wa +(xa − xb)w
∗].

Let

d =
1

2r!
(λb −λa).

Consider a new weight assignment ỹ = (y1, . . . ,yn) defined by letting ya = xa − d, yb = xb + d
and, for all i ∈ [t]\{a,b}, yi = xi. Then

pG(ỹ)− pG(x̃) = r![(xa −d)(xb +d)− xaxb)w
∗ −dwa +dwb].

= r![d((xa − xb)w
∗ +(wb −wa)]−d2w∗]

� r!d[((xa − xb)w
∗ +(wb −wa)]−d]

= d[λb −λa − r!d] =
1
2

d(λb −λa) =
1

4r!
(λb −λa)2 > η ,

contradicting our assumption that pG(x̃) � λ (G)−η .
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Given 0 < β � 1 and an r-graph G on [t], let

λβ (G) = max

{
pG(x1, . . . ,xt) : ∀i ∈ [t]xi � 0, ∑

i

xi = 1,max
i

xi = β
}

.

Clearly,

λ (G) = max
0<β�1

λβ (G).

The following lemma played a crucial role in Sidorenko’s arguments.

Lemma 10.2 (Lemma 3.3 of [24]). Let k,r � 2 be integers, where k � Mr−1. Let 0 < β � 1 be
a real. Let T be a k-vertex tree that satisfies the Erdős–Sós conjecture. Let T be the (r−2)-fold
enlargement of T . If G is an F-free r-graph then λβ (G) � (k−2) fr(z), where

z = max

{
1
β
− r +3,k

}
.

Let us also mention a useful fact about the function fr(x), namely

fr(x)
fr−1(x)

=
(

x+ r−4
x+ r−3

)r−1

. (10.3)

Further, let us recall the well-known fact that

πλ (Kk) = π(Kk) =
k−2
k−1

(see e.g. [5] and [17]).

Lemma 10.3. Let k � 3. Let T be a k-vertex tree that satisfies the Erdős–Sós conjecture and let
F be the (r−2)-enlargement of T , where r � 2 and k � Mr. For every real α > 0, there exists a
real γ = γ(α) > 0 such that if G is an F-free r-graph on [t] and x̃ = (x1, . . . ,xt) a 1-sum weight
assignment on G with pG(x̃) � (k−2) fr(k)− γ , then there exists i ∈ [t] such that

(i) ∣∣∣∣xi −
1

k + r−3

∣∣∣∣ < α.

(ii) ∣∣∣∣ ∑
j∈V (LG(i))

x j −
k + r−4
k + r−3

∣∣∣∣ < α.

(iii)

λi > r(k−2) fr(k)−α.

Proof. Let α > 0 be given. Choose a sufficiently small real d > 0 such that

1
k + r−3+d

>
1

k + r−3
− α

2
.
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Since k > Mr and Mr is the rightmost local maximum of fr(x), fr(x) is strictly decreasing on
[k,∞). Choose γ > 0 to be sufficiently small that

γ < fr(k)− fr(k +d), 3r!
√

γ <
α
2

and

(
1− 3r!

√γ
r(k−2) fr(k)

)1/(r−1)

> 1−α. (10.4)

Let β = max j x j and λmax = max j λ j. If 1/β − r +3 > k +d and by Lemma 10.2,

pG(x̃) � λβ (G) � (k−2) fr(k +d) < (k−2)[ fr(k)− γ] < (k−2) fr(k)− γ,

contradicting our assumption. Hence 1/β − r +3 � k +d. Solving for β , by our choice of d we
have that

β � 1
k + r−3+d

>
1

k + r−3
− α

2
.

By Lemma 10.1, for some i ∈ [n], say i = 1, we have

x1 � β −2r!
√

γ and λ1 � λmax −2r!
√

γ. (10.5)

Since 3r!
√γ < α/2 by our choice of γ ,

x1 � 1
k + r−3

− α
2
−2r!

