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An r-uniform hypergraph is called an r-graph. A hypergraph is linear if every two edges intersect
in at most one vertex. Given a linear r-graph H and a positive integer n, the linear Turán number
exL(n,H) is the maximum number of edges in a linear r-graph G that does not contain H as a
subgraph. For each � � 3, let Cr

� denote the r-uniform linear cycle of length �, which is an r-graph
with edges e1, . . . ,e� such that, for all i ∈ [�− 1], |ei ∩ ei+1| = 1, |e� ∩ e1| = 1 and ei ∩ e j = /0 for
all other pairs {i, j}, i �= j. For all r � 3 and � � 3, we show that there exists a positive constant
c = cr,�, depending only r and �, such that exL(n,Cr

�) � cn1+1/��/2�. This answers a question of
Kostochka, Mubayi and Verstraëte [30]. For even �, our result extends the result of Bondy and
Simonovits [7] on the Turán numbers of even cycles to linear hypergraphs.

Using our results on linear Turán numbers, we also obtain bounds on the cycle-complete
hypergraph Ramsey numbers. We show that there are positive constants a = am,r and b = bm,r ,
depending only on m and r, such that

R(Cr
2m,Kr

t ) � a
( t

ln t

)m/(m−1)
and R(Cr

2m+1,K
r
t ) � btm/(m−1).
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1. Introduction

We use standard notation and terminology. Notation and terminology that are specific to this
paper are given in Section 2. A hypergraph H is linear if every pair of vertices in H is contained
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in at most one edge. Given a family H of r-graphs (that is, r-uniform hypergraphs), an r-
graph G is said to be H-free if it does not contain any member of H as a subgraph, and the
Turán number of H, denoted by ex(n,H), is the maximum number of edges in an n-vertex H-
free r-graph. In this paper, we consider the following variant of the Turán problem in linear
hypergraphs.

Let H be a family of linear r-graphs. For each positive integer n, we define the linear Turán
number of H, denoted by exL(n,H), to be the maximum number of edges in an n-vertex H-free
linear r-graph. Note that in ex(n,H) the maximum is taken over all H-free r-graphs on n vertices
whereas in exL(n,H) the maximum is taken over all H-free linear r-graphs on n vertices. So, for
the same family H one can expect ex(n,H) and exL(n,H) to be very different. Indeed, if each
member of H contains two disjoint edges, then ex(n,H) �

(n−1
r−1

)
, whereas exL(n,H) � O(n2)

always. When H consists of a single graph H, we write ex(n,H) and exL(n,H) for ex(n,H) and
exL(n,H), respectively. In this paper, we study the linear Turán numbers of so-called r-uniform
linear cycles.

A linear cycle of length � is a hypergraph with edges e1, . . . ,e� such that, for all i ∈ [�− 1],
|ei ∩ ei+1| = 1, |e� ∩ e1| = 1 and ei ∩ e j = /0 for all other pairs {i, j}, i �= j. We denote an r-
uniform linear cycle of length � by Cr

� . In particular, 2-uniform linear cycles are just the usual
graph cycles. The Turán problem for 2-uniform cycles has been much studied. For odd cycles, the
answer is �n/2� ·�n/2	 for all sufficiently large n, with equality achieved by a balanced complete
bipartite graph on n vertices. The problem for even cycles remains unresolved except for C4 [18].
A general upper bound of ex(n,C2m) � γmn1+1/m for some positive constant γm was asserted
by Erdős (unpublished). The first published proof was obtained by Bondy and Simonovits [7],
who showed that ex(n,C2m) � 20mn1+1/m for all sufficiently large n. This was improved by
Verstraëte [40] to 8(m− 1)n1+1/m and by Pikhurko [35] to (m− 1)n1+1/m. Very recently, Bukh
and Jiang [9] improved the upper bound to 80

√
m logm ·n1+1/m +10m2n for all n � (2m)8m2

. For
m = 2,3,5, constructions of C2m-free n-vertex graphs with Ω(n1+1/m) edges are known (see [22]).
Thus ex(n,C2m) = Θ(n1+1/m), for m ∈ {2,3,5}. However, the order of magnitude of ex(n,C2m)
remains undetermined for all m �∈ {2,3,5}.

The Turán problem for hypergraph cycles has also been explored. There are several different
notions of hypergraph cycles. A hypergraph H is a Berge cycle of length � if it consists of �

distinct edges e1, . . . ,e� such that there exists a list of distinct vertices x1, . . . ,x� satisfying that,
for all i ∈ [�− 1], ei contains both xi and xi+1 and e� contains both x� and x1. Note that a 2-
uniform Berge cycle of length � is just the usual graph cycle of length �. For r � 3, however,
r-uniform Berge cycles are not unique as there are no constraints on how the ei intersect outside
{x1, . . . ,x�}. Let Br

� denote the family of r-graphs that are Berge cycles of length �. Győri and
Lemons [24, 23] showed that for all r � 3, � � 3, there exists a positive constant βr,�, depending

on r and � such that ex(n,Br
�) � βr,�n

1+1/��/2�. Another notion of hypergraph cycles that has been
actively investigated recently is that of a linear cycle defined earlier. For fixed r, �, the r-uniform
linear cycle Cr

