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ZOLTÁN FÜREDI∗, TAO JIANG, ROBERT SEIVER

Received May 28, 2011

A k-uniform linear path of length `, denoted by P(k)
` , is a family of k-sets {F1, . . . ,F`}

such that |Fi∩Fi+1|=1 for each i and Fi∩Fj =∅ whenever |i−j|>1. Given a k-uniform
hypergraph H and a positive integer n, the k-uniform hypergraph Turán number of H,
denoted by exk(n,H), is the maximum number of edges in a k-uniform hypergraph F on
n vertices that does not contain H as a subhypergraph. With an intensive use of the delta-
system method, we determine exk(n,P

(k)
` ) exactly for all fixed `≥1,k≥4, and sufficiently

large n. We show that

exk

(
n,P(k)

2t+1

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . . +

(
n− t

k − 1

)
.

The only extremal family consists of all the k-sets in [n] that meet some fixed set of t
vertices. We also show that

ex
(
n,P(k)

2t+2

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . . +

(
n− t

k − 1

)
+

(
n− t− 2

k − 2

)
,

and describe the unique extremal family. Stability results on these bounds and some related
results are also established.

1. Introduction

As usual, a hypergraph F = (V,E) consists of a set V of vertices and a set
E of edges, where each edge is a subset of V . We call edges of F members
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of F . If each member of F is a k-subset of V , we say that F is a k-uniform
hypergraph or a k-uniform set system. If |V |=n, it is often convenient to just

let V = [n] = {1, . . . ,n}. For convenience, we write F ⊆
([n]
k

)
to indicate that

F is a k-uniform hypergraph on vertex set [n]. There is a long history in
the study of extremal problems concerning hypergraphs. Early well-known
results include the Erdős-Ko-Rado theorem that says that for all n > 2k
the maximum size of a k-uniform family on n vertices in which every two
members intersect is

(
n−1
k−1
)
, with equality achieved by taking all the subsets

of [n] containing a fixed element. Given a family H of hypergraphs, the
k-uniform hypergraph Turán number of H, denoted by exk(n,H), is the
maximum number of edges in a k-uniform hypergraph F on n vertices that
does not contain a member of H as a subhypergraph. An H-free family

F ⊆
([n]
k

)
is called extremal if |F| = exk(n,H). If H consists of a single

hypergraph H, we write exk(n,H) for exk(n,{H}). If we let M
(k)
2 denote

the k-uniform hypergraph consisting of two disjoint k-sets, then the Erdős-

Ko-Rado theorem says exk(n,M
(k)
2 ) =

(
n−1
k−1
)

for all n> 2k. More generally,
Erdős showed

Theorem 1.1. (Erdős [6]) Let k,t be positive integers. There exists a

number n(k,t) such that for all integers n>n(k,t), if F ⊆
([n]
k

)
contains no

t+1 pairwise disjoint members then

|F| ≤
(
n

k

)
−
(
n− t
k

)
.

Furthermore, the only extremal family F consists of all the k-sets of [n]
meeting some fixed set S of t elements of [n].

Surveys on Turán problems of graphs and hypergraphs can be found in [13]
and [20]. Hypergraph Turán problems are notoriously difficult. The asymp-
totics are determined for very few hypergraphs and exact results are par-
ticularly rare. Most exact results concern specific hypergraphs on a small
number of vertices (and often for fixed small values of k). For example, the
exact value of exk(n,H) is determined (for large n) for the Fano plane, ex-
panded triangle, 4-books with 2 pages, 4-books with 3 pages, 4-books with 4
pages, some 3-graphs with independent neighborhoods, extended complete
graphs, generalized fans, and a couple of others (see [20] for details and ref-
erences). By comparison, our results in this paper establish the exact value
for every hypergraph in an infinite family (and for all k≥4). In this regard,
the exact result on extended complete graphs [26] (refining [24]) is similar
in nature. However, the hypergraphs H we consider are much more sparse
and more “spread out”. So, our result may be viewed the first of its kind.
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2. The Hypergraph problem for paths and main results

In this paper, we focus on the hypergraph problem for paths. As explained
at the end of the previous section, the “spread out” nature of a path dis-
tinguishes the problem from most of the hypergraph Turán problems that
have been studied. For k= 2, the problem was solved by Erdős and Gallai
in the following classic theorem.

Theorem 2.1. (Erdős-Gallai [5]) Let G be a graph on n vertices con-
taining no path of length `. Then e(G)≤ 1

2(`−1)n. Equality holds iff G is
the disjoint union of complete graphs on ` vertices.

For k ≥ 3, the most general definition of a k-uniform path is that of a
Berge path. A Berge path of length ` is a family of distinct sets {F1, . . . ,F`}
and `+1 distinct vertices v1, . . . ,v`+1 such that for each 1≤ i≤`, Fi contains

vi and vi+1. Let B(k)` denote the family of k-uniform Berge paths of length

`. Győri et al. determined exk(n,B
(k)
` ) exactly for infinitely many n.

Theorem 2.2. (Győri et al. [16]) If ` > k ≥ 2 then exk(n,B
(k)
` )≤ n

`

(
`
k

)
.

Furthermore, equality is attained if ` divides n. If 3 ≤ ` ≤ k, then

exk(n,B
(k)
` )= n(`−1)

k+1 . Furthermore, here equality is attained if k+1 divides
n.

For the ` > k case, equality is attained by partitioning the n vertices into
sets of size ` and taking a complete k-uniform hypergraph on each of the `-
set. For the 3≤`≤k case, equality is attained by partitioning the n vertices
into sets of size k+1 and taking exactly `−1 of the k-sets in each of these

(k+1)-sets. The case `=2, exk(n,B
(k)
2 )=bn/kc, is obvious.

A notion that is more restrictive than a Berge path is that of a loose path.
A loose path of length ` is a family of sets {F1, . . . ,F`} such that Fi∩Fj 6=∅
iff |i−j|=1. Let P(k)

` denote the family of k-uniform loose paths of length `.

Theorem 2.3. (Mubayi-Verstraëte [25]) Let k,`≥3, t=b(`−1)/2c and

n≥(`+1)k/2. Then exk(n,P
(k)
3 )=

(
n−1
k−1
)
. For `,k>3, we have

t

(
n− 1

k − 1

)
+O

(
nk−2

)
≤ exk

(
n,P(k)

`

)
≤ 2t

(
n− 1

k − 1

)
+O

(
nk−2

)
.

An even more restrictive notion than that of a loose path is the notion
of a linear path. A linear path of length ` is a family of sets {F1, . . . ,F`}
such that |Fi ∩Fi+1| = 1 for each i and Fi ∩Fj = ∅ whenever |i− j| > 1.

Let P(k)
` denote the k-uniform linear path of length `. It is unique up to
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isomorphisms. The determination of exk(n,P
(k)
` ) is nontrivial even for `=2.

This was solved by Frankl [9] (see [22] for more on the k = 4 case). The
case `<k was asymptotically determined in [10]. As the main result of this

paper, we determine exk(n,P
(k)
` ) exactly, for all fixed k,`, where k≥4, and

sufficiently large n.