√
γ � 1

k + r−3
−α. (10.6)

By (10.2), (10.5) and our assumption that pG(x̃) � (k−2) fr(k)− γ ,

λ1 � λmax −2r!
√

γ � r((k−2) fr(k)− γ)−2r!
√

γ
> r(k−2) fr(k)−3r!

√
γ � r(k−2) fr(k)−α. (10.7)

This proves item (iii). Next, we prove that

∑
j∈V (LG(i))

xi >
k + r−4
k + r−3

−α.

If r = 2 then λ1 = 2∑ j∈NG(1) x j and hence

∑
j∈V (LG(1))

x j =
λ1

2
> (k−2) f2(k)−

α
2

� k−2
k−1

−α.

We henceforth assume that r � 3. Let s = ∑ j∈LG(1) x j. For each j ∈V (LG(1)) let y j = x j/s. Then

∑ j∈V (LG(1) y j = 1. Let ỹ denote the 1-sum weight assignment on LG(1) defined by the y j. Let

F ′ denote the (r − 3)-enlargement of T . Since G is F-free, LG(1) is F ′-free. Since F ′ is the
(r − 3)-enlargement of T , where T is a k-vertex tree satisfying the Erdős–Sós conjecture and
k � Mr � Mr−1, by Theorem 6.6, then πλ (F ′) � (k−2) fr−1(k). Hence,

λ1 = r! ∑
e∈LG(1)

∏
j∈e

x j = rsr−1 · (r−1)! ∑
e∈LG(1)

∏
j∈e

y j � rsr−1 · (k−2) fr−1(k). (10.8)

By (10.7) and (10.8), we have

rsr−1 · (k−2) fr−1(k) > r(k−2) fr(k)
(

1− 3r!
√γ

r(k−2) fr(k)

)
.
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Using (10.3), we have

sr−1 >

(
k + r−4
k + r−3

)r−1(
1− 3r!

√γ
r(k−2) fr(k)

)
.

Hence, by our choice of γ given in (10.4), we have

∑
j∈V (LG(1))

x j = s >
k + r−4
k + r−3

(
1− 3r!

√γ
r(k−2) fr(k)

)1/(r−1)

>
k + r−4
k + r−3

(1−α) >
k + r−4
k + r−3

−α. (10.9)

Now, (10.6) and (10.9) together prove items (ii) and (iii).

We need another lemma from [24]. Given a graph G, let

d(G) = max
H⊆G

2e(H)
n(H)

.

So, d(G) is the maximum average degree of a subgraph of G over all subgraphs of G.

Lemma 10.4 ([24] Theorem 2.4). Let G be a graph on [t]. Let ỹ = (y1, . . . ,yt) be a weight
assignment on G where maxi yi = 1. Then

pG(ỹ)
∑t

i=1 yi
� d(G).

Corollary 10.5. Let G be a graph on [t]. Let x̃ = (x1, . . . ,xt) be a 1-sum weight assignment on
G where maxi xi = β . Then pG(x̃) � βd(G).

Proof. For each i ∈ [t], let yi = xi/β . Then maxi yi = 1 and ∑i yi = 1/β . Using Lemma 10.4, we
have

pG(x̃) = β 2 pG(ỹ) � β 2d(G)∑
i

yi = βd(G).

Lemma 10.6. Let H be a graph with average degree d and let G be obtained from H by adding
a new vertex and making it adjacent to all of V (H). Then G has average degree at least d +1.

Proof. Suppose H has p vertices. Clearly p � d+1. We have n(G) = p+1 and e(G) = pd/2+ p.
So G has average degree

2e(G)
n(G)

=
pd +2p

p+1
� pd + p+d +1

p+1
= d +1.

Lemma 10.7. Let d be a positive integer. Let 0 < ε < 1 be a real. There exists a real δd(ε) > 0
such that if G a graph on [t] with d(G) � d and x̃ = (x1, . . .xt) is a 1-sum weight assignment on
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G with

pG(x̃) � d
d +1

−δd ,

then there exists I ⊆ [t] with |I| � d +1 such that ∑i∈I xi � 1− ε .