� of length � is unique up to isomorphism. We can also describe an r-uniform
linear cycle using the notion of expansions. Given a 2-graph G, the r-expansion G(r) is the r-
graph obtained from G by enlarging each edge of G into an r-set using r−2 new vertices, called
expansion vertices, such that for different edges of G we use disjoint sets of expansion vertices.
So an r-uniform linear cycle of length � is precisely the r-expansion of a cycle of length �. Füredi
and Jiang [19] determined for all r � 5, � � 3 and sufficiently large n the exact value of ex(n,Cr

�),
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showing that

ex(n,Cr
2m+1) =

(
n
r

)
−

(
n−m

r

)
, ex(n,Cr

2m) =
(

n
r

)
−

(
n−m+1

r

)
+

(
n−m−1

2

)
,

respectively. Kostochka, Mubayi and Verstraëte [31] have subsequently showed that the same
holds for all r � 3, � � 3 and sufficiently large n. In this paper, we study the linear Turán number
of Cr

� .
Determining exL(n,C3

3) is equivalent to the famous (6,3)-problem, which is a special case
of an old and general extremal problem of Brown, Erdős and Sós [8]. The Brown–Erdős–
Sós problem asks to determine the function fr(n,v,e), which denotes the maximum number of
edges in an r-graph on n vertices in which no v vertices span e or more edges. The problem of
estimating f3(n,6,3) is known as the (6,3)-problem. It is easy to see that exL(n,C3

3) = f3(n,6,3)
when n is sufficiently large. Additionally, as is well documented in the literature, f3(n,6,3) is
closely related to the function r3(n), which denotes the largest size of a set of integers in [n]
not containing a 3-term arithmetic progression. Given n, let m = �n/6� and let A be a subset
of size r3(m) that contains no 3-term arithmetic progression. Let X ,Y,Z be disjoint sets with
X = [m],Y = [2m],Z = [3m], respectively. The 3-partite 3-graph

H = {{x,y,z} : x ∈ X ,y ∈ Y,z ∈ Z,∃a ∈ A y = x+a,z = x+2a}

satisfies that no six points span three or more edges and |H| = mr3(m). Hence

f (n,6,3) �
⌊

n
6

⌋
· r3

(⌊
n
6

⌋)
.

As one of the well-known applications of the regularity lemma, Ruzsa and Szemerédi [38]
showed that f3(n,6,3) = o(n2). This immediately implies Roth’s theorem [36] that r3(n) = o(n).
Since Roth’s theorem [36] was established, the problem of estimating r3(n) has drawn much
interest. The best current bounds are as follows: for some constant c > 0,

n

ec
√

logn
� r3(n) � n

(logn)1−o(1) . (1.1)

Our discussions above yield the following bounds on exL(n,C3
3).

Theorem 1.1. For some constant c > 0,

n2

ec
√

logn
< exL(n,C3

3) = o(n2).

Using so-called 2-fold Sidon sets, Lazebnik and Verstraëte [32] constructed linear 3-graphs
with girth 5 and Ω(n3/2) edges. On the other hand, it is not hard to show that exL(n,C3

4) = O(n3/2).
Hence exL(n,C3

4) = Θ(n3/2). Kostochka, Mubayi and Verstraëte [30] obtained the following
bounds for exL(n,C3

5).

Theorem 1.2 ([30]). There are constants a,b > 0 such that an3/2 < exL(n,C3
5) < bn3/2.
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No lower or upper bounds on exL(n,Cr
�), to our knowledge, have previously appeared in the

literature for � �∈ {3,4,5}. Kostochka, Mubayi and Verstraëte [30] asked if, for all r � 3, � � 3,

exL(n,Cr
�) = O(n1+1/��/2�).

We answer their question in the affirmative in our main theorem below.

Theorem 1.3 (main theorem). For all r, � � 3, there exists a constant c = c(r, �) > 0, depend-
ing on r and �, such that

exL(n,Cr
�) � cn1+1/��/2�.

Another motivation for our study of exL(n,Cr
�) comes from the study of the hypergraph Ram-

sey number R(Cr
� ,K

r
t ) of a linear cycle versus a complete graph. Such a study was initiated by

Kostochka, Mubayi and Verstraëte in [29]. Using Theorem 1.3 and other tools, we obtain non-
trivial upper bounds on R(Cr

� ,K
r
t ). Since our main emphasis in the paper is on the linear Turán

problem of linear cycles, we delay the discussion of the related Ramsey numbers to Section 7.
The rest of the paper is organized as follows. Section 2 contains some notation and termino-

logy. Section 3 contains some lemmas needed for our main theorem. Section 4 contains the proof
of the main theorem for even cycles. Section 5 contains some additional tools needed for the proof
for odd cycles. Section 6 contains the proof of the main theorem for odd cycles (which is much
more involved than for even cycles). Section 7 contains results on cycle-complete hypergraph
Ramsey numbers. Section 8 contains concluding remarks. Our main method has roots in [16]
and [25], but requires a substantial innovation for the odd cycle case. The new ideas used there
may well have applications to other problems.