Theorem 2.4. (Main result) Let k,t be positive integers, k≥4. For suf-
ficiently large n, we have

exk

(
n,P(k)

2t+1

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . .+

(
n− t
k − 1

)
.

The only extremal family consists of all the k-sets in [n] that meet some
fixed set S of t elements. Also,

ex
(
n,P(k)

2t+2

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . .+

(
n− t
k − 1

)
+

(
n− t− 2

k − 2

)
.

The only extremal family consists of all the k-sets in [n] that meet some
fixed set S of t elements plus all the k-sets in [n]\S that contain some two
fixed elements.

Our method does not quite work for the k=3 case. We conjecture that a
similar result holds for k=3. Using essentially the same method (for k≥4)
and a slight modification of the method (for k=3), one can also determine
the Turán numbers of loose paths for all fixed k≥3 and large n.

Theorem 2.5. Let k,t be positive integers, where k ≥ 3. For sufficiently
large n, we have

exk

(
n,P(k)

2t+1

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . .+

(
n− t
k − 1

)
.

The only extremal family consists of all the k-sets in [n] that meet some
fixed set S of t vertices. Also,

ex
(
n,P(k)

2t+2

)
=

(
n− 1

k − 1

)
+

(
n− 2

k − 1

)
+ . . .+

(
n− t
k − 1

)
+ 1.

The only extremal family consists of all the k-sets in [n] that meet some
fixed set S of t vertices plus one additional k-set that is disjoint from S.



EXACT SOLUTION OF THE HYPERGRAPH TURÁN PROBLEM 303

Since Theorem 2.5 is not our main result and for k ≥ 4 the proof is
essentially the same as that of Theorem 2.4, we will not formally prove
Theorem 2.5. We will instead just briefly comment on how to prove Theorem
2.5 at the end of Section 5. For details, see [18].

It is easy to see that the constructions described in the above two theo-

rems are indeed P(k)
` and P(k)

` -free, respectively. We will show that for large
enough n they are the unique extremal constructions for the respective Turán
numbers.

We organize our paper as follows. In Section 3, we introduce our main
tool: the delta-system method and develop some useful facts. In Section 4,
we establish asymptotically tight bounds. In Section 5, we prove the exact
bounds, characterize the extremal families and establish stability results. In
Section 6, we prove a related result. In Section 7 we collect a few problems
and remarks.

3. The delta-system method and homogeneous families

The delta-system method, started by Deza, Erdős and Frankl [3] and others,
is a powerful tool for solving set system problems. The method is summarized
in a structural lemma obtained by the first author [12] (see Lemma 3.1
below). It has been used successfully to obtain a series of sharp results on
set systems, most notable in [10], and more recently in [15].

We now introduce a few definitions. A family of sets F1, . . . ,Fs are said
to form an s-star or ∆-system of size s with kernel A if Fi ∩Fj = A for
all 1 ≤ i < j ≤ s. Sets F1, . . . ,Fs are called the petals (or members) of the
∆-system. Given a family F of sets and a member F of F , we define the
intersection structure of F relative to F to be

I(F,F) = {F ∩ F ′ : F ′ ∈ F , F ′ 6= F}.

In other words, I(F,F) consists of all the intersections of F with other mem-
bers of F . As in many k-uniform hypergraph problems, it is often convenient

to assume the family F to be k-partite. A k-uniform family F ⊆
([n]
k

)
is k-

partite if there exists a partition of the vertex set [n] into k sets X1, . . . ,Xk,
called parts, such that ∀F ∈F and ∀i∈ [k] we have |F∩Xi|=1. So, each mem-
ber of F consists of one vertex from each part. We will call (X1, . . . ,Xk) a
(vertex) k-partition of F . Recall that an old result of Erdős and Kleitman [8]
showed that every k-uniform family H contains a k-partite subfamily H′⊆H
of size at least (k!/kk)|H|.
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Let F⊆
([n]
k

)
be a k-partite family with a k-partition (X1, . . . ,Xk). Given

any subset S⊆ [n], its pattern, denoted by Π(S), is defined as

Π(S) = {i : S ∩Xi 6= ∅} ⊆ [k].

In other words, the pattern of S records which parts in the given k-partition
that S meets. If L is a collection of subsets of [n], then we define

Π(L) = {Π(S) : S ∈ L} ⊆ 2[k].

We will call Π(I(F,F)) the intersection pattern of F relative to F .

Lemma 3.1. (The intersection semilattice lemma [12]) For any posi-
tive integers s and k, there exists a positive constant c(k,s) such that every

family F⊆
([n]
k

)
contains a subfamily F∗⊆F satisfying

1. |F∗|≥c(k,s)|F|.
2. F∗ is k-partite, together with a k-partition (X1, . . . ,Xk).
3. There exists a family J of proper subsets of [k] such thatΠ(I(F,F∗))=J

holds for all F ∈F∗.
4. J is closed under intersection, i.e., for all A,B∈J we have A∩B∈J as

well.
5. Fixing any F ∈ F∗, for each A ∈ I(F,F∗) there exists an s-star in F∗

containing F with kernel A.

Note that for s≥ k, item 4 follows from items 3 and 5. For s < k, observe
that if all items hold for s=k, then they certainly also hold for all s<k.

Definition 3.2. We call family F∗ that satisfies items (2)-(5) of Lemma 3.1
a (k,s)-homogeneous family with intersection pattern J . When the context
is clear we will drop the (k,s)-prefix.

A useful notion in the delta-system method is the notion of a rank of
family. Given a family L of subsets of [k], we define the rank of L, denoted
by r(L) as

r(L) = min{|D| : D ⊆ [k], 6 ∃B ∈ L, D ⊆ B}.
So, r(L) is the cardinality of a smallest set D that “obstructs” L in the
sense that no member of L contains it. We will apply the rank notion to the
intersection pattern J ( 2[k]. If F is a k-partite family with a k-partition
(X1, . . . ,Xk), F ∈F and D⊆ [k], we will let F [D] =F ∩ (

⋃
i∈DXi). That is,

F [D] is the projection of F onto the parts whose indices are in D. Given a

family F⊆
([n]
k

)
and a subset W ⊆ [n], we define the degree of W in F as

degF (W ) = |{F : F ∈ F ,W ⊆ F}|.
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Lemma 3.3. Let k,s be positive integers. Let F∗ be a (k,s)-homogeneous
family with intersection pattern J . Let D⊆ [k]. Suppose no member of J
contains D. Then degF∗(F [D])=1.

Proof. Suppose that F ′ is another member of F∗ besides F that contains
F [D]. Then F ∩ F ′ ⊇ F [D]. Let B = Π(F ∩ F ′). Then B ⊇ D. Since F∗
is homogeneous with intersection pattern J , B ∈ J . This contradicts our
assumption that no member of J contains D.

Lemma 3.3 immediately implies

Proposition 3.4. (The rank bound) Let k,s be positive integers. Let
F∗ be a (k,s)-homogeneous family on n vertices with intersection pattern
J . If r(J )=p, then |F∗|≤

(
n
p

)
.

