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For each poset H whose Hasse diagram is a tree of height k, we show that the largest size of a
family F of subsets of [n] = {1, . . . , n} not containing H as an induced subposet is asymptotic to
(k − 1)( n

�n/2� ). This extends a result of Bukh [1], which in turn generalizes several known results
including Sperner’s theorem.
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1. Introduction

A poset G = (S,�) is a set S equipped with a partial ordering �. We say that a poset G = (S,�)

contains another poset H = (S ′,�′) as a subposet, and write H ⊆ G if there exists an injection
f : S ′ → S such that, for all u, v ∈ S ′, if u �′ v then f(u) � f(v). We say that G = (S,�) contains
H = (S ′,�′) as an induced subposet, and write H ⊆∗ G if there exists an injection f : S ′ → S

such that, for all u, v ∈ S ′, u �′ v if and only if f(u) � f(v).
Given a positive integer n, let [n] = {1, 2, . . . , n}. The Boolean lattice Bn of order n is the

poset (2[n],⊆). Throughout this paper we automatically equip any family F ⊆ 2[n] with the
containment relation ⊆ and thus view F as a subposet of Bn. Given a positive integer n and
a poset H , let La(n,H) denote the largest size of a family F ⊆ Bn that does not contain H as
a subposet. Let La∗(n,H) denote the largest size of a family F ⊆ Bn that does not contain H

as an induced subposet. Note that in some papers, such as in Bukh [1], ex(H, n) is used instead
of La(n,H), which is perhaps a more natural notation, since this is indeed a Turán function.
However, in this paper we will inherit the La(n,H) notation that is used in most of the earlier
papers on the subject. The study of these functions dates back to Sperner’s theorem [7], which
asserts that the largest size of an antichain in the Boolean lattice of order n equals ( n

�n/2� ), with
equality attained by taking the middle level of the Boolean lattice. If we use P2 to denote a chain
of two elements, then Sperner’s theorem says that La(n, P2) = La∗(n, P2) = ( n

�n/2� ). Erdős [5]
extended Sperner’s theorem to show that La(n, Pk), where Pk is the chain of k elements, is the
sum of the k − 1 middle binomial coefficients in n (i.e., the sum of the sizes of the middle k − 1
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levels of Bn). Consequently,

lim
n→∞

La(n, Pk)(
n

�n/2�

) = k − 1.

A systematic study of La(n,H) started a few years ago, and a series of results on La(n,H) were
developed. In most of these results H is a poset whose Hasse diagram is a tree or H is a height-2
poset, where the height of H is the largest cardinality of a chain in H . We give a brief review
of some of these results. Let Vk denote the the height-2 poset that consists of k + 1 elements
A,B1, . . . , Bk where, for all i ∈ [k], A � Bi. We call Vk the k-fork. Improving earlier results of
Thanh [8], De Bonis and Katona [3] showed that La(n, Vk) = ( n

�n/2� )(1 + k−1
n

+ Θ( 1
n2 )). Let B

denote the butterfly poset on four elements A1, A2, B1, B2, where, for all i, j ∈ [2], Ai � Bj . De
Bonis, Katona and Swanepoel [4] showed that La(n, B) = ( n

�n/2� ) + ( n
�n/2� + 1 ). More generally,

for r, s � 2 let Kr,s denote the two-level poset consisting of elements A1, . . . , Ar, B1, . . . , Bs where,
for all i ∈ [r], j ∈ [s], Ai � Bj . De Bonis and Katona [3] showed that La(n,Kr,s) ∼ 2( n

�n/2� ), as
n → ∞. Extending earlier results on tree-like posets, Griggs and Lu [6] showed that if T is any
height-2 poset whose Hasse diagram is a tree, then La(n, T ) ∼ ( n

�n/2� ). Independently, Bukh [1]
obtained the following more general result.

Theorem 1.1 (Bukh [1]). If H is a finite poset whose Hasse diagram is a tree of height k � 2,
then

La(n,H) = (k − 1)
(

n
�n/2�

)
(1 + O(1/n)).

Note that Bukh’s result generalizes (in a loose sense) all prior results on posets whose Hasse
diagram is a tree. Furthermore, it also implies De Bonis and Katona’s result that La(n,Kr,s) �
2( n

�n/2� )(1 + O( 1
n
)), for the following reason. Consider the three-level poset H that consists

of elements A1, . . . , Ar, B, C1, . . . , Ct where, for all i ∈ [r], Ai � B, and for all j ∈ [t], B �
Cj . By transitivity, for all i ∈ [r], j ∈ [t], Ai � Cj , and so H contains Kr,s as a subposet. So,
La(n,Kr,s) � La(n,H) � 2( n

�n/2� )(1 + O(1/n)).
In this paper we are concerned with finding (or avoiding, depending on the perspective)

induced subposets in Bn. Generally speaking, induced subposets are harder to force, since we
need to enforce non-containment as well as containment among corresponding members. For
instance, for a family F ⊆ Bn to contain the 2-fork V2 as an induced subposet, we need to find
three members of A,B, C of F satisfying A ⊆ B,A ⊆ C, B �⊆ C, and C �⊆ B. By comparison,
for F to contain V2 just as a subposet, we only need to ensure the existence of A,B, C ∈ F
satisfying A ⊆ B,A ⊆ C.

Since a family F ⊆ Bn that does not contain H as a subposet certainly does not contain H

as an induced subposet, we always have La∗(n,H) � La(n,H). In general, the determination of
La∗(n,H) seems to be harder than the determination of La(n,H). The only result on La∗(n,H)

that we are aware of is due to Carroll and Katona [2], who showed that(
n

�n/2�

) (
1 +

1

n
+ Ω

(
1

n2

))
� La∗(n, V2) �

(
n

�n/2�

) (
1 +

2

n
+ O

(
1

n2

))
.