Proof. We use induction on d. For the basis step, let d = 1. Let δ1(ε) = ε/2. Suppose d(G) � 1
and pG(x̃) � 1

2 −δ1. By our assumption about G, each non-trivial component of G is a single edge.
Suppose that there are s non-trivial components with total vertex weights w1, . . . ,ws, respectively,
where, without loss of generality, suppose w1 = max j w j. We have

1
2
−δ1(ε) � pG(x) � 2!

s

∑
i=1

w2
i

4
� 1

2
w1(w1 +w2 + . . .+ws) � 1

2
w1.

Hence w1 � 1−2δ1(ε) = 1− ε , implying that there exists I ⊆ [t], |I| = 2 with ∑i∈I xi � 1− ε .
For the induction step, let d � 2. Choose a small real α such that

0 < α <
ε
4

and (
d

d +1
+α

)−2

·
(

d(d −1)
(d +1)2

−7α
)

>
d −1

d
−δd−1

(
ε
2

)
. (10.10)

Choose 0 < δd < α −2α2 to be sufficiently small that

δd +2r!
√

δd < α.

Suppose

pG(x̃) � d
d +1

−δd .

By Lemma 10.1, there exists i ∈ [t], say i = 1, such that

x1 � max
i

xi −2r!
√

δd and λ1 � max
i

λi −2r!
√

δd .

By (10.2), we have

max
i

λi � 2pG(x̃) � 2d
d +1

−2δd

and hence

λ1 � 2d
d +1

−2δd −2r!
√

δd .

Since λ1 = 2∑ j∈NG(1) x j, this also yields

∑
j∈NG(1)

x j � d
d +1

−δd − r!
√

δd � d
d +1

−α. (10.11)

Hence

x1 � 1
d +1

+α.
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Let β = maxi xi. By Corollary 10.5, we have

d
d +1

−δd � pG(x̃) � βd.

Hence,

β � 1
d +1

− δd

d +1

and thus

x1 � β −2r!
√

δd � 1
d +1

− δd

d +1
−2r!

√
δd � 1

d +1
−α. (10.12)

Let N = NG(1) and N = [t]\ (N ∪{1}). By (10.11) and (10.12),

∑
j∈N

x j < 2α. (10.13)

Since 1 is adjacent to all of N and d(G) � d, by Lemma 10.6, d(G[N]) � d −1. Let s = ∑ j∈N x j.
By (10.11) and (10.12), we have

d
d +1

−α � s � d
d +1

+α.

Since λ1 = 2s, we also have

2

(
d

d +1
−α

)
� λ1 � 2

(
d

d +1
+α

)
.

For each j ∈ N let y j = x j/s. Then ∑ j∈N y j = 1. Let ỹ denote the 1-sum weight assignment on
G[N] given by the y j. Using the upper bounds on λ1,x1, and (10.13), we have

s2 pG[N](ỹ) = 2 ∑
{i, j}∈G[N]

xix j � pG(x̃)−λ1x1 −2 ∑
j∈[t]

x j ∑
j∈N

x j

�
(

d
d +1

−δd

)
−2

(
d

d +1
+α

)(
1

d +1
+α

)
−4α

=
d(d −1)
(d +1)2

−δd −6α −2α2

� d(d −1)
(d +1)2

−7α.

Since

s � d
d +1

+α,

this yields (
d

d +1
+α

)2

pG[N](ỹ) � d(d −1)
(d +1)2

−7α.

By (10.10), this yields

pG[N](ỹ) � d −1
d

−δd−1

(
ε
2

)
. (10.14)
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Since d(G[N]) � d −1, by (10.14) and the induction hypothesis, there exists J ⊆ N with |J| � d
such that ∑ j∈J y j � 1− ε/2. Hence

∑
j∈J

x j � s ∑
j∈J

y j � s

(
1− ε

2

)
�

(
d

d +1
−α

)(
1− ε

2

)
>

d
d +1

−α − ε
2
. (10.15)

Let I = J∪{1}. By (10.12) and (10.15), we have

∑
i∈I

xi � 1
d +1

−α +
d

d +1
−α − ε

2
� 1− ε.