Proof. By definition, ∃D ⊆ [k] with |D| = p such that no member of J
contains D. By Lemma 3.3, for each F ∈F∗, F [D] is a p-subset of F that
is not contained in any other member of F∗. Suppose F1, . . . ,Fm are all the
members of F∗. Then F1[D],F2[D], . . . ,Fm[D] are all distinct p-sets, and
clearly there can be at most

(
n
p

)
of them. So, |F∗|=m≤

(
n
p

)
.

In the spirit of Proposition 3.4, we will focus on homogeneous families
whose intersection patterns J have rank k−1 or k. Among rank k−1 patterns,
we consider two types.

Definition 3.5. Let L be a family of proper subsets of [k] that has rank
k−1. We say that L is of type 1 if there exists an element x∈ [k] such that
[k]\{x} /∈L but ∀y∈ [k],y 6=x, [k]\{y}∈L. If L has rank k−1, but is not of
type 1, then we say that it is of type 2.

We now prove some quick facts.

Lemma 3.6. Let k≥ 3 be a positive integer. Let L be a family of proper
subsets of [k] that is closed under intersection.

1. If L has rank k, then it consists of all the proper subsets of [k].
2. If L has rank k−1 and is of type 1, then for some i∈ [k], L contains all

the proper subsets of [k] that contain i. We will call i the central element.
3. For k≥ 4, if L has rank k−1 and is of type 2 then L contains at least

two singletons.

Proof. First, assume that L has rank k. By the definition of rank, every
(k−1)-subset of [k] belongs to L. Since L is closed under intersection, every
proper subset of [k] is in L.
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Next, suppose that L has rank k−1 and is of type 1. By definition, there
exists i ∈ [k] such that [k] \ {i} /∈ L but ∀j ∈ [k], j 6= i, [k] \ {j} ∈ L. Since
L is closed under intersection it contains all the proper subsets of [k] that
contain i.

Finally, assume that L has rank k− 1 and is of type 2. By definition,
there are some t≥2 different (k−1)-subsets of [k] that obstruct L. Without
loss of generality, we may assume that ∀i = 1, . . . , t, [k] \ {i} /∈ L and ∀i =
t+1, . . . ,k, [k]\{i}∈L.

Claim. ∀i, j≤ t, i 6=j, we have [k]\{i, j}∈L.
Proof of Claim. Otherwise suppose for some i, j≤ t, i 6=j,D=[k]\{i, j} /∈L.

Since r(L)=k−1>k−2, there must be some member of L that contains D.
However, the only possible members of L that could contain D are [k]\{i}
and [k]\{j}, neither of which is in L, a contradiction.

By our discussions above, we know ∀i = t+ 1, . . . ,k, [k] \ {i} ∈ L and
∀i, j ∈ [t], [k] \ {i, j} ∈ L and L is closed under intersection. If t ≥ 3, then
{i} ∈ L for each i ∈ [t]. If t= 2, then {i} ∈ L for each i ∈ {3, . . . ,k}. So, in
particular, if k≥4 then L contains at least two singletons.

Lemma 3.6 immediately yields

Corollary 3.7. Let k,s be positive integers, where s≥ k≥ 4. Let F∗ be a
(k,s)-homogeneous family with intersection pattern J . Suppose J has rank
k or has rank k−1 and is of type 2. Let F ∈F∗. Then there exist at least
two distinct vertices u,v ∈ F such that {u} is the kernel of some s-star in
F∗ and {v} is the kernel of some s-star in F∗.

Proof. By Lemma 3.6(3), there exist i, j∈ [k] such that {i}∈J and {j}∈J .
Let u = F [{i}] and v = F [{j}]. Since F∗ is homogeneous, {u} = F [{i}] ∈
I(F,F∗) and {v}= F [{j}] ∈ I(F,F∗). By Lemma 3.1(5), each of {u} and
{v} is the kernel of some s-star in F∗.

A hypergraph (set system)H is linear if every two members ofH intersect
in at most one vertex. Given a graph H, the k-blowup, denoted by [H](k) (or
H(k) for short), is the k-uniform hypergraph obtained from H by replacing
each edge xy in H with a k-set Exy that consists of x,y and k−2 new vertices
such that for distinct edges xy,x′y′, (Exy −{x,y})∩ (Ex′y′ −{x′,y′}) = ∅.
If H has p vertices and q edges, then H(k) has p+ q(k− 2) vertices and
q hyperedges. The resulting H(k) is a k-uniform linear hypergraph whose
vertex set contains the vertex set of H. We call H the skeleton of H(k).

We adopt the convention that P` denotes a path with ` edges (and `+1
vertices). Then [P`]

(k) is a k-uniform linear path of length `. Throughout

the paper, we denote this hypergraph by P(k)
` .
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Theorem 3.8. Let k,s,q be positive integers where k≥ 4 and s≥ kq. Let
T be a q-edge tree. Let F∗ be a (k,s)-homogeneous family with intersection
pattern J . If J has rank k or has rank k−1 and is of type 2, then T (k)⊆F∗.

Proof. For convenience, if {x} is the kernel of an s-star in F∗ we call x a
kernel vertex in F∗. We use induction on q to find a copy of T (k) in F∗ in
which each vertex of V (T ) is mapped to a kernel vertex in F∗. For the basis
step, let q=1. So T consists of a single edge xy. We take any member F ∈F∗.
By Corollary 3.7, there exist u,v ∈ F that are kernel vertices in F∗. Now,
F is a copy of T (k). Furthermore, by mapping x to u and y to v, we fulfill
the additional requirement that each vertex in V (T ) is mapped to a kernel
vertex in F∗. For the induction step, let q≥2. Let v be a leaf of T and u its
unique neighbor in T . Let T1=T−v. By induction hypothesis, F∗ contains a
copy L of [T1]

(k) in which each vertex of V (T1) is mapped to a kernel vertex
in F∗. Suppose u is mapped to u′. Then {u′} is the kernel of an s-star S
in F∗. Suppose F1, . . . ,Fs are the petals of S. Since F1 \ {u′}, . . . ,Fs \ {u′}
are pairwise disjoint and s≥ kq > |L|, for some j, Fj \{u′} is disjoint from

L\{u′}. Now L∪Fj forms a copy of T (k). Furthermore, by Corollary 3.7, Fj
contains some v′ other than u′ that is a kernel vertex in F∗. By mapping v
to v′, we maintain the condition that each vertex of V (T ) is mapped to a
kernel vertex in F∗. This completes the proof.

Theorem 3.9. Let k, l,s be positive integers with k ≥ 4 and s ≥ kl. Let

F ⊆
([n]
k

)
. Suppose P(k)

` 6⊆ F . Then F can be partitioned into subfamilies
G1, . . . ,Gm,F0 such that ∀i∈ [m], Gi is (k,s)-homogeneous with intersection
pattern Ji which has rank k−1 and type 1, and |F0|≤ 1

c(k,s)

(
n
k−2
)
.