498 E. Boehnlein and T. Jiang

For a lower bound on La∗(n,H), let F consist of the middle k − 1 levels of the Boolean lattice
Bn. Clearly F does not contain H (as an induced subposet) and |F | = ( n

�n/2� )(k − 1 − O(1/n)).
So La∗(n,H) � ( n

�n/2� )(k − 1 − O(1/n)). We shall prove the following upper bound.

Theorem 1.2. Let H be a finite poset whose Hasse diagram is a tree of height k � 2. Then

La∗(n,H) �
(
k − 1 + O

(√
n ln n

n

))
·
(

n
�n/2�

)
.

As an immediate consequence of Theorem 1.2 and the lower bound discussion, we obtain the
following extension of Bukh’s result (to an induced version).

Corollary 1.3. Let H be a finite poset whose Hasse diagram is a tree of height k � 2. Then

La∗(n,H) = (k − 1)

(
n

�n/2�

)
(1 + o(1)).

Note that our error term estimates on La∗(n,H) are weaker than Bukh’s on La(n,H). It would
be interesting to sharpen our bounds on the error term. To prove Theorem 1.2, we first make
a quick reduction. As mentioned in [6], using Chernoff’s inequality, it is easy to show that the
number of sets F ∈ 2[n] satisfying ||F | − n

2
| > 2

√
n ln n is at most O( 1

n3/2 (
n

�n/2� )). Define

B̃n =

{
v ∈ Bn : |v| ∈

[
n

2
− 2

√
n ln n,

n

2
+ 2

√
n ln n

]}
.

By our discussion above, there are only O( 1
n3/2 (

n
�n/2� )) members of Bn that lie outside B̃n. So to

prove Theorem 1.2 it suffices to prove the following.

Theorem 1.4. Let k, h � 2 be integers. There exist constants n0 = n0(k, h) and ck,h such that
the following is true for all n � n0. Let H be a poset whose Hasse diagram is an h-vertex tree
of height k. Let F ⊆ B̃n be a family with |F | � (k − 1 +

ck,h
√
n ln n

n
)( n

�n/2� ). Then F contains H as
an induced subposet.

For the rest of the paper, we prove Theorem 1.4.

2. Preliminaries

In this section, we recall some facts from [1] which will be used in our main arguments. Given
a poset H , let D(H) denote its Hasse diagram. We call a poset H k-saturated if every maximal
chain is of length k. Thus, in particular, H has height k.

Lemma 2.1 ([1]). If H is a finite poset with D(H) being a tree of height k, then H is an induced
subposet of some saturated finite poset H̃ with D(H̃) being a tree of height k.

Due to Lemma 2.1, for the rest of the paper we will assume that H is k-saturated. Let H be a
poset and x, y ∈ H where x � y. Define [x, y] = {z ∈ H : x � z � y} and call it an interval. An
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interval in H that is a chain is called a chain interval. The statement we give below is equivalent
to the original one in [1].

Lemma 2.2 ([1]). Let k � 2. Suppose H is a k-saturated poset that is not a chain and D(H)

is a tree. There exists v ∈ H , which is a leaf in D(H), and a chain interval I = [v, u] or [u, v]

of length |I | � k containing v, such that D(H \ I ′) is a tree and the poset H \ I ′ is k-saturated,
where I ′ = I − {u}.

Fix a positive integer k. A k-chain in Bn is just a chain in Bn with k distinct members. A full
chain of a Boolean lattice Bm of order m is just a chain of length m + 1. So it starts with the top
element of the lattice and ends with bottom element of the lattice and contains a member of each
cardinality between 0 and m. Let F ⊆ Bn be a family. Given a k-chain Q = (F1, . . . , Fk), where
F1 ⊃ F2 ⊃ · · · ⊃ Fk and, for all i ∈ [k], Fi ∈ F , and a full chain M of Bn that contains Q, we call
the pair (M,Q) a k-marked chain with markers in F . We call M the host of the k-marked chain
(M,Q) and say that M hosts (M,Q). Throughout our paper, the family F is fixed. So, if we omit
the phrase ‘with markers in F’, it should be understood that the markers (the Fi) are in F . Note
that if M and M ′ are two distinct full chains of Bn that contain Q, then (M,Q) and (M ′, Q) are
in fact considered to be two distinct k-marked chains in our definition. The following lemma is a
claim contained in the proof of Lemma 4 in [1] (Lemma 2.4 below). We paraphrase it slightly as
follows. Recall that (

x
k ) is defined to be 0 when x < k.

Lemma 2.3. Let k � 2 and let F ⊆ Bn. Let C(Bn) denote the set of all n! full chains of Bn. For
each M ∈ C(Bn), let x(M) denote the number of members of F contained in M. Let L denote
the family of all the k-marked chains with markers in F . Then

|L| =
∑

M∈C(Bn)

(
x(M)

k

)
.

Proof. Given any M ∈ C(Bn), M hosts exactly ( x(M)
k ) many k-marked chains with markers in

F . So there are altogether
∑

M∈C(Bn)
( x(M)

k ) many k-marked chains with markers in F .

The following lemma is established in [1]. We rephrase the proof slightly differently.

Lemma 2.4 ([1]). Let ε be a positive real. Let F ⊆ Bn. Let L denote the family of all the k-
marked chains with markers in F . If |F | � (k − 1 + ε)( n

�n/2� ). Then

|L| � (ε/k)k!.

Proof. For each i, let Ci denote the number of full chains M of Bn with x(M) = i. Let X be the
random variable that counts the number of members of F contained in a random full chain M of
Bn. For each member F ∈ F , the probability that M contains F is precisely 1

( n
|F | )

. Hence

E(X) =
∑
F∈F

1( n
|F |

) � |F | · 1(
n

�n/2�
) � k − 1 + ε.
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On the other hand, by a direct counting argument we have E(X) =
∑

i iCi/n!. Thus,
∑

i iCi �
(k − 1 + ε)n!. Clearly,

∑k−1
i=1 iCi � (k − 1)n!. So,

∑n
i=k iCi � εn!. For i � k, we have (

i
k ) � i

k
.