2. Notation and terminology

2.1. Degrees, neighbourhoods, link graphs
Let G be a hypergraph. Given a set S ⊆V (G), we define the degree of S in G, denoted by dG(S),
to be the number of edges of G that contain S. Given a vertex x ∈V (G), we define the link graph
LG(x) of x in G as

LG(x) = {e\{x} : x ∈ e ∈ G}.

Hence, if G is an r-graph, then LG(x) is an (r−1)-graph. The neighbourhood NG(x) of x in G is
defined as

NG(x) = {u ∈V (G) : dG({u,x}) � 1}.

When the context is clear, we will drop the subscripts in the above definitions.

2.2. r-expansions
Let k,r be integers where r > k � 2. Given a k-graph H, the r-expansion of H, denoted by H(r),
is the r-graph obtained from H enlarging each edge e of H into an r-set through a set Ae of r− k
new vertices, called expansion vertices, such that whenever e �= e′ we have Ae ∩Ae′ = /0. So, for
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instance, the r-expansion of a 2-uniform �-cycle is precisely an r-uniform linear �-cycle. We will
call H the skeleton of H(r).

2.3. Levelled linear trees
Given a 2-uniform tree T rooted at w, for all i � 0, let Li = {x : distT (w,x) = i}. We call Li level
i of T . The height of T is the maximum i for which Li �= /0. For each x ∈V (T ), let Tx denote the
subtree of T under x. Let H = T (r). Let f be a specific mapping of T to H that maps each e ∈ T
to e∪A(e) where A(e) is the set of expansion vertices for e. We call H a levelled linear r-tree
rooted at w and will refer to the Li also as levels of H. We also refer to T as the skeleton of H.
The height of H is defined to be the height of T . If x is a vertex in Li for some i, then the subtree
under x in H, denoted by Hx, is the image under f of Tx in H.

2.4. Proper, rainbow, strongly proper, strongly rainbow edge-colourings
Let c be an edge-colouring of a 2-graph G using natural numbers. We say that c is proper if
c(e) �= c(e′) whenever e and e′ are incident edges in G, and we say that c is rainbow if we have
c(e) �= c(e′) for every two different edges e and e′ in G. Let φ be an edge-colouring of a 2-
graph G using p-subsets of some ground set S. We say that φ is strongly proper if c(e)∩ c(e′) =
/0 whenever e and e′ are incident edges in G. We say that φ is strongly rainbow if we have
c(e)∩ c(e′) = /0 for every two different edges e and e′ in G.

2.5. Default edge-colourings
Let G be an r-graph. The 2-shadow ∂2(G) of G is the 2-graph consisting of all pairs (a,b) that are
contained in some edge of G. If G is linear then each edge in ∂2(G) is contained in a unique edge
of G. We define the default edge-colouring φ of ∂2(G) by letting φ({a,b}) = e\{a,b}, where e
is the unique edge of G containing {a,b}. So φ is a colouring whose colours are (r−2)-sets. If
B ⊆ ∂2(G) then the default edge-colouring of B is defined to be φ restricted to B.

3. Lemmas

In this section we prove some lemmas that will be needed in our main proofs in Sections 4 and 6.
Let H be a hypergraph. A vertex cover of H is a set Q of vertices in H that contains at least
one vertex of each edge of H. A cross-cut of H is a set S of vertices in H that contains exactly
one vertex of each edge of H. A matching in H is a set of pairwise disjoint edges. The size of a
matching is the number of edges in it.

Lemma 3.1. Let H be a k-graph, where k � 2. Let Q be a minimum vertex cover of H. Then H
contains a matching of size at least |Q|/k.

Proof. Let M be a maximum matching in H and let S be the set of vertices contained in edges
of M. If some edge e of H contains no vertex in S then M ∪ e is a larger matching in H than M,
contradicting our choice of M. So S is a vertex cover of H of size k|M|. Since Q is a minimum
vertex cover of H, we have k|M| � |Q|. Thus, |M| � |Q|/k.
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Lemma 3.2. Let H be a k-graph, where k � 2. Let S be a vertex cover of H. Then there exist a
subgraph H ′ ⊆ H and a subset S′ ⊆ S such that |H ′| � (k/2k)|H| and that S′ is a cross-cut of H ′.

Proof. Let S̃ be a random subset of S with each vertex of S chosen independently with probab-
ility 1/2. For each e ∈ H, the probability that exactly one vertex of e∩S is included in S̃ is

|e∩S|
2|e∩S| � k

2k
.

So the expected number of edges e that intersects S̃ at exactly one vertex is at least (k/2k)|H|.
Thus, there exists a subset S̃ of S such that at least (k/2k)|H| edges intersect S̃ at exactly one
vertex. Let H ′ denote the subgraph of H consisting of these edges and S′ = S̃∩V (H ′). The claim
follows.

Lemma 3.3. Let r � 3. Let G be a linear r-graph. Let B ⊆ ∂2(G) satisfy that each edge of G
contains at most one edge of B. Let φ be the default edge-colouring of B. Then φ is strongly
proper.