This completes the induction step and the proof.

In the next lemma, we use Lemma 10.7 to establish stability of the Lagrangian function of
T -free graphs where T is a tree that satisfies the Erdős–Sós conjecture. Note that such stability
obviously does not exist for the Lagrangian function of Kk-free graphs. Thus we consider any
complete (k−1)-partite graph G, which is Kk-free. Any weight assignment x̃ on G in which the
total vertex weight on each part is 1/(k−1) satisfies

pG(x̃) =
k−2
k−1

= πλ (Kk),

though any two such x̃ can be very different.

Lemma 10.8. Let k � 3 be an integer. Let T be a k-vertex tree that satisfies the Erdős–Sós
conjecture. Let 0 < ε < 1 be a real. There exists a real δk(ε) > 0 such that the following is true:
If G is a T -free graph on [t] and x̃ = (x1, . . .xt) is a 1-sum weight assignment on G such that

pG(x̃) � k−2
k−1

−δk,

then there exists I ⊆ [t] with |I| � k−1 such that ∑i∈I xi � 1− ε .

Proof. Since T satisfies the Erdős–Sós conjecture and G is T -free, we have d(G) � k−2. The
lemma follows from Lemma 10.7 with d = k−2.

We can now use Lemma 10.8 to establish stability of the Lagrangian function of an r-graph
not containing a given enlarged tree.

Lemma 10.9. Let k � 3,r � 2 be integers where k � Mr. Let T be a k-vertex tree that satisfies
the Erdős–Sós conjecture. Let F be the (r − 2)-fold enlargement of T . Let ε > 0 be any real.
There exists a real δ̂r = δ̂r(ε) > 0 such that the following holds. Let G be a F-free r-graph on [t]
and let x̃ = (x1, . . . ,xt) be a 1-sum weight assignment on G such that

pG(x̃) � (k + r−3)r

(k + r−3)r
− δ̂r.

Then there exists I ⊆ [t] with |I| � r + k−3 such that ∑i∈I xi � 1− ε .
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Proof. We use induction on r. The basis step r = 2 was established by Lemma 10.8. For the
induction step, let r � 3. Let ε > 0 be given. Let α be a real such that

0 < α <
ε
4
,

and

r−1

(
k + r−4
k + r−3

+α
)−(r−1)

·
[

r
(k + r−4)r−1

(k + r−3)r−1
−α

]
>

(k + r−4)r−1

(k + r−4)r−1
− δ̂r−1

(
ε
2

)
. (10.16)

Let δ̂r = γ(α), where the function γ is given in Lemma 10.3. Suppose x̃ is a 1-sum weight
assignment on G with

pG(x̃) � (k + r−3)r

(k + r−3)r
− δ̂r.

By Lemma 10.3, there exists i ∈ [t], say i = 1, such that with s = ∑ j∈V (LG(1) x j we have

∣∣∣∣x1 −
1

k + r−3

∣∣∣∣ < α,

∣∣∣∣s− k + r−4
k + r−3

∣∣∣∣ < α and λ1 > r
(k + r−3)r

(k + r−3)r
−α. (10.17)

For each j ∈ V (LG(1)) let y j = x j/s. Then ∑ j∈V (LG(1)) y j = 1. Let ỹ denote the 1-sum weight

function on LG(1) defined by the y j. As usual we have

λ1 = r! · ∑
e∈LG(1)

∏
j∈e

x j = rsr−1(r−1)! · ∑
e∈LG(1)

∏
j∈e

y j � rsr−1 pLG(1)(ỹ).

Hence, by (10.17), we have

r

(
k + r−4
k + r−3

+α
)r−1

pLG(1)(ỹ) > r
(k + r−3)r

(k + r−3)r
−α = r

(k + r−4)r−1

(k + r−3)r−1
−α.