By Lemma 2.3, the number of k-marked chains with members in F equals

∑
i

Ci

(
i

k

)
�

n∑
i=k

Ci(i/k) = (1/k)

n∑
i=k

iCi � (ε/k)n!.

3. Forbidden neighbourhoods

Recall that elements of Bn are subsets of [n]. We refer to elements of Bn as vertices in the lattice.
If v is a vertex in Bn, it is also understood to be the subset of [n] that it represents. The cardinality
or weight of v, denoted by |v|, is the cardinality of the subsets of [n] that v represents. Even though
the partial ordering associated with Bn is the containment ⊆ relation, we will continue to denote
it by � in most cases. If u, v ∈ Bn and u � v, we call u a descendant of v and we call v an ancestor
of u. Given a vertex v in Bn, the down-set D(v) of v is defined to be

D(v) = {u ∈ Bn : u � v}.

In other words, D(v) is the set of all descendants of v. Note that if |v| = m, then D(v) forms a
Boolean lattice Bm of order m. The up-set U(v) of v is defined to be

U(v) = {u ∈ Bn : v � u}.

In other words, U(v) is the set of all ancestors of v. Note that if |v| = m, then U(v) forms a
Boolean lattice Bn−m of order n − m. If S is a set of vertices in Bn, we define

D(S) =
⋃
v∈S

D(v) and U(S) =
⋃
v∈S

U(v).

Given a vertex v ∈ B̃n and a set S ⊆ B̃n with S ∩ U(v) = ∅, define

D∗(v, S) = [(D(v) \ {v}) ∩ (U(S) ∪ D(S))] ∩ B̃n. (3.1)

We call D∗(v, S) the forbidden neighbourhood of S below v in B̃n. Given a vertex v ∈ B̃n and a
set S ⊆ B̃n with S ∩ D(v) = ∅, let

U∗(v, S) = [(U(v) \ {v}) ∩ (U(S) ∪ D(S))] ∩ B̃n. (3.2)

We call U∗(v, S) the forbidden neighbourhood of S above v in B̃n.
It is crucial to note in the above definitions that sets D∗(v, S) and U∗(v, S) are both contained

in B̃n and so is F . The next two lemmas play an important role in our arguments.

Lemma 3.1. Let n � 2000. Let v ∈ B̃n, S ⊆ B̃n, where S ∩ U(v) = ∅ and |S | � n/6. Let M be
a uniformly chosen random full chain of D(v) (among all |v|! full chains of D(v)). We have

P
(
M ∩ (D∗(v, S)) �= ∅

)
� 39|S |

√
n ln n

n
.
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Proof. It is easy to check that n
2

− 2
√
n ln n > n

3
for all n � 2000. Let s = |S |. For any vertex w

in (D(v) \ {v}) ∩ B̃n, the probability that M contains w is

1( |v|
|w|

) � 1

|v| � 1

n/3
=

3

n
.

Since |(S ∩ (D(v) \ {v})) ∩ B̃n| � s, then

P
(
M ∩ [(S ∩ (D(v) \ {v})) ∩ B̃n] �= ∅

)
� 3s

n
. (3.3)

Let � = |v| − ( n
2

− 2
√
n ln n). Since v ∈ B̃n, � � 4

√
n ln n. To bound the probability that M in-

tersects U = (U(S) ∩ (D(v) \ {v})) ∩ B̃n = U(S) ∩ (D(v) \ {v}), we first bound the probability
that M is disjoint from U. Note that U = U(S ∩ D(v)) ∩ (D(v) \ {v}), since only a descendant
of v may have an ancestor in D(v) \ {v}. Suppose S ∩ D(v) = {y1, . . . , yp}, where p � s. By our
assumptions, for all i ∈ [p], yi � v and |v| − |yi| � � (since yi ∈ B̃n). When we view v, y1, . . . , yp
as sets we have |

⋂p
i=1 yi| � |v| − p�. Being a full chain of D(v), we may view M as being

obtained by starting with the set v and successively removing an element in it. For M not to enter
U({y1, . . . , yp}) \ {v}, it suffices that the first element removed from the set v is in

⋂p
i=1 yi. So

the probability that M does not intersect U is at least |
⋂p

i=1 yi|/|v| � 1 − (p�/|v|) � 1 − s�/|v|.
Therefore

P(M ∩ [(U(S) ∩ (D(v) \ {v})) ∩ B̃n] �= ∅) � s�

|v| � 4s
√
n ln n

n/3
=

12s
√
n ln n

n
. (3.4)

Next, we bound the probability that M intersects D = (D(S) ∩ (D(v)) \ {v})) ∩ B̃n. Again, we
first bound the probability that M is disjoint from D. Suppose S = {z1, . . . , zs}. Since S ∩ U(v) =

∅, for all i ∈ [s], we have v �� zi. So set v has an element ui that is not in set zi. When we form
M by successively removing elements of set v, as long as each of the first � steps removes
an element outside {u1, . . . , us}, M would not enter D. Note that for all 0 < x � 1

2
, (1 − x)� �

e−2x� � 1 − 2x�. Now

P(M ∩ [(D(S) ∩ (D(v) \ {v})) ∩ B̃n] = ∅)

� (|v| − s)(|v| − s − 1) · · · (|v| − s − � + 1)

|v|(|v| − 1) · · · (|v| − � + 1)

=

(
1 − s

|v|

)(
1 − s

|v| − 1

)
· · ·

(
1 − s

|v| − � + 1

)

�
(

1 − s

|v| − � + 1

)�

�
(

1 − s

n/3

)� (
since |v| − � + 1 � n

2
− 2

√
n ln n � n

3

)
� 1 − 2s�

n/3

(
since s � n

6

)
.