Proof. Let f1, f2 be two edges in B that share a vertex, say u. Let e1,e2 be the unique edges of
G containing f1, f2 respectively. By our assumption, e1 �= e2. If e1 \ f1 and e2 \ f2 share a vertex
v, then e1,e2 both contain {u,v}, contradicting G being linear. Thus φ({a,b})∩φ({a,c}) = /0.

Lemma 3.4. Let k, �,s be positive integers, where k � 2. Let G be a 2-graph with minimum
degree at least (k + 1)�+ s. Let φ be a strongly proper edge-colouring of G using k-subsets of
some set S. Let x ∈ V (G) and S0 ⊆ S with |S0| � s. Then there exists a path P in G of length �

starting at x such that (i) P is strongly rainbow under φ , and (ii) φ( f )∩S0 = /0 for all f ∈V (P).

Proof. We use induction on �. For the basis step, let � = 1. By our assumption, there are at least
k+ s+1 edges of G incident to x. Since φ is strongly proper, the colours used on these edges are
pairwise disjoint k-sets. Certainly one of them is completely disjoint from S0. Let e be an edge
incident to x with φ(e)∩S0 = /0. The claim holds with P = e. For the induction step, let � > 1. By
the induction hypothesis, there is a path P of length �−1 starting at x such that (i) P is strongly
rainbow under φ , and (ii) φ( f )∩S0 = /0 for all f ∈ P. Let S1 =

⋃
f∈P φ( f ). Then |S1| = k(�−1).

Let y denote the other endpoint of P. There are at least (k + 1)�+ s edges incident to y. More
than k�+ s of these join y to vertices outside P. Since φ is strongly proper, the colours on these
edges are pairwise disjoint k-subsets of S. Since k�+ s > k(�−1)+ s = |S0 ∪S1|, for one of these
edges e, we have φ(e)∩ (S0 ∪S1) = /0. Now, P∪e is a path of length � in G starting at x such that
(i) P∪ e is strongly rainbow under φ , and (ii) φ( f )∩S0 = /0 for all f ∈ P∪ e.

Lemma 3.5. Let G be a graph with average degree d. There exists a subgraph G′ ⊆ G such that
δ (G′) � d/4 and that |G′| � |G|/2.

Proof. Suppose G has n vertices. Iteratively remove a vertex (and its incident edges) whose
degree in the remaining subgraph is less than d/4 until no such vertex exists. Let G′ denote
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the remaining subgraph. In the process, fewer than nd/4 � 1
2 |G| edges have been removed. So

|G′| � |G|/2. In particular, G′ is non-empty. By our rule, we also have δ (G′) � d/4.

Lemma 3.6. Let G be an r-graph with average degree d. Then G contains a subgraph G′ with
δ (G′) � d/r.

Proof. Suppose G has n vertices. Starting with G, whenever some vertex has at most d/r in the
remaining graph, we remove this vertex and all the edges in the remaining graph that contains this
vertex. We repeat this procedure until there is no such vertex left. Let G′ denote the remaining
graph. Clearly, by our procedure at most (n− 1)(d/r) < nd/r = e edges have been removed in
the process. So G′ is non-empty. Also, by our condition, δ (G′) � d/r.

Below we give a version of the Chernoff bound from [34].

Lemma 3.7 (Chernoff bound). Let X be the sum of n independent random variables X1, . . . ,Xn,
where for each i ∈ [n], P(Xi = 1) = p and P(Xi = 0) = 1− p. Then, for any real 0 � α � 1,

P(|X −np| > αnp) < 2e−(α2/3)np.

Recall that given a hypergraph G and a vertex x, the link graph LG(x) of x in G is the graph
{e\{x},e ∈ G,x ∈ e}. Given a set S of vertices in G, the subgraph G[S] of G induced by S is the
graph with vertex set S and edge set {e : e ∈ G,e ⊆ S}.

Proposition 3.8. Let c > 0 be a fixed real. Let m,r, t � 2 be fixed positive integers. There exists
a positive integer n0 depending on c,m,r, t such that for all n � n0 the following holds. Let G be
a linear r-graph with δ (G) � cn1/m. Then there exists a partition of V (G) into t sets S1, . . . ,St

such that, for each u ∈V (G) and each i ∈ [t],

|LG(u)∩G[Si]| �
c

2tr−1
n1/m.

Proof. Independently and uniformly at random, assign each vertex in G a colour from [t]. For
each i ∈ [t] let Si be the set of vertices receiving colour i. For each u ∈V (G), i ∈ [t], let Yu,i be the
random variable that counts the number of edges in LG(u) completely contained in Si. For fixed
u, i, clearly each edge of LG(u) has probability 1/tr−1 of being contained in Si. Since G is a linear
r-graph, the edges of LG(u) are pairwise vertex-disjoint. So Yu,i is the sum of d(u) independent
random variables, each of which equals 1 with probability p = 1/tr−1 and 0 with probability
1− p. By Lemma 3.7,

P

(
Yu,i <

1
2

d(u)
tr−1

)
< P

(∣∣∣∣Yu,i −
d(u)
tr−1

∣∣∣∣ >
1
2

d(u)
tr−1

)
< 2exp

(
− 1

12
d(u)
tr−1

)
.