Proof. First we apply Lemma 3.1 to F to get a (k,s)-homogeneous sub-
family G1 with intersection pattern J1 such that |G1| ≥ c(k,s)|F|. Then we
apply Lemma 3.1 again to F−G1 to get a homogeneous subfamily G2 with
intersection pattern J2 such that |G2| ≥ c(k,s)(|F|− |G1). We continue like
this. Let m be the smallest nonnegative integer such that Jm+1 has rank
k−2 or less. Let F0 =F−(

⋃m
i=1Gi). By our procedure, |Gm+1|≥c(k,s)|F0|.

Since Jm+1 has rank at most k−2, by Lemma 3.4, |Gm+1|≤
(
n
k−2
)

and hence

|F0|≤ 1
c(k,s)

(
n
k−2
)
.

By our assumption, J1, . . . ,Jm all have rank at least k−1. If for some i,
either J has rank k or has rank k−1 and is of type 2, then by Theorem 3.8,

P(k)
` ⊆Gi⊆F , contradicting our assumption that P(k)

` 6⊆F . So for each i∈ [m],
Ji is of type 1.

For the remaining sections, we will refer to the partition given in Theo-
rem 3.9 as a canonical partition of F .
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4. Kernel graphs and asymptotic bounds

In this section, we introduce some auxiliary graphs associated with the given

family F ⊆
([n]
k

)
. Using these we can quickly establish asymptotically tight

bounds on exk(n,P
(k)
2t+1) and exk(n,P

(k)
2t+2). Some of the definitions and lem-

mas in this section may be of independent interests. Given a family F⊆
([n]
k

)
and a subset W ⊆ [n], we define the kernel degree of W , denoted by deg∗F (W ),
as

deg∗F (W ) = max{s : ∃ an s-star with kernel W in F}.

Note that the kernel degree of W is a stronger notion than the degree of W .

Definition 4.1. Given a family F ⊆
([n]
k

)
, the kernel-graph with threshold

s is the graph L on [n] such that ∀x,y∈ [n], xy∈E(L) iff deg∗F ({x,y})≥s.

Lemma 4.2. Let H be a graph with q edges. Let s=kq. Let F⊆
(n]
k

)
. Let

L be the kernel graph of F with threshold s. If H ⊆L, then F contains a
copy of H(k) whose skeleton is H.

Proof. Let e1, . . . ,eq be the edges ofH. For each i, suppose the two endpoints
of ei are xi and yi. We will replace each ei with a member Ei of F that
contain xi,yi such that E1 \ {x1,y1}, . . . ,Eq \ {xq,yq} are pairwise disjoint.
Since x1y1 ∈ E(L), deg∗F ({x1,y1}) ≥ s. Let E1 be any member of F that
contains x1 and y1 and avoids all x2,y2, . . . ,xq,yq. In general, suppose we
have found E1,E2, . . . ,Ei−1. Since xiyi∈E(L), deg∗F ({xi,yi})≥s there exists
an s-star S in F with kernel {xi,yi}. Let F1, . . . ,Fs denote the petals of

S. Since F1 \ {xi,yi}, . . . ,Fs \ {xi,yi} are pairwise disjoint and |(
⋃i−1
j=1Ej) \

{xi,yi}| < kq = s, there exists an h ∈ [s] such that Fh \ {xi,yi} is disjoint

from (
⋃i−1
j=1Ej)\{xi,yi}. We can let Ei = Fh. We can continue till we find

E1, . . . ,Eq in F that meet the requirements. The system {E1, . . . ,Eq} forms

a copy of H(k) whose skeleton is H.

Suppose F can be decomposed into F1, . . . ,Fm, where for each i ∈ [m],
Fi is homogeneous with intersection pattern Ji, where Ji has rank k− 1
and is of type 1. We define the (k,s)-homogeneous kernel graph of F as
follows. Fix any F ∈ F . Suppose F ∈ Fp. By Lemma 3.6, Jp has a central
element i such that all proper subsets of [k] containing i are members of
Jp. We fix such an i for Jp. We have {i} ∈ Jp and {i, i′} ∈ Jp for each
i′∈ [k]\{i}. So F [{i}]∈I(F,Fp) and F [{i, i′}]∈I(F,Fp) for each i′∈ [k]\{i}.
We denote F [{i}] by c(F ) and call it the central element of F . Thus, we have
c(F )∈I(F,Fp) and {c(F ),y}∈I(F,Fp) for each y∈F \{c(F )}. Since Fp is



EXACT SOLUTION OF THE HYPERGRAPH TURÁN PROBLEM 309

(k,s)-homogeneous, we have deg∗Fp
({c(F )})≥s and deg∗Fp

({c(F ),y})≥s for

each y∈F \{c(F )}. In particular, this implies that

deg∗F ({c(F )}) ≥ s and deg∗F ({c(F ), y}) ≥ s for ∀y ∈ F \ {c(F )}.

We define the (k,s)-homogeneous kernel digraph H of F to be a directed
graph on [n] whose edges consist of all the ordered pairs (c(F ),y) over all
F ∈ F and y ∈ F \ c(F ). Furthermore, we mark c(F ) for each F ∈ F . Let
H ′ denote the underlying simple undirected graph of H. Note that H ′ is a
subgraph of the kernel graph of F with threshold s. Also, note that at least
one of the two endpoints of each edge of H ′ is marked. In this section, we
will only make use of H ′ instead of H.

Lemma 4.3. Let F ⊆
([n]
k

)
. Suppose that F can be partitioned into sub-

families F1, . . . ,Fm such that for each i=1, . . . ,m, Fi is (k,s)-homogeneous
with intersection pattern Ji that has rank k− 1 and is of type 1. Let H
be the (k,s)-homogeneous kernel digraph of F . Let H ′ be the underlying
undirected simple graph of H. We have

|F| ≤ e(H ′)

k − 1

(
n− 2

k − 2

)
.

Proof. Consider the number q of pairs ({x,y},F ) where F ∈F ,x,y∈F and
{x,y}∈E(H ′). Each F ∈F contributes exactly k−1 to q. On the other hand,
for each unordered pair x,y trivially there are at most

(
n−2
k−2
)

members of F
that contain x,y. So, each xy ∈E(H ′) contributes at most

(
n−2
k−2
)

to q. So,

we have (k−1)|F|=q≤e(H ′)
(
n−2
k−2
)
.

Now we are ready to establish asymptotic tight bounds on exk(n,P
(k)
2t+1)

and exk(n,P
(k)
2t+2). We need the following classical result concerning the cir-

cumference of a graph.

Lemma 4.4. (Erdős and Gallai [5]) If G is an n-vertex graph that con-
tains no cycle of length at least c, where c≥3, then e(G)≤ 1

2(c−1)(n−1).

Theorem 4.5. Let k,t be positive integers, where k≥4. We have

exk

(
n,P(k)

2t+1

)
≤ exk

(
n,P(k)

2t+2

)
≤ t
(
n− 1

k − 1

)
+O

(
nk−2

)
.