Therefore,

P(M ∩ [(D(S) ∩ (D(v) \ {v})) ∩ B̃n] �= ∅) � 2s�

n/3
=

6s�

n
� 24s

√
n ln n

n
. (3.5)
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Combining equations (3.3), (3.4), and (3.5), we get

P(M ∩ D∗(v, S) �= ∅) � 39s
√
n ln n

n
.

A similar argument yields the following result.

Lemma 3.2. Let n � 2000. Let v ∈ B̃n, S ⊆ B̃n, where S ∩ D(v) = ∅ and |S | � n/6. Let M be
a uniformly chosen random full chain of U(v) (among all |v|! full chains of U(v)). We have

P(M ∩ (U∗(v, S)) �= ∅) � 39|S |
√
n ln n

n
.

4. k-marked chains and related notions

In this section, as in the rest of the paper, chains are viewed from top to bottom, unless otherwise
specified. Let H be a poset whose Hasse diagram is a tree of height k. Let h = |V (H)|. Let
n � max{2000, 6h}. Let F ⊆ B̃n. Let L be a family of k-marked chains with markers in F . For
each v ∈ B̃n and d ∈ [k], let

L(v, d) = {(M,Q) ∈ L : the dth member of Q is v}.

Let C(Bn) denote the set of all n! full chains of Bn. Next, we are going to define the notion
of bad. This is defined relative to h = |V (H)|, which is fixed throughout this section. For each
d ∈ [k], we define a vertex v ∈ B̃n to be d-lower-bad relative to L if there exists a set S ⊆ B̃n

with S ∩ U(v) = ∅ and |S | � h such that

L(v, d) �= ∅ and ∀(M,Q) ∈ L(v, d), Q ∩ D∗(v, S) �= ∅.

We call S a d-lower-witness of v relative to L. Similarly, we define a vertex v ∈ B̃n to be d-upper-
bad relative to L if there exists a set T ⊆ B̃n with T ∩ D(v) = ∅ and |T | � h such that

L(v, d) �= ∅ and ∀(M,Q) ∈ L(v, d), Q ∩ U∗(v, T ) �= ∅.

We call T a d-upper-witness of v relative to L. Let d ∈ [k]. Let v ∈ B̃n and M ∈ C(Bn). We say
that v is d-lower-bad relative to M and L if v is d-lower-bad relative to L and there exists at
least one Q such that (M,Q) ∈ L(v, d). We say that v is d-upper-bad relative to M and L if v is
d-upper-bad relative to L and there exists at least one Q such that (M,Q) ∈ L(v, d). A k-marked
chain (M,Q) is good relative to L if Q does not contain a vertex v that is either d-lower-bad or
d-upper-bad relative to M and L for any d ∈ [k]. The following proposition follows immediately
from the definitions above.

Proposition 4.1. Let (M,Q) be a member of L that is good relative to L, and let v ∈ Q. Suppose
v is the dth vertex of Q. Then for any set S of at most h vertices of Bn, where S ∩ U(v) = ∅, there
exists a member (M ′, Q′) ∈ L(v, d) such that M ′ is disjoint from D∗(v, S). For any set T of at
most h vertices, where T ∩ D(v) = ∅, there exists a member (M ′′, Q′′) ∈ L(v, d) such that M ′′ is
disjoint from U∗(v, T ).



Set Families With a Forbidden Induced Subposet 503

Proof. Note that (M,Q) ∈ L(v, d). By our assumption, v is not d-lower-bad or d-upper-bad
relative to L; otherwise v would be either d-lower-bad or d-upper-bad relative to M and L,
contradicting (M,Q) being good relative to L. So, there is no d-lower witness of v or d-upper-
witness of v of size at most h and the claim follows.

Now, for each d ∈ [k] and for each v ∈ B̃n that is d-lower-bad relative to L, we fix a corres-
ponding d-lower-witness Sv,d of v. For each d ∈ [k] and each v ∈ B̃n that is d-upper-bad relative
to L, we fix a corresponding d-upper-witness Tv,d. A chain x1 > y1 > x2 > y2 > · · · > xp > yp
in B̃n is called a d-lower-bad string (relative to L) if, for each i ∈ [p], xi is d-lower-bad relative
to L and yi ∈ D∗(xi, Sxi,d). Similarly, a chain x1 < y1 < x2 < y2 < · · · < xp < yp in B̃n is called
a d-upper-bad string relative to L if for each i ∈ [p], xi is d-upper-bad relative to L and yi ∈
U∗(xi, Txi,d).

Given a sequence J = (j1, j2, . . . , jq) of numbers in [n], where either j1 < j2 < · · · < jq or
j1 > j2 > · · · > jq , and a chain C in Bn, let C[J] denote the subchain of C consisting of the j1th,
j2th, . . . , jqth members of F on C (counted from the top). If C contains fewer than jq members
of F , then C[J] is defined to be the empty chain. If J contains only one number j, then we
write C[j] for C[{j}]. In the following two lemmas, we keep our assumptions about n, k, and h

described at the beginning of the section.

Lemma 4.2. Let d ∈ [k]. Let p be a positive integer. Let J be an increasing sequence of 2p

numbers in [n]. Let v ∈ B̃n. Let M be a uniformly chosen random full chain of D(v). Then

P(M[J] forms a d-lower-bad string) �
(

39h
√
n ln n

n

)p

.

Proof. Let

γ =
39h

√
n ln n

n
.