Since d(u) � cn1/m, this yields

P

(
Yu,i <

cn1/m

2tr−1

)
< 2exp

(
− cn1/m

12tr−1

)
.
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Thus,

P

(
∃u ∈V (G),∃i ∈ [t],Yu,i <

cn1/m

2tr−1

)
< 2tn · exp

(
− cn1/m

12tr−1

)
< 1,

for all n � n0, where n0 depends only on c, m, r and t. Thus there exists a particular colouring for
which

Yu,i � cn1/m

2mr−1
for all u ∈V (G), i ∈ [t].

Let S1, . . . ,St be the colour classes of this colouring. Then (S1, . . . ,St) forms a desired partition.

4. Linear Turán numbers of r-uniform even cycles

The following lemma provides the main ingredient of our proof of Theorem 1.3 for even cycles.

Lemma 4.1. Let r,m,h be fixed integers, where r � 3,m � 2,0 � h � m−1. For each positive
integer i, let ci = 1/((rm2r+2)i). Let G be a linear r-graph such that Cr

2m �⊆ G. Let H be an r-
uniform levelled linear tree of height h rooted at w that is contained in G. Let L0, . . . ,Lh denote
the levels of H. Let E be a set of edges in G each of which contains one vertex in Lh and r− 1
vertices outside H. Suppose that |E|� (m2r+3)h|Lh|. Then there exists a subset E∗ of E such that
|E∗|� ch|E| and that E∗ \Lh is a matching. In particular, H∪E∗ is a levelled linear tree of height
h+1 rooted at w, with Lh+1 consisting of one vertex of e\Lh for each e ∈ E∗.

Proof. We use induction on h. For the basis step let h = 0, and let H consist of a single vertex
w. By our assumption, E is a set of edges containing w. Since G is linear, every two of these
edges intersect only at w. Let E∗ = E. It is easy to see that the claim holds.

For the induction step, let h � 1. Suppose T is a 2-uniform tree of height h rooted at w with
levels L0,L1, . . . ,Lh and H = T (r) ⊆ G. By our assumption, each edge in E contains one vertex in
Lh and r−1 vertices outside H. Let F = {e\Lh : e ∈ E}. Then F is an (r−1)-graph. Since G is
linear and r � 3, the mapping σ : E → F that maps e to e\L1 is a bijection. So |F | = |E|. Let Q
be a minimum vertex cover of F . By Lemma 3.2, there exist F ′ ⊆ F and Q′ ⊆ Q such that

|F ′| � r−1
2r−1

|F | = r−1
2r−1

|E|

and Q′ is a cross-cut of F ′. Let E ′ be the set of edges of E corresponding to edges of F ′ (via
σ−1). Then |E ′| = |F ′| and each edge of E ′ contains exactly one vertex of Lh, one vertex of Q′,
and r−2 vertices outside V (H)∪Q′. Let

B = {e∩ (Lh ∪Q′) : e ∈ E ′}.

By definition, B is a bipartite 2-graph with a bipartition (X ,Q′) where X = V (B)∩ Lh. The
mapping f : e → e∩ (Lh ∪Q′) is a bijection from E ′ to B ⊆ ∂2(G). So

|B| = |E ′| = |F ′| � r−1
2r−1

|E|.
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Clearly, no edge of G contains more than one edge of B, and in the default edge-colouring φ of
B the colours are disjoint from V (B)∪V (H).

Let x1, . . . ,xp denote the children of w in T . For each i ∈ [p], let Ai =V (Txi
)∩Lh. So Ai consists

of vertices in Lh that are descendants of xi (in T ). Note that A1, . . . ,Ap are pairwise disjoint. Let

Q+ = {x ∈ Q′ : NB(x)∩Ai �= /0 for at least 2rm different Ai},
Q− = {x ∈ Q′ : NB(x)∩Ai �= /0 for fewer than 2rm different Ai}.

Then Q+ and Q− partition Q′. Let B+ denote the subgraph of B induced by X ∪Q+ and B− the
subgraph of B induced by X ∪Q−.

Claim 4.2. B+ has average degree less than 4rm.

Proof of Claim 4.2. Suppose for contradiction that B+ has average degree at least 4rm. Then
B+ contains a subgraph B∗ with minimum degree at least 2rm. Let φ be the default edge-
colouring of B∗. By Lemma 3.3, φ is strongly proper. Let x be any vertex in V (B∗)∩Q+. By
Lemma 3.4, B∗ contains a path P of length 2m− 2h− 2 starting at x that is strongly rainbow
under φ . Since B∗ is bipartite and 2m− 2h− 2 is even, the other endpoint y of P lies in Q+.
Now the r-graph P+ with edge set {e∪φ(e) : e ∈ P} is a linear path of length 2m−2h−2 with
endpoints x and y using edges of E ′ ⊆ E. By the definition of E, V (P+)∩V (H) ⊆ Lh.