Proof. Let F ⊆
([n]
k

)
be a family that contains no copy of P(k)

2t+2. Let s =
k(2t+2). By Theorem 3.9, there exists a partition of F into G1, . . . ,Gm,F0,
where |F0| ≤ 1

c(k,s)

(
n
k−2
)

and for each i ∈ [m] Gi is (k,s)-homogeneous with
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intersection pattern Ji that has rank k−1 and is of type 1. Let F ′ = G1∪
. . .∪Gm. Let H be the (k,s)-kernel digraph of F ′ and H ′ the underlying
undirected simple graph of H.

Claim 1. H ′ has circumference at most 2t.

Proof of Claim 1. For contradiction suppose H ′ contains a cycle C of
length at least 2t+1. Recall that in each edge of H ′, at least one endpoint is
marked. If C has length at least 2t+2, then we can find a path of length 2t+1
on C with one of the endpoints being marked. If C has length 2t+1 (which
is odd) then we can find two consecutive vertices on C that are marked,
in which case we can find a path of length 2t both of whose endpoints are
marked.

In the former case, suppose x1x2 . . .x2t+2 is a path of length 2t+1 on C

where x1 is marked. By Lemma 4.2, F contains a copy P of P(k)
2t+1 whose

skeleton is x1x2 . . .x2t+2. Since x1 is marked, deg∗F ′({x1})≥s=k(2t+2). Let
F1, . . . ,Fs be the petals of an s-star in F with kernel {x1}. Since P has fewer
than k(2t+ 1) vertices and F1 \{x1}, . . . ,Fs \{x1} are pairwise disjoint, for
some h ∈ [s], Fh \ {x1} is disjoint from P. We can add Fh to P to form a

copy of P(k)
2t+2, contradicting the assumption that F contains no P(k)

2t+2.
In the latter case, suppose x1x2 . . .x2t+1 is a path of length 2t on C

where both x1 and x2t+1 are marked. By Lemma 4.2, F contains a copy

P of P(k)
2t whose skeleton is x1x2 . . .x2t+1. Using that deg∗F ′(x1) ≥ s and

deg∗F ′(x2t+1)≥s, we can extend P into a copy of P(k)
2t+2, a contradiction.

Since H ′ has circumference at most 2t, by Lemma 4.4 (with c=2t+1), we

have e(H ′)≤ t(n−1). By Lemma 4.2, |F ′|≤ t(n−1)
k−1

(
n−2
k−2
)

= t
(
n−1
k−1
)
. Therefore,

|F|≤ t
(
n−1
k−1
)

+ 1
c(k,s)

(
n
k−2
)
.

Note that if we were to just prove exk(n,P
(k)
2t+1)≤ t

(
n−1
k−1
)

+O(nk−2), it
would have sufficed to just use the Erdős-Gallai theorem on ex(n,P2t+1) to
get e(H ′)≤ tn, from which the bound follows.

To close this section, we observe that following the arguments in [16], by
iteratively removing vertices of degree at most (k−1)(`−1)

(
n−2
k−2
)

one can
prove by induction that the following bound holds for every n:

(1) ex(n,P(k)
` ) ≤ (k − 1)(`− 1)

(
n− 1

k − 1

)
.

Even though this is a weaker bound than Theorem 4.5 for large n, it
holds for every n. We will use this bound in certain estimates in the next
section.
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5. Proof of Theorem 2.4 and the stability of the bounds

In this section, we determine the exact value of exk(n,P
(k)
` ) for large n. For

convenience, we let f(n,k, t) =
(
n−1
k−1
)

+
(
n−2
k−1
)

+ . . .+
(
n−t
k−1
)

and g(n,k, t) =(
n−1
k−1
)
+
(
n−2
k−1
)
+. . .+

(
n−t
k−1
)
+
(
n−t−2
k−2

)
. Here, f(n,k, t) is the number of k-sets in

[n] that meet a fixed set S of t elements of [n] and g(n,k, t) is f(n,k, t) plus
the number of k-sets in [n]\S that contain some fixed set of two elements.

We wish to show that for fixed k,t, where k ≥ 4, exk(n,P
(k)
2t+1) = f(n,k, t)

and exk(n,P
(k)
2t+2) = g(n,k, t). As pointed out in the introduction, the lower

bounds are easy to observe. Note that f(n,k, t) ≥ t
(
n−1
k−1
)
− c1nk−2 and

g(n,k, t) ≥ t
(
n−1
k−1
)
− c2nk−2 for some constants c1, c2 depending on k,t.

Let F ⊆
([n]
k

)
be a family that contains no copy of P(k)

2t+2. We may as-
sume that there exists a constant c3, depending on k and t, such that
|F| ≥ t

(
n−1
k−1
)
− c3nk−2, since otherwise |F| ≤ f(n,k, t) and |F| ≤ g(n,k, t)

already hold. As a key step, we first show that F must already have a struc-
ture very similar to the extremal construction.

Let s=k(2t+2). Let G1, . . . ,Gm,F0 be a canonical partition of F , where
|F0| ≤ 1

c(k,s)

(
n
k−2
)

and for each i∈ [m], Gi is (k,s)-homogeneous with inter-

section pattern Ji that has rank k− 1 and is of type 1. Let F ′ =
⋃m
i=1Gi.

Let H be the (k,s)-kernel digraph of F ′. Let H ′ denote the underlying undi-
rected simple graph of H. Then e(H)≤ 2e(H ′) (since each {u,v} in E(H ′)
corresponds to at most two directed edges between u and v, namely (u,v)
and/or (v,u)). For each x ∈ V (H), let d+(x) denote the out-degree of x
in H. By Claim 1 of Theorem 4.5, H ′ has circumference at most 2t and
so e(H ′) ≤ t(n− 1) < tn. Thus

∑
x∈V (H) d

+(x) = e(H) ≤ 2e(H ′) < 2tn. Let

D=n1−
3/2
k−1 . Define

A = {x ∈ V (H) : d+(x) ≤ D}, B = {x ∈ V (H) : d+(x) > D}.

Let FA denote the set of members F of F ′ whose central element c(F )
lies in A. By our definition of H, we have

|FA| ≤ |A| ·
(

D

k − 1

)
< n ·Dk−1 = nk−

3
2 .

Since
∑

x∈V (H) d
+(x)< 2tn, we have |B|< 2tn/D = 2tn

3/2
k−1 . The subgraph

of H ′ induced by B, denoted by H ′[B], also has circumference at most 2t

and thus e(H ′[B])<t|B|<2t2n
3/2
k−1 . Let FB denote the set of members of F ′
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that contain edges of H ′[B]. We have

|FB| ≤ e(H ′[B])

(
n− 2

k − 2

)
< 2t2nk−2+

3/2
k−1 ≤ 2t2nk−

3
2 .

Let F̃=F ′ \(FA∪FB)=F \(F0∪FA∪FB). By our discussions above,

|F̃ | ≥ t
(
n− 1

k − 1

)
−O

(
nk−

3
2

)
.

By our definition of FA and FB, we have

F̃ = {F ∈ F ′ : c(F ) ∈ B, |F ∩B| = 1}.