We use induction on p. For fixed p, we prove the statement for all J with 2p numbers and all
v ∈ B̃n. For the basis step, let p = 1. Suppose J = (j1, j2), where j1 < j2. Let v ∈ B̃n be given.
Let M be a uniformly chosen random full chain of D(v). Recall that if M[J] forms a d-lower-bad
string, then its members lie in B̃n. We have

P(M[J] is a d-lower-bad string)

�
∑

u∈D(v)∩B̃n

P(M[j1] = u) · P(M[j2] ∈ D∗(u, Su,d) | M[j1] = u).

Fix any u ∈ D(v) ∩ B̃n. The full chains M of D(v) satisfying M[j1] = u are precisely those
concatenations of full chains of I(v, u) (the sublattice consisting of all x satisfying v � x � u)
that contain exactly j1 members of F and all full chains of D(u). So, P(M[j2] ∈ D∗(u, Su,d) |
M[j1] = u) is the same as the probability that on a uniformly chosen random full chain M ′ of
D(u) the (j2 − j1 + 1)th member of F is in D∗(u, Su,d). This probability is certainly no more than
the probability that M ′ intersects D∗(u, Su,d). Since u ∈ B̃n, |D∗(u, Su,d)| � h � n

6
and n � 2000,
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by Lemma 3.1, the latter probability is at most γ. Hence,

P(M[J] is a d-lower-bad string) �
∑

u∈D(v)∩B̃n

[P(M[j1] = u) · γ]

= γ ·
∑

u∈D(v)∩B̃n

P(M[j1] = u) � γ,

where the last inequality uses the fact that for different u the events M[j1] = u are certainly
disjoint. This proves the basis step. For the induction step, assume p � 2. Suppose the claim has
been proved for all J ′ and v ∈ B̃n, where J ′ is an increasing sequence of 2p − 2 numbers. Given
a full chain M of D(v) and a vertex y on M, we let My denote the portion of M from y down.
Let J ′ = (j3 − j2 + 1, j4 − j2 + 1, . . . , j2p − j2 + 1). We have

P(M[J] is a d-lower-bad string)

�
∑

u∈D(v)∩B̃n

∑
y∈D∗(u,Su,d)

[P(M[j1] = u) · P(M[j2] = y | M[j1] = u)

· P(My[J
′]) is a d-lower-bad string | M[j1] = u,M[j2] = y)].

Using reasoning as in the basis step, given M[j1] = u,M[j2] = y, all full chains of D(y) are
equally likely for My. So given M[j1] = u,M[j2] = y, the probability that My[J

′] is a d-lower-
bad string is the same as the probability that given a random full chain M ′ of D(y), M ′[J ′] forms
a d-lower-bad string. By the induction hypothesis, this is at most γp−1. So,

P(M[J] is a d-lower-bad string)

�
∑

u∈D(v)∩B̃n

∑
y∈D∗(u,Su,d)

[P(M[j1] = u) · P(M[j2] = y | M[j1] = u) · γp−1]

= γp−1 ·
∑

u∈D(v)∩B̃n

P(M[j1] = u) ·
∑

y∈D∗(u,Su,d)

P(M[j2] = y | M[j1] = u)

� γp−1 ·
∑

u∈D(v)∩B̃n

P(M[j1] = u) · γ (see discussion in the basis step)

= γp ·
∑

u∈D(v)∩B̃n

P(M[j1] = u) � γp.

This completes the induction step and our proof.

A similar argument yields the following result.

Lemma 4.3. Let d ∈ [k]. Let p be a positive integer. Let J be a decreasing sequence of 2p

numbers in [n]. Let v ∈ B̃n. Let M be a uniformly chosen random full chain of U(v). Then

P(M[J] forms a d-upper-bad string) �
(

39h
√
n ln n

n

)p

.
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5. A nested sequence of dense families of k-marked chains

We show in this section that for families F ⊆ B̃n with

|F | �
(
k − 1 + Ω

(√
n ln n

n

))(
n

�n/2�

)
,

we can obtain a sequence of families of k-marked chains with markers in F , L1 ⊇ L2 · · · ⊇ Lh,
such that for each i ∈ [h − 1] every member of Li+1 is good relative to Li. Let C(Bn) denote the
set of full chains of Bn.

Theorem 5.1. Let k, h � 2 be integers. Let ak,h = 233k3h and ck,h = ak,h · (16k2h). Let n0 satisfy
n0 � max{2000, 6h} and

ak,h
√
n0 ln n0

n0
<

1

2
.

Let n � n0. Let

ε =
ck,h

√
n ln n

n
.

Suppose that F ⊆ B̃n is a family with |F | � (k − 1 + ε)( n
�n/2� ). For each M ∈ C(Bn), let Y (M)

denote the set of members of F contained in M. There exist functions X1, . . . , Xh from C(Bn) to
2F satisfying the following.

(1) For all M ∈ C(Bn), X1(M) = Y (M).
(2) For all i ∈ [h − 1] and M ∈ C(Bn), Xi+1(M) ⊆ Xi(M), and if Xi+1(M) �= ∅ then

|Xi+1(M)|
|Xi(M)| � 1 − 1

4kh
.

(3) For all i ∈ [h], the family of k-marked chains Li with markers in F , defined by

Li =

{
(M,Q) : M ∈ C(Bn), Q ∈

(
Xi(M)

k

)}
,

satisfies

|Li| � (εn!/k)

(
1 − i

2h

)
.

(4) For all i ∈ [h − 1], every member of Li+1 is good relative to Li (where good and bad are
defined with respect to h).