Since x,y ∈ Q+, each sends edges in E ′ to at least 2rm different A�. We can find i �= j and
x′ ∈ Ai,y

′ ∈ Aj and an edge ex ∈ E ′ containing x,x′ and an edge ey ∈ E ′ containing y,y′ such
that P∗ = ex ∪P+ ∪ ey is a linear path of length 2m−2h with endpoints x′,y′. Indeed, since G is
linear, the link of x in E ′ is a matching of size at least 2rm, so we can find x′ and ex easily to
extend P+. Suppose x′ ∈ Ai. We can find y′ and ey similarly with the additional requirement that
y′ ∈ Aj for some j �= i. Now, let Px be the unique (x′,w)-path and Py the unique (y′,w)-path in
H, respectively. Since x′,y′ lie in different A�, Px,Py are two internally disjoint paths of length h,
sharing only w. Now P∗∪P1∪P2 is a linear cycle of length 2m in G, contradicting our assumption
about G.

Claim 4.3.

|Q′| �
ch−1|B|

8rm
.

Proof of Claim 4.3. By Claim 4.2, |Q+| � |B+|/(4rm). If |B+| � 1
2 |B| then this yields

|Q′| � |Q+| � |B|
8rm

�
ch−1|B|

8rm

and we are done. Hence, we may assume that

|B−| � |B|
2

� (r−1)|E|
2r

.

For each vertex x ∈ B−, by our assumption, NB(x)∩Ai �= /0 for fewer than 2rm different i. Among
the Ai that receive edges of B− from x, let Ai(x) be one that receives the most edges of B from x.
We now form a subgraph B−

1 of B− by including for each x ∈ Q− the edges from x to Ai(x). By



Linear Turán Numbers of Linear Cycles and Cycle-Complete Ramsey Numbers 367

our procedure,

|B−
1 | �

|B−|
2rm

� (r−1)|E|
rm2r+1

� r−1
rm2r+1

(m2r+3)h|Lh| � 2(m2r+3)h−1|Lh|. (4.1)

Recall that A1, . . . ,Ap are disjoint subsets of Lh. In B−
1 , each vertex in Q− sends edges to at

most one Ai. For each Ai, call Ai light if the number of edges of B−
1 incident to Ai is less than

(m2r+3)h−1|Ai|; otherwise call Ai heavy. Clearly the total number of edges of B− that are incident
to light Ai is at most (m2r+3)h−1|Lh|, which is at most 1

2 |B−
1 | by (4.1). So the number of edges of

B−
1 that are incident to heavy Ai is at least 1

2 |B−
1 |.

Without loss of generality, suppose that A1, . . . ,At are the heavy Ai. For each i ∈ [t], let Qi

be the set of vertices in Q− that are joined by edges of B−
1 to Ai. By our definition, Q1, . . . ,Qt

are pairwise disjoint. For each i ∈ [t], let Ei be the set of edges of E ′ corresponding to the set
of edges of B−

1 that are incident to Ai. By our assumption, |Ei| � (m2r+3)h−1|Ai|. Recall that
x1, . . . ,xp denote the children of w in T . For each i ∈ [t], Hxi

is a linear tree of height h−1 rooted
at xi whose (h− 1)th level is Ai. Each edge of Ei contains one vertex of Ai and r − 1 vertices
outside Hxi

and |Ei|� (m2r+3)h−1|Ai|. By the induction hypothesis, there exists E ′
i ⊆ Ei such that

|E ′
i | � ch−1|Ei| and E ′

i \Ai is a matching. In particular, this yields |Qi| � ch−1|Ei|. Hence, using
(4.1), we have

|Q′| � |Q−| �
t

∑
i=1

|Qi| � ch−1

t

∑
i=1

|Ei| � ch−1

|B−
1 |

2
�

ch−1|B−|
4rm

�
ch−1|B|

8rm
.

By Claim 4.3, we have

|Q| � |Q′| �
ch−1|B|

8rm
�

(r−1)ch−1|E|
2r−18rm

=
(r−1)ch−1|E|

rm2r+2
.

By Lemma 3.1, F contains a matching F∗ of size at least

ch−1|E|
rm2r+2

= ch|E|.

Let E∗ be the set of edges of E corresponding to F∗. Then |E∗| = |F∗| and H ∪E∗ is a levelled
linear tree of height h+1 rooted at w with Lh+1 consisting of one vertex of each edges in F∗.

Theorem 4.4. Let m,r be positive integers where m � 2 and r � 3. There exist a positive real
cm,r and a positive integer n1 such that for all n � n1 we have

exL(n,Cr
2m) � cm,rn

1+1/m.

Proof. Let β = (rm2r+2)m and cm,r = 2mr−1β . Choose n1 such that cm,rn1/m
1

� n0, where n0 is

given in Lemma 3.8. Let G be an n-vertex linear r-graph with at least cm,rn1+1/m edges, where
n � n1. We prove that G contains a copy of Cr

2m. By our assumption, G has average degree
at least rcm,rn1/m. By Lemma 3.6, there exists a subgraph G′ of G with δ (G′) � cm,rn1/m. Let
N = n(G′). Then N � cm,rn1/m � n0 and δ (G′) � cm,rN1/m. By Lemma 3.8 (with t = m), there
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exists a partition of V (G′) into S1, . . . ,Sm such that for each u ∈V (G′) and i ∈ [m], we have

|LG′(u)∩G′[Si]| �
cm,r

2mr−1
N1/m = βN1/m.