Let H̃ denote the subgraph of H consisting of all edges going from B to
A. Suppose B= {x1, . . . ,xp}. For each i∈ [p], let di = d+

H̃
(xi). Based on the

definition of F̃ we have

|F̃ | ≤
p∑
i=1

(
di

k − 1

)
.

Thus,

(2)

p∑
i=1

(
di

k − 1

)
≥ t
(

n

k − 1

)
−O

(
nk−

3
2

)
.

Since di<n we get p≥ t. On the other hand, we have

(3)

p∑
i=1

di = e(H̃) ≤ e(H ′) < tn.

Without loss of generality, we may assume that d1 ≥ d2 ≥ . . . ≥ dp. Let

1≤m≤p. For each j>m, since dj≤dm, we have
( dj
k−1
)
≤ dj
dm

(
dm
k−1
)

and hence∑p
i=1

(
di
k−1
)
≤
∑m

i=1

(
di
k−1
)

+
∑p

i=m+1 di
dm

(
dm
k−1
)
.

Claim 2. We have d1, . . . ,dt≥n−O(n
1
2 ).

Proof of Claim 2. Let y = dt. By (3) and the observation above with
m= t−1, we have

p∑
i=1

(
di

k − 1

)
≤

t−1∑
i=1

(
di

k − 1

)
+

∑p
i=t di
y

(
y

k − 1

)
(4)

≤
t−1∑
i=1

(
di

k − 1

)
+
tn−

∑t−1
i=1 di

y

(
y

k − 1

)
.
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Recall that for i=1, . . . , t−1,y≤di≤n. It is easy to see that the right-hand

side of (4) is at most (t−1)
(
n
k−1
)
+ tn−(t−1)n

y

(
y
k−1
)
. (Indeed, if di<n for some

i≤ t−1, then by increasing di by 1 the net change would be
(
di
k−2
)
− 1
y

(
y
k−1
)

which is nonnegative.) This observation and (2) yield

t

(
n

k − 1

)
−O

(
nk−

3
2

)
≤

p∑
i=1

(
di

k − 1

)

≤ (t− 1)

(
n

k − 1

)
+
tn− (t− 1)n

y

(
y

k − 1

)
.

Rearranging, we get
(
y
k−1
)
n
y ≥
(
n
k−1
)
−O(nk−

3
2 ). A standard calculation yields

y≥n−O(n
1
2 ).

Let us consider again the kernel graph L with threshold s = (2t+ 2)k,
which is a 2-graph whose edges are pairs {u,v} with kernel degree at least s

in F . By Claim 2, each of x1, . . . ,xt has out-degree at least n−O(n
1
2 ) in H̃.

So each of x1, . . . ,xt has degree at least n−O(n
1
2 ) in H ′ ⊆L. So, in L the

number of vertices that are adjacent to all of x1, . . . ,xt is at least n−O(tn
1
2 ),

which is n−O(n
1
2 ). Let S={x1, . . . ,xt} and let W ⊆ [n]−S be the maximum

set of vertices that are adjacent to all of S in L. By our discussion above,
we have

Claim 3. |W |≥n−O(n
1
2 ).

Let

FS = {F ∈
(

[n]

k

)
: F ∩ S 6= ∅}.

We have |FS |=f(n,k, t). Let Z=V \(S∪W ) and n1= |Z|. Define

F1 = {F ∈ F : F ⊆ Z}, D = {F ∈
(

[n]

k

)
: |F ∩ S| = |F ∩ Z| = 1, F /∈ F}.

By Claim 3 we have n1=O(n1/2). By (1) we have

(5) |F1| ≤ k(2t+ 2)

(
n1 − 1

k − 1

)
.

Let z ∈ Z. By the definitions of W and L there exists an x ∈ S such
that xz /∈E(L) and thus deg∗F (x,z)<s. This means that the (k−2)-uniform
family

{F \ {x, z} : {x, z} ⊆ F ∈ F , |F ∩W | = k − 2}
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contain no s pairwise disjoint members, so its size is at most s
( |W |
k−3
)

by

Theorem 1.1. Hence, degD(x,z)≥
( |W |
k−2
)
−s
( |W |
k−3
)

and

(6) |D| ≥ |Z| ×
((
|W |
k − 2

)
− s
(
|W |
k − 3

))
≥ Ω

(
n1 · nk−2

)
.

We are ready to complete the proof of the odd case.

Claim 4. If F contains no copy of P(k)
2t+1, then |F|≤f(n,k, t). Furthermore,

equality holds only if F consists of all the k-sets in [n] that meet S.

Proof of Claim 4. First, we show that every member of F that is disjoint
from S is contained in Z. Suppose otherwise. Then there is a member F
of F that is disjoint from S and intersects W . Let y1 be any element in
F ∩W . Since L has all the edges from S to W and |W | is large, one can
find a path Q=y1x1y2x2 . . .ytxtyt+1 of length 2t in L, where y1, . . . ,yt∈W ,
such that Q∩F = {y1}. Using the fact that for each adjacent pair u,v on

Q, deg∗F ({u,v})≥s=k(2t+2), we can extend F ∪Q into a copy of P(k)
2t+1, a

contradiction.
By the definitions of FS ,F1,D and our discussion above, we have F ⊆

(FS\D)∪F1. By Equations (5) and (6) and the fact that n1=O(n
1
2 ) we have

(7) f(n, k, t)− |F| = |FS | − |F| ≥ |D| − |F1| ≥ Ω(n1 · nk−2).

In particular, we have |F| ≤ f(n,k, t). Furthermore, equality holds only if
|Z|=n1=0 and F=FS .

Now, we prove the even case.

Claim 5. If F contains no copy of P(k)
2t+2 then |F|≤g(n,k, t). Furthermore,

equality holds only if F consists of all the k-sets in [n] that meet S plus all
the k-sets in [n]\S that contain two fixed elements.

Proof of Claim 5. In addition to sets FS ,F1, and D, we define

F2 = {F ∈ F : F ∩ S = ∅, |F ∩W | ≥ 2},
F3 = {F ∈ F : F ∩ S = ∅, |F ∩W | = 1}.

Obviously

(8) F ⊆ (FS \ D) ∪ F1 ∪ F2 ∪ F3.

Next, we obtain upper bounds on |F2| and |F3|.
An r-intersecting family is a family of sets in which every two members

intersect in at least r elements. Erdős-Ko-Rado showed [7] that for fixed k
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and large n the unique largest r-intersecting family in [n] is given by the
family of all k-sets containing a fixed set of r elements (for n>n(k,r)).

We claim that F2 is a 2-intersecting family in [n] \ S. Otherwise, we
can find two members E1 and E2 of F2 such that either |E1 ∩E2| = 0 or
|E1∩E2|=1. In the former case, we can find a path Q of length 2t in L using
edges between S and W that meet E1 and E2 each at a single element. We

can then extend Q∪E1 ∪E2 into a copy of P(k)
2t+2, a contradiction. In the

latter case, suppose E1∩E2 = {y}. Let w be an element in (E2∩W )\{y}.
The element w exists, since |E2∩W |≥2. We can find a path Q of length 2t
in L between S and W that meets E1∪E2 only in w. Then we can extend

E1∪E2∪Q into a copy of P(k)
2t+2, again a contradiction.