Proof. If no F ⊆ B̃n exists satisfying |F | � (k − 1 + ε)( n
�n/2� ), then the theorem is vacuously

true. So we assume that such F exists. To construct the functions X1, . . . , Xh, we use induction
on i. For the basis step, for each M ∈ C(Bn), we let X1(M) = Y (M). By Lemma 2.4, we have

|L1| � (ε/k)n!. (5.1)

So item (3) holds. There is nothing else to prove. For the induction step, let i � 1 and suppose
the functions X1, . . . , Xi have been defined so that items (1), (2), (3), (4) all hold. We want to
define Xi+1 to satisfy all the requirements.
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For each d ∈ [k] and each v ∈ B̃n that is d-lower-bad relative to Li, we fix a corresponding
d-lower-witness Sv,d. For each d ∈ [k] and each v ∈ B̃n that is d-upper-bad relative to Li, we fix
a corresponding d-upper-witness Tv,d. To define Xi+1, we first classify those M with Xi(M) �= ∅
into two types. For each d ∈ [k], let B−

i,d(M) denote the set of vertices in Xi(M) that are d-lower-

bad relative to M and Li. Let B−
i (M) =

⋃k
d=1 B

−
i,d(M). For each d ∈ [k], let B+

i,d(M) denote the

set of vertices in Xi(M) that are d-upper-bad relative to M and Li. Let B+
i (M) =

⋃k
d=1 B

+
i,d(M).

Let Bi(M) = B−
i (M) ∪ B+

i (M). Let x(M) = |Xi(M)| and let b(M) = |Bi(M)|. Set C = 4kh.
Let

C1 =

{
M ∈ C(Bn) : Xi(M) �= ∅, b(M)

x(M)
� 1

C

}
,

C2 =

{
M ∈ C(Bn) : Xi(M) �= ∅, b(M)

x(M)
>

1

C

}
.

Now, we define Xi+1 as follows:

If Xi(M) = ∅ or M ∈ C2, then let Xi+1(M) = ∅.
Otherwise, M ∈ C1, and we let Xi+1(M) = Xi(M) \ Bi(M).

Clearly, for all M ∈ C(Bn), Xi+1(M) ⊆ Xi(M).

Claim 1. We have the following.

(1) For all M ∈ C(Bn), where Xi+1(M) �= ∅, we have

|Xi+1(M)| �
(

1 − 1

C

)
|Xi(M)| =

(
1 − 1

4kh

)
|Xi(M)|.

(2) Each member of Li+1 is good relative to Li.

(3)

∑
M∈C1

(
|Xi+1(M)|

k

)
�

(
1 − k

C

) ∑
M∈C1

(
|Xi(M)|

k

)
�

(
1 − 1

4h

) (
|Xi(M)|

k

)
.

Proof of Claim 1. Let M ∈ C(Bn) and suppose Xi+1(M) �= ∅. Then M ∈ C1. By our definition
of C1, we have |Bi(M)|/|Xi(M)| � 1/C. Since Xi+1(M) = Xi(M) \ Bi(M), item (1) follows
immediately. The only members of Li+1 have the form (M,Q), where M ∈ C1 and Q ∈ (

Xi+1(M)
k ).

Fix any such member (M,Q). Since Xi+1(M) = Xi(M) \ Bi(M), and Q ∈ (
Xi+1(M)

k ), Q contains
no vertex that is either d-lower-bad or d-upper-bad relative to M and Li for any d ∈ [k]. Hence
(M,Q) is good relative to Li. So item (2) holds. As in the definition, let b(M) = |Bi(M)| and
x(M) = |Xi(M)|. The number of k-subsets of Xi(M) that contain a member of Bi(M) is certainly
at most

b

(
x − 1

k − 1

)
=

bk

x

(
x

k

)
� k

C

(
x

k

)
.
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Therefore, we have(
|Xi+1(M)|

k

)
�

(
x

k

)
− k

C

(
x

k

)
=

(
1 − k

C

)(
|Xi(M)|

k

)
=

(
1 − 1

4h

)(
|Xi(M)|

k

)
.

So item (3) (of Claim 1) holds. This completes the proof of Claim 1.

Claim 2. We have ∑
M∈C2

(
|Xi(M)|

k

)
� ε

4kh
· n!.

Proof of Claim 2. We further partition C2 into two subclasses. Let C−
2 consist of those M ∈ C2

with |B−
i (M)| � |Bi(M)|/2 = b(M)/2 and let C+

2 = C2 − C−
2 . For each d ∈ [k], let C−

2,d consist

of those M ∈ C−
2 with |B−

i,d(M)| � |B−
i (M)|/k. Clearly, C−

2 =
⋃k

d=1 C−
2,d. For each d ∈ [k], we

first bound
∑

M∈C−
2,d

(M)(
|Xi(M)

k ).

For each M ∈ C−
2,d, we define a sequence R−

d (M), called the greedy d-lower-bad string gen-
erated by M relative to Li, as follows. Scan M from top to bottom. Let x1 be the first vertex
in B−

i,d(M) that we encounter. Recall that this means x1 is d-lower-bad relative to M and L
and we have fixed a d-lower-witness Sx1 ,d of v (relative to Li) with |Sx1 ,d| � h and there is
at least one member (M,Q) of Li(x1, d). Since the members of Li on M form (

Xi(M)
k ) and

Li(x1, d) �= ∅, in particular the k consecutive members of Xi(M), with x1 being the dth one
among them, form a Q with (M,Q) ∈ Li(x1, d). Since x1 is d-lower-bad relative to Li, Q must
intersect D∗(x1, Sx1 ,d), which takes place below x1. Let y1 be the first member of Xi(M) below
x1 that lies in D∗(x1, Sx1 ,d). By our discussion above, y1 is among the k − d members of Xi(M)

below x1. After we encounter y1, we continue down M. If there are more vertices in Xi(M)

that are d-lower-bad relative to M and Li, then let x2 denote the next vertex in Xi(M) that is
d-lower-bad relative to M and Li. We then similarly define y2. We continue like this until we
run out of vertices in Xi(M). Following our reasoning for the existence of y1, whenever an xi is
defined, yi must exist and is within the k − d members of Xi(M) below xi. Suppose R−

d (M) =

(x1, y1, x2, y2, . . . , xp, yp). By our procedure, p � �|B−
i,d(M)|/k�. Let J be the increasing sequence

of 2p numbers in [n] such that M[J] = R−
d (M). We denote J by P−

d (M) and call it the d-lower-
bad profile of M relative to Li. Now we organize the terms in