Let w be any vertex in S1. Let L0 = {w}. Inside G′, we will construct a levelled linear tree H of
height m rooted at w with levels L1, . . . ,Lm such that for each i∈ [m], Li ⊆ Si and |Li|� N1/m|Li−1|.
This will imply that |Lm| � N, a contradiction, which will then complete our proof.

We construct H as follows. Let E1 be the set of edges of G′ containing w that correspond to
LG′(w)∩G′[S1]. By our assumption, |E1| � βN1/m � N1/m, by our definition of β . Also, each
edge of E1 consists of w and r − 1 vertices in S1. Let L1 consist of a vertex from e \ {w} for
each e ∈ E1. In general, suppose we have grown i levels L1, . . . ,Li, where i � m− 1, such that
for each j ∈ [i], Lj ⊆ S j and |Lj|/|Lj−1| � N1/m. Let Ei denote the set of edges in G′ that contain
one vertex in Li and r − 1 vertices in Si+1. By our assumption about the partition (S1, . . . ,Sm),
|Ei| � βN1/m|Li| � (m2r+3)m|Li|, noting that β � (m2r+3)m. Since Cr

2m �⊆ G′, by Lemma 4.1,
there exists a subset E∗

i ⊆ Ei such that |E∗
i | � (rm2r+2)−i|Ei|, for which E∗

i \Li is a matching.
Let Hi+1 = Hi ∪E∗

i and let Li+1 consist of one vertex from e \Li for each e ∈ E∗
i . Then Hi+1 is

a levelled linear tree rooted at w of height i + 1 whose (i + 1)th level Li+1 is contained in Si+1.
Further,

|Li+1| = |E∗
i | �

1
(rm2r+2)i

|Ei| �
β

(rm2r+2)i
N1/m|Li| � N1/m|Li|.

We continue this for m steps to obtain a levelled linear tree H ⊆ G′ with |Lm| � N, which yields
the desired contradiction.

5. Levelled linear quasi-trees

5.1. Levelled linear quasi-trees
To study the odd cycle case, we generalize the notion of levelled linear trees as follows. Let r � 3.
A linear r-graph H is called a levelled linear quasi-tree of height h rooted at w if it is the union
of a sequence of r-graphs H0,H1, . . . ,Hh−1 satisfying the following.

(i) Each Hi is an r-partite r-graph with no isolated vertex and has parts Li,L
′
i,J

(1)
i

, . . . ,J(r−2)
i

such that with Bi = {e∩ (Li ∪L′
i) : e ∈ Hi}, Hi is the r-expansion of Bi.

(ii) For each i = 0,1, . . . ,h−1, J(r−2)
i

= Li+1.
(iii) For each i = 0,1, . . . ,h−2, V (Hi)∩V (Hi+1) = Li+1 and V (Hi)∩V (Hj) = /0 whenever |i− j|>

1.
(iv) L0 = {w}. For each i = 0, . . . ,h, we call Li the ith main level of H. For each i = 0, . . . ,h−1,

we call L′
i the ith companion level of H.

For each i ∈ {0,1, . . . ,h− 1}, we call Hi the ith segment of H and Bi the defining bipartite
graph of Hi. For each edge f of Bi the unique vertex in Li+1 that corresponds to f is said to be
a representative of e. Given x ∈ V (Bi) and y ∈ Li+1, we say that y is a child of x and that x is a
parent of y if y is a representative of an edge of Bi incident to x. Observe that every two different
vertices u,v in the same main level Li or in the same companion level L′

i, where i � h−1, must
have disjoint sets of children in Li+1 since the sets of edges of Bi incident to u and v, respectively,
are disjoint.
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Given a vertex x ∈ Li ∪ L′
i, where i � h− 1, define the down tree Tx, rooted at x, to be the

2-graph obtained by including all the edges between A0 = {x} and its set A1 of children in Li+1,
and then including all the edges joining vertices in A1 and the set A2 of their children in Li+2, etc.,
until we run out of levels. It is easy to see that Tx is a tree rooted at x of height at most h− i. Also,
if x,y ∈ Li or x,y ∈ L′

i, x �= y, then the earlier observation about disjoint sets of children implies
that V (Tx)∩V (Ty) = /0. Furthermore, in Tw, where w is the root of H, for each i = 0, . . . ,h, the ith
distance class from w is precisely all of Li.

Given a vertex x ∈ Li ∪L′
i, where i � h− 1, define the down graph Hx, rooted at x, to be the

subgraph of H obtained by replacing each edge f of Tx with the corresponding edge e of H that
contains f . The following lemma follows immediately from the definitions and our discussions
above.

Lemma 5.1. Let H be an r-uniform levelled linear quasi-tree of height h rooted at w with
segments H1, . . . ,Hh−1. Let x ∈ Li ∪L′

i, where 0 � i � h− 1. Then Hx is a levelled quasi-tree of
height at most h− i rooted at x. Also, for all a,b ∈ Li ∪L′

i, a �= b, if either a,b ∈ Li or a,b ∈ L′
i,

then (V (Ha)∩V (Hb))∩Lj = /0 for all j � i+1.

In a linear r-graph, a path P is just the r-expansion of a 2-uniform path. An endpoint of P is
a vertex in the first or last edge that has degree 1 in P. An (x,y)-path is a path where x is an
endpoint in the first edge of P and y is an endpoint in the last edge of P (or vice versa).