We have shown that F2 is a 2-intersecting family in [n]\S. By the Erdős-
Ko-Rado theorem, (for n>nk,t) we have

(9) |F2| ≤
(
n− t− 2

k − 2

)
.

Furthermore, equality in Equation (9) holds only if F2 consists of all k-sets
in [n]\S that meet two fixed elements u,v∈ [n]\S.

Now, consider F3. Let F̂3 ={F \W : F ∈F3}. Then F̂3 is a collection of

(k−1)-sets in Z. For a member C ∈ F̂3, define the multiplicity of C to be

the number of different w∈W such that C∪w∈F3. Let F̂ ′3 denote the set

of members of F̂3 that have multiplicity 1 and F̂ ′′3 the set of members of F̂3

that have multiplicity at least 2. Trivially, |F̂3| ≤
(
n1

k−1
)
. We claim that F̂ ′′3

must form an intersecting family. Otherwise suppose C1,C2 are two disjoint
members of F̂ ′′3 . Since C1,C2 each has multiplicity at least 2, we can find
w1,w2∈W,w1 6=w2, such that E1=C1∪w1∈F3 and E2=C2∪w2∈F3. Now,
we can find a path Q of length 2t in L between w1 and w2 using edges of L
between S and W such that Q intersects E1 only in w1 and E2 only in w2.

Then we can extend Q∪E1∪E2 into a copy of P(k)
2t+2 in F , a contradiction.

Since F̂ ′′3 is an intersecting family in Z, by the Erdős-Ko-Rado theorem,

|F̂ ′′3 | ≤ min

{(
n1 − 1

k − 2

)
,

(
n1
k − 1

)}
≤
(

n1
k − 2

)
.

Therefore

(10) |F3| ≤ |F̂ ′3|+ |W ||F̂ ′′3 | ≤
(

n1
k − 1

)
+ n

(
n1
k − 2

)
≤ O

(
n · nk−21

)
.
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By (8), (5), (6), (9), (10), and the fact that n1=O(n
1
2 ), we have

|F| ≤ |FS | − |D|+ |F1|+ |F2|+ |F3|

≤ f(n, k, t) +

(
n− t− 2

k − 2

)
−Ω

(
n1 · nk−2

)
+O

(
n · nk−21

)
= g(n, k, t)−Ω

(
n1 · nk−2

)
.(11)

In particular, we have
|F| ≤ g(n, k, t).

Furthermore, equality holds only if F consists of all the members of FS plus
all the k-sets in [n] that are disjoint from S and contain some two fixed
elements u,v.

With Claim 4 and Claim 5, we have completed the proof of Theorem 2.4.
In addition, Equations (7) and (11) imply the following stability result on
our bounds.

Theorem 5.1. Let k,t be positive integers, where k≥ 4. Let ε be a small
positive real. There exists a positive real δ and an integer n0 such that

for all integers n ≥ n0 if F ⊆
([n]
k

)
contains no copy of P(k)

2t+2 or P(k)
2t+1 and

|F|≥ (t−δ)
(
n
k−1
)

then there exists a set S of t elements in [n] such that all

except at most ε
(
n
k−1
)

of the members of F intersect S.

To close the section, we briefly remark on how Theorem 2.5 is proved.
For k≥4 and ` odd, Theorem 2.5 is implied by Theorem 2.4. For k≥4 and
` even, the proof is essentially the same except that we replace (9) with a
simpler claim: there is at most one set that is disjoint from S and contained
in W and otherwise |F2| = 1 +O(nk−11 ) (since now we are just forbidding
a loose path, instead of a linear path). For the k= 3 case, the approach is
slightly different. We refer interested readers to [18].

6. Long linear paths vs. blow-ups of complete bipartite graphs

In this section, we describe a related result. First we prove a lemma. In our
application of the lemma, we will choose m,n so that m=o(n).

Lemma 6.1. Let b,`,q, t be positive integers, where b≥
(
`
t+1

)
·q+`. Let G be

a bipartite graph with a bipartition (X,Y ) where |X|=m, |Y |=n. Suppose
e(G)≥bm+ tn. Then G contains either a copy of P` or a copy of Kt+1,q.



EXACT SOLUTION OF THE HYPERGRAPH TURÁN PROBLEM 317

Proof. We iteratively remove any vertex in X whose degree becomes less
than b and any vertex in Y whose degree becomes at most t. We continue the
process until no more vertex (from either X or Y ) can be removed. Clearly
fewer than bm+ tn edges are removed in the process. So the remaining
subgraph G′ is non-empty. By design, each vertex on G′ in X has degree
at least b and each vertex of G′ in Y has degree at least t+ 1. Let Q be a
longest path in G′. If Q has length at least ` then G contains P` and we are
done. So we may assume that Q has length at most `−1.

Let v be an endpoint of Q and u its unique neighbor on Q. Since Q
cannot be extended, we have dG′(v)≤ `− 1, which implies that v ∈ Y and

hence, u∈X. Since dG′(u)≥b≥
(
`
t+1

)
·q+`, u has at least

(
`
t+1

)
·q neighbors

in G′ that lie outside Q. None of them has a neighbor outside Q or else we
get a path longer than Q, a contradiction. But each of them has at least t+1
neighbors in G′ (all of which must lie on Q). By the pigeonhole principle,
some q of them are adjacent to the same set of t+1 vertices on Q. This gives
us a copy of Kt+1,q in G′⊆G.

Theorem 6.2. Let k,`, t,q be positive integers where k ≥ 4. Let n be a
sufficiently large positive integer depending on k,`. There exists a constant

C depending on k,`, t,q such that every family F⊆
([n]
k

)
with |F|≥ t

(
n
k−1
)

+

Cnk−2+
2

k−1 contains either a copy of P(k)
` or a copy of [Kt+1,q]

(k).

Proof. The set up of the proof will be similar to that in Section 5. Let s=

max{k`,kq(t+1)}. We may assume that F contains no copy of P(k)
` and argue

that F must contain [Kt+1,q]
(k). Let G1, . . . ,Gm,F0 be a canonical partition

of F , where for each i ∈ [m], Gi is (k,s)-homogeneous with intersection
pattern Ji that has rank k−1 and is of type 1 and |F0| ≤ 1

c(k,s)

(
n
k−2
)
. Let

F ′ =
⋃m
i=1Gi. Let H be the (k,s)-homogeneous graph of F ′ and H ′ the

underlying undirected simple graph of H. Since F ′ doesn’t contain P(k)
` ,

by Claim 1 of Lemma 4.4, H ′ has circumference less than ` and hence,

e(H ′)<`n and e(H)≤2`n. Therefore,
∑

x∈V (H) d
+(x)≤2`n. Let D=n

k−3
k−1 .

Define

A = {x ∈ V (H) : d+(x) ≤ D}

B = {x ∈ V (H) : d+(x) > D}.