∑
M∈C−

2,d
(
Xi(M)

k ) by |P−
d (M)|. For

convenience, we will view the increasing sequence P−
d (M) simply as a subset of [n]. Let p be any

positive integer. Consider M ∈ C−
2,d with |P−

d (M)| = 2p. By item (2) of the induction hypothesis,

|Xi(M)|
|X1(M)| �

(
1 − 1

4kh

)i−1

�
(

1 − 1

4kh

)h

� 1 − 2h

4kh
� 1

2
.

So

|Y (M)| = |X1(M)| � 2|Xi(M)| � 2|Bi(M)|C � 4|B−
i (M)|C � 4k|B−

i,d(M)|C � 4k2pC

(recall that p � (|B−
i,d(M)|)/k). Clearly the largest number in P−

d (M) is no more than |Y (M)| �
4k2pC. So, P−

d (M) ∈ ( [4k2pC]
2p ). Fix any 2p-subset (increasing sequence) J of [4k2pC]. By our

definition of P−
d (M), if P−

d (M) = J, then certainly M[J] = R−
d (M) forms a d-lower-bad string
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relative to Li by the definition of R−
d (M). Thus

|{M ∈ C−
2,d : P−

d (M) = J}|
� |{M ∈ C(Bn) : M[J] forms a d-lower-bad string relative to Li}|

�
(

39h
√
n ln n

n

)p

· n! (by Lemma 4.2).

So

|{M ∈ C−
2,d : |P−

d (M)| = 2p}| �
(

4k2pC

2p

)
·
(

39h
√
n ln n

n

)p

· n!

� 24k2pC

(
39h

√
n ln n

n

)p

· n!.

Also, for each M ∈ C−
2,d with |P−

d (M)| = 2p, we showed earlier that |Y (M)| � 4k2pC. Hence(
|Xi(M)|

k

)
�

(
|Y (M)|

k

)
� 2|Y (M)| � 24k2pC .

So, the contribution to
∑

M∈C−
2,d

(
|Xi(M)|

k ) from those M ∈ C−
2,d with |P−

d (M)| = 2p is at most

24k2pC · 24k2pC ·
(

39h
√
n ln n

n

)p

· n! �
(

232k3h · 39h
√
n ln n

n

)p

· n! <
(

233k3h
√
n ln n

n

)p

· n!.

Let

β =
233k3h

√
n ln n

n
.

By our assumption about n, β < 1
2
. Summing over all p � 1, we get

∑
M∈C−

2,d

(
|Xi(M)|

k

)
�

∞∑
p=1

βp · n! � 2βn!.

Summing over all d ∈ [k], we get ∑
M∈C−

2

(
|Xi(M)|

k

)
� 2kβn!.

By a similar argument, we have ∑
M∈C+

2

(
|Xi(M)|

k

)
� 2kβn!.

Recall that

ε =
233k3h

√
n ln n

n
· (16k2h) = β(16k2h).

We have∑
M∈C2

(
|Xi(M)|

k

)
=

∑
M∈C−

2

(
|Xi(M)|

k

)
+

∑
M∈C+

2

(
|Xi(M)|

k

)
� 4kβn! =

ε

4kh
· n!.
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This completes the proof of Claim 2.

Claim 3. We have

|Li+1| � (ε/k)n!

(
1 − i + 1

2h

)
.

Proof of Claim 3. By induction hypothesis,

|Li| � (ε/k)n!

(
1 − i

2h

)
.

By Claim 2,

∑
M∈C2

(
|Xi(M)|

k

)
� ε

4kh
· n!.

So ∑
M∈C1

(
|Xi(M)|

k

)
� (ε/k)n!

(
1 − i

2h
− 1

4h

)
.

By Claim 1 and our definition of Li+1, we have

|Li+1| =
∑
M∈C1

(
|Xi+1(M)|

k

)
�

(
1 − 1

4h

) ∑
M∈C1

(
|Xi(M)|

k

)

� (ε/k)n!

(
1 − i

2h
− 1

4h

)(
1 − 1

4h

)

� (ε/k)n!

(
1 − i + 1

2h

)
This completes the proof of Claim 3.

So item (3) of the theorem holds. This completes the induction step and the proof.

6. Proof of Theorem 1.4

Now, we are ready to prove Theorem 1.4. We keep all the notation from previous sections. Let
k, h, H be given. Let ck,h and n0 be defined as in Theorem 5.1. Let F ⊆ B̃n be a family satisfying

|F | �
(
k − 1 +

ck,h
√
n ln n

n

)(
n

�n/2�

)
.

It is easy to check that all the conditions of Theorem 5.1 are satisfied. Let L1 ⊇ L2 ⊇ · · · ⊇ Lh be
the sequence of families of k-marked chains we obtained in Theorem 5.1. We define a sequence
of subposets H1, H2, . . . of H as follows. Let H1 = H . Recall that H1 is k-saturated. Suppose H1

is not a chain. Then, by Lemma 2.2, H1 contains a chain interval I1 = [v1, u1] or [u1, v1], where
v1 is a leaf in D(H1) and H2 = H1 \ (I − u1) is still k-saturated and D(H2) is a tree. If H2 is a
chain, then we terminate. Otherwise, H2 contains a chain interval I2 = [v2, u2] or [u2, v2] such
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that H3 = H2 \ (I2 − u2) is k-saturated. We continue like this until the current subposet, say Hq,
is just a k-chain. Clearly q � h. We prove the following proposition, which implies Theorem 1.4.
Given a set W of vertices in Bn, we view W as a family of subsets of [n] and define the sublattice
of Bn induced by W , denoted by Bn[W ], to be (W,⊆). Clearly, Bn[W ] is an induced subposet
of Bn.