By (10.16), this yields

pLG(1)(ỹ) >
(k + r−4)r−1

(k + r−4)r−1
− δ̂r−1

(
ε
2

)
= (k−2) fr−1(k)− δ̂r−1

(
ε
2

)
. (10.18)

Let F ′ denote the (r− 3)-enlargement of T . Since G is T -free, clearly LG(1) is T ′-free. Since
F ′ is the (r−3)-enlargement of T , where T is k-vertex tree satisfying the Erdős–Sós conjecture,
and k � Mr � Mr−1, by (10.18) and the induction hypothesis, there exists J ⊆V (LG(1)) such that
∑ j∈J y j � 1− ε/2. Hence

∑
j∈J

x j � s

(
1− ε

2

)
�

(
k + r−4
k + r−3

−α
)(

1− ε
2

)
� k + r−4

k + r−3
−α − ε

2
. (10.19)

Let I = J∪{1}. By (10.17) and (10.19) we have

∑
i∈I

xi � 1
k + r−3

−α +
k + r−4
k + r−3

−α − ε
2

� 1− ε.

This completes the induction and the proof.
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Proof of Theorem 6.7. Let ε > 0 be given. We may assume ε to be sufficiently small that
ε < γ0, where γ0 is defined in Theorem 8.7. Let

γ = min

{
1
2

δ̂r

(
ε
2

)
,

ε
2

}
,

where δ̂r is given in Lemma 10.9. By our definition, γ < γ0. Let δ and n0 be the constants
guaranteed by Theorem 8.7 for the above-defined γ . Let n be sufficiently large that n � n0 and
that n satisfies some other inequalities given below. Let G be any KF

k+r−2-free r-graph on [n] with

|G| >
(

(k + r−3)r

(k + r−3)r
−δ

)(
n
r

)
.

Let G∗ be the final graph produced by Algorithm 8.1 with threshold

(k + r−3)r

(k + r−3)r
− γ.

By Theorem 6.2, G∗ is KF
k+r−2-free, n(G∗) � (1− γ)n, and

G∗ is

(
(k + r−3)r

(k + r−3)r
− γ

)
-dense.

Let N = n(G∗). Since G∗ is
( (k+r−3)r

(k+r−3)r − γ
)
-dense, we have

|G∗| �
(

(k + r−3)r

(k + r−3)r
− γ

)(
N
r

)
. (10.20)

Suppose G has s equivalence classes A1, . . . ,As. Let S consist of one vertex from each equivalence
class of G∗. Without loss of generality, suppose S = [s]. Then G∗[S] covers pairs and G∗ is a
blowup of G∗[S]. For each i ∈ [s], let xi = |Ai|/N. Then ∑i xi = 1. So x̃ = (x1, . . . ,xs) is a 1-sum
weight assignment on G∗[S]. Also,

pG(x̃) = r! ∑
e∈G

∏
i∈e

xi =
r!
Nr

|G∗| � (k + r−3)r

(k + r−3)r
−2γ � (k + r−3)r

(k + r−3)r
− δ̂r

(
ε
2

)
,

where the two inequalities follow from (10.20), our definition of γ , and the assumption that
N is sufficiently large. By Lemma 10.9, there exists I ⊆ [s], where |I| � k + r − 3 such that
∑i∈I xi � 1− ε/2. Let W =

⋃
i∈I Ai. Then

|W | �
(

1− ε
2

)
N � (1− γ0)N.

By Theorem 8.7, G[W ] is (k + r−3)-partite. Since

|W | �
(

1− ε
2

)
N �

(
1− ε

2

)
(1− γ)n �

(
1− ε

2

)2

n > n− εn,

G can be made (k + r − 3)-partite by deleting at most εn vertices. So, KF
k+r−2 is (k + r − 3)-

stable.
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Note added in proof

Around the time of our submission of the paper, we learned that S. Norin and L. Yepremyan [19]
had independently obtained the main results in this paper, using a very different stability method
that they developed in [18]. See also [26] for a detailed description of their method.
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