Let FA denote the set of members F of F ′ whose central element c(F )
lies in A. We have

|FA| ≤ |A| ·
(

D

k − 1

)
< n ·Dk−1 = nk−2.
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Since
∑

x∈V (H) d
+(x)< 2`n, we have |B|< 2`n/D= 2`n

2
k−1 . The subgraph

of H ′ induced by B, denoted by H ′[B], also has circumference at most 2`

and thus e(H ′[B])< `|B|< 2`2n
2

k−1 . Let FB denote the set of members of
F ′ that contain edges of H ′[B]. We have

|FB| ≤ e(H ′[B])

(
n− 2

k − 2

)
< 2`2nk−2+

2
k−1 .

Let F̃=F ′\(FA∪FB)=F\(F0∪FA∪FB). By our discussions above, for
large enough C we have

(12) |F̃ | ≥ t
(
n− 1

k − 1

)
+
C

2
nk−2+

2
k−1 .

By our definition of FA and FB, we have

F̃ = {F ∈ F ′ : c(F ) ∈ B, |F ∩B| = 1}.

Let H̃ denote the subgraph of H consisting of all edges going from B to A.
Note that H̃ contains no multiple edges. We will ignore the directions on the
edges of H̃ and treat it as an undirected bipartite graph. Let b=

(
`
t+1

)
·q+`.

By Equation (12) and the proof of Lemma 4.3, we have

E(H̃) > tn+ Cn
2

k−1 ≥ t|A|+ b|B|,

By Lemma 6.1, H̃ contains either a copy of P` or a copy of Kt+1,q. Thus,

H⊇P` or H⊇Kt+1,q. By Lemma 4.2, F contains either P(k)
` or [Kt+1,q]

(k).

Theorem 6.2 yields

Corollary 6.3. Let k,`, t,q be positive integers where k≥4. We have

exk

(
n, {P(k)

` , [Kt+1,q]
(k)}
)
≤ t
(
n− 1

k − 1

)
+O

(
nk−2+

2
k−1

)
.

If we set `=2t+2 and q= t+2, then since Kt+1,t+2⊇P2t+2 Corollary 6.3
yields

Corollary 6.4. Let k,t be positive integers where k ≥ 4. For sufficiently
large n we have

exk

(
n,P(k)

2t+1

)
≤ exk

(
n,P(k)

2t+2

)
≤ t
(
n− 1

k − 1

)
+O

(
nk−2+

2
k−1

)
.

This is almost as good as the bound in Theorem 4.5. However, Corollary 6.3
is a more general result, since ` and q can be an arbitrary constants inde-
pendent of t. So with essentially the same bound, we get either the blow-up
of a complete bipartite graph with t+1 vertices on one side or the blow-up
of an arbitrarily long path.
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7. Remarks and Problems

7.1. Triple systems

Theorem 2.4 (for linear paths) holds for k≥ 4. Our method does not quite
work for the k=3 case. We conjecture that a similar result holds for k=3.
On the other hand, as remarked at the end of Section 5, Theorem 2.5 (for
loose paths) does hold for the k = 3 case using the approach given in this
paper.

7.2. Hamilton paths and cycles

Since the paper by Katona and Kierstead [19] there is a renewed interest
concerning paths and (Hamilton) cycles in uniform hypergraphs. Most of
these are Dirac type results (large minimum degree implies the existence of
the desired substructure) like in Kühn and Osthus [23], Rödl, Ruciński, and
Szemerédi [28] or in Dorbec, Gravier, and Sárközy [4].

7.3. Long paths

As the value of c(k,s) in Lemma 3.1 is double exponentially small in k and
s one can see that our exact results hold for

k` = O (log log n) .

It would be interesting to close the gap, especially we conjecture that our
result holds for much larger `, maybe till k` is as large as O(n).

7.4. Linear trees

A family of sets F1, . . . ,F` is called a linear tree, if Fi meets ∪j<iFj in exactly
one vertex for all 1<i≤ `. Any (usual, 2-uniform) tree T can be blown up
in a natural way to a k-uniform linear tree T(k). If the minimum number of
vertices to cover all edges of T is τ , then exk(n,T(k))≥ (τ −1+o(1))

(
n−1
k−1
)
.

But one can make a better lower bound. Define

σ(T) := min{|A|+ e(T \A) : A ⊂ V (T) independent}.

We have τ≤σ≤|V1|≤|V2|, where V1∪V2=V is the unique two-coloring of T.
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Define

F (k)
0 (n, s) := {F ∈

(
[n]

k

)
: |F ∩ {1, 2, . . . , s}| = 1}.

In case of s<σ this hypergraph does not contain T(k).

Theorem 7.1. [14] Let k≥3. Let T be a tree. Let σ=σ(T). Then

(σ − 1)

(
n− σ + 1

k − 1

)
≤ ex

(
n,T(k)

)
≤ (σ − 1 + o(1))

(
n− 1

k − 1

)
.

It would be interesting to find asymptotics for the Turán numbers of other
linear trees.

7.5. Kernel graphs and k-blow-ups

The Kernel graph approach we developed in this paper can potentially
be very useful in attacking other hypergraph Turán problems, particularly
the ones concerning k-blow-ups of other graphs besides paths. Some re-
lated notions of expanded graphs were investigated in earlier papers such
as in [24], [26], and [29]. The use of appropriately defined auxiliary graphs
may ultimately provide a useful approach for extending extremal results on
graphs to hypergraphs.

7.6. The Erdős–Sós and the Kalai conjecture

A system of k-sets T := {E1,E2, . . . ,Eq} is called a tight tree if for every
2≤ i≤q we have |Ei \∪j<iEj |=1, and there exists an α=α(i)<i such that
|Eα∩Ei|= k−1. The case k = 2 corresponds to the usual trees in graphs.
Let T be a k-tree on v vertices, and let exk(n,T) denote the maximum size
of a k-family on n elements without T. Consider a P (n,v−1,k−1) packing
P1, . . . , Pm on the vertex set [n] (i.e., |Pi|= v−1 and |Pi∩Pj |< k−1 for
1≤ i<j≤m) and replace each Pi by a complete k-graph. We obtain a T-free
hypergraph. Then Rödl’s [27] theorem on almost optimal packings gives

exk (n,T) ≥ (1− o(1))

(
n
k−1
)(

v−1
k−1
) × (v − 1

k

)
= (1− o(1))

v − k
k

(
n

k − 1

)
.
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Conjecture 7.2. (Erdős and Sós for graphs, Kalai 1984 for all k, see in [10])

exk (n,T) ≤ v − k
k

(
n

k − 1

)
.

The Erdős–Sós conjecture has been recently proved by a monumental
work of Ajtai, Komlós, Simonovits, and Szemerédi [1], for v≥v0.

The Kalai conjecture has been proved for star-shaped trees in [10], i.e.,
whenever T contains a central edge which intersects all other edges in k−1
vertices. For k=2 these are the diameter 3 trees, ‘brooms’.
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[3] M. Deza, P. Erdős and P. Frankl: Intersection properties of systems of finite

sets, Proc. London Math. Soc. (3) 36 (1978), 369–384.
[4] Dorbec, P., S. Gravier and G. Sárközy: Monochromatic Hamiltonian t-tight
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