Proposition 6.1. There exist subsets W1 ⊇ W2 ⊇ · · · ⊇ Wq of Bn such that the following hold.

(1) For all i ∈ [q], Bn[Wi] = Hi. (Hence, we will treat Wi as V (Hi)).
(2) For all i ∈ [q] and v ∈ Wi = V (Hi), if v is at level d of Hi (from the top) then Li(v, d) �= ∅.

Proof. We use reverse induction on i. For the basis step, let i = q. We know that Hq is just a k-
chain. By Theorem 5.1, |Lq| � (ε/k)n!(1 − q

2h
) > 0. So there exists (M,Q) ∈ Lq . We embed Hq

using Q. Let Wq = V (Q). Clearly, items (1) and (2) both hold. For the induction step, let i � q −
1. Suppose we have defined Wi+1, . . . ,Wq that satisfy all the requirements. Recall that Hi+1 =

Hi \ (Ii − ui), where Ii = [vi, ui] or [ui, vi] is a chain interval in Hi. Without loss of generality,
we may assume Ii = [vi, ui], which would put vi at level k since vi is a leaf in D(Hi) and each
leaf is at level 1 or k. (The case where Ii = [ui, vi] can be handled similarly.) Suppose ui is
at level d from the top in Hi+1. By item (2) of the induction hypothesis, Li+1(ui, d) �= ∅. Let
(M,Q) ∈ Li+1(ui, d). Then ui is the dth vertex of Q (from the top). By Theorem 5.1, (M,Q) is
good relative to Li. Let S = Wi+1 \ U(ui). In other words, S is the set of vertices in Hi+1 that are
not ancestors of ui. Since |S | � h, by Proposition 4.1, there exists a member (M ′, Q′) ∈ Li(ui, d)

such that M ′ is disjoint from D∗(ui, S). We can embed Ii − ui using the portion Q∗ of Q′ below
ui. The newly embedded vertices, by design, are not in D∗(ui, S) and hence are not related to any
vertex in S . (They are, however, descendants of ui and hence are still descendants of the ancestors
of ui in Wi+1 = V (Hi+1).) Let Wi = Wi+1 ∪ V (Q∗). Since Bn[Wi+1] = Hi+1, it follows from our
discussion above that Bn[Wi] = Hi. Furthermore, because of the existence of (M ′, Q′), it is easy
to see that the newly embedded vertices (namely those in Q∗) still satisfy item (2) of the theorem.
This completes the induction step and the proof.

7. Concluding remarks

7.1. Comments on the approach
Even though our approach follows that of Bukh, we needed to use several key new ideas. In
Bukh’s argument, it is crucial to assume that on each full chain the number of members of F
is bounded. Indeed, if some full chain contains h members of F then F contains an h-chain,
which already contains H as a subposet. However, for the induced version, this is no longer the
case. One can have an unbounded number of members of F on a full chain without forcing an
induced H . To overcome this difficulty, we consider two types of full chains. In one type of full
chain the number of bad members of F is negligible compared to the number of members of F .
In a second type of full chain, the number of bad members of F is comparable to the number
of members of F . For the second type, the key observation is that the number of k-marked
chains on type 2 full chains decreases exponentially fast as the number of bad members of F that
lie on the full chain. This still allows us to limit the total number of bad k-marked chains and
build our nested sequence of dense families of k-marked chains, which is then used to embed H
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iteratively. Another major departure from Bukh’s approach is that we no longer insist on using
entire k-marked chains to embed maximal chains of H . Rather, we use k-marked chains to locate
good vertices to embed H , while preserving the levels of vertices.

7.2. Induced versus non-induced
We showed that when H is a poset whose Hasse diagram is a tree, La(n,H) and La∗(n,H) are
asymptotically equal, both asymptotic to (k − 1)( n

�n/2� ), where k is the height of D(H). For other
posets though, La∗(n,H) can be very different from La(n,H). For instance, since La(n,Kr,s) �
(2 + o(1))( n

�n/2� ), for any two-level poset H , we have La(n,H) � (2 + o(1))( n
�n/2� ). However,

we now show that for every fixed m, there exists a two-level poset Hm satisfying La∗(n,Hm) �
(m − 1 − o(1))( n

�n/2� ). Specifically, let Hm be the two-level poset consisting of x1, x2, . . . , xm at
the lower level and y1, y2, . . . , ym at the upper level. For each i ∈ [m], let xi � yj for j = i, i +

1, . . . , m. Suppose G ⊆ Bn is a family that contains Hm as an induced subposet with members
A1, . . . , Am playing the roles of x1, . . . , xm, respectively and members B1, . . . , Bm playing the role
of y1, . . . , ym, respectively. For each i ∈ [m], let Si =

⋂m
j=i Bi. Note that Sm ⊇ Sm−1 ⊇ · · · ⊇ S1.

Also, by our assumption, for all i ∈ [m], Ai ⊆ Si and if i � 2 then also Ai �⊆ Si−1. In particular,
this implies that S1, . . . , Sm must be distinct sets. So |Sm| − |S1| � m − 1. It follows that |Bm| −
|A1| � m − 1. Now, let F ⊆ Bn be a family that consists of the middle m − 1 levels of Bn. Since
the cardinalities of any two members of F differ by at most m − 2, F does not contain Hm as an
induced subposet. Since |F | = (m − 1 − o(1))( n

�n/2� ), we have

La∗(n,Hm) � (m − 1 − o(1))

(
n

�n/2�

)
.
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