Lemma 5.2. Let H be an r-uniform levelled linear quasi-tree of height h rooted at w with seg-
ments H1, . . . ,Hh−1, where L0,L1, . . . ,Lh and L′

0, . . . ,L
′
h−1 denote the main levels and companion

levels, respectively. Let x,y ∈ Li,x �= y, where 1 � i � h−1. Then there exists an (x,y)-path P of
even length at most 2i that is contained in

⋃i−1
j=0 Hj and intersects Li only at x

and y.

Proof. We use induction on i. The claim is trivial when i = 1. So assume i � 2. Let e be the
unique edge of Hi that contains x and f the unique edge of Hi that contains y. If e and f share
a vertex, then e∪ f is an (x,y)-path of length 2. Otherwise e∩ f = /0. Let {x′} = e∩Li−1 and
{y′} = f ∩Li−1. By the induction hypothesis, there is an (x′,y′)-path P of even length at most
2(i− 1) that is contained in

⋃i−2
j=0 Hj and intersects Li−1 only at x′ and y′. Now, P∪ {e, f} is

an (x,y)-path of even length at most 2i that is contained in
⋃i−1

j=0 Hj and intersects Li only at x
and y.

Given a levelled linear quasi-tree H rooted at w, a monotone path is a path in H that hits each
main level at most once. It is easy to see that for every vertex x in the ith main level, there is a
unique monotone (w,x)-path, and that path has length i. For every vertex y in the ith companion
level, there exists at least one monotone (w,y)-path and such a path has length i+1.

An r-uniform spider F with t legs consists of t many r-uniform linear paths P1, . . . ,Pt (called
the legs) sharing one endpoint x but otherwise vertex-disjoint.

Lemma 5.3. Let h, p,r be positive integers, where r � 3. Let H be an r-uniform levelled linear
quasi-tree of height h rooted at w with segments H1, . . . ,Hh−1. Let L0, . . . ,Lh and L′

0, . . . ,L
′
h−1 be
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the main levels and companion levels, respectively. Let S ⊆ Lh such that |S|� (hpr)h. Then there
exists a vertex x ∈V (H) such that (i) |V (Hx)∩S|� 1/((hpr)h−1)|S|, and (ii) Hx contains a spider
centred at x that has p legs, each of which is a monotone path from x to V (Hx)∩S.

Proof. We use induction on h. For the basis step let h = 1. In this case, the claim clearly holds
by choosing x to be w and p of the edges containing x to form the required spider. For the
induction step, let h � 2. Clearly there is at least one monotone path from the root w to S, so
there exist spiders centred at w with legs being monotone paths from w to S. Let us call these
(w,S)-spiders. Among all (w,S)-spiders, let M be one that has the maximum number of legs. If
M has p legs, then the claim holds with x = w. So assume M has fewer than p legs. For each
y ∈ S, let Py be the unique monotone path in H from w to y. The maximality of M implies that
each y ∈ S, Py intersects M somewhere other than w. Let y ∈ S. If Py intersects M at a vertex u in
V (Hi)\{Li,L

′
i} for some i � h−1, then such a vertex is an expansion vertex in Hi, and both Py

and M must contain the corresponding edge e of Hi that contains u and hence both contain e∩Li

and e∩Li+1. Thus, for each y ∈ S, Py contains a vertex in

U = (V (F)\{w})∩
(h−1⋃

i=1

(Li ∪L′
i)
)

.

Since U has fewer than phr vertices, by the pigeonhole principle, there exists a vertex z in U
that is contained in at least �s/(hpr)	 different Py. Suppose that z ∈ La ∪L′

a. Let S′ be the set of
vertices y in S such that Py contains z. Then |S′| � |S|/(hpr). For each y ∈ S′, let P′

y be the (z,y)-
path contained in Py. Let H ′ =

⋃
y∈S P′

y. Then H ′ ⊆ Hz. Now, Hz is a levelled linear quasi-tree with
height at most h−1 and S′ is a set of vertices in its last level. By the induction hypothesis, there
is a vertex x in Hz such that

|V ((Hz)x)∩S′| � |S′|
[(h−1)pr]h−2

� |S|
(hpr)h−1

and (Hz)x contains a (z,V (Hz(x))∩S′)-spider with p legs. Consider now the relationship between
(Hz)x and Hx. Since x sends multiple internally disjoint monotone paths to S, it is easy to see that
either x = z or x ∈ Lj ∪L′

j for some j � a+1. In either case, we have (Hz)x = Hx.

6. Linear Turán numbers of odd cycles

The following lemma provides the key ingredient for our proof of Theorem 1.3 for odd cycles.
Before presenting the technical details, let us point out the main technical challenge for the odd
cycle case and the key new ideas for overcoming the difficulty. The general plan is similar to the
even cycle case. We use a linear quasi-tree as a framework for growing levels and argue that in the
absence of Cr

2m+1 the graph must expand quickly. The main difficulty we face is that linear quasi-
trees have an interweaving structure and no longer possess a clean tree structure. Therefore, we
cannot hope to link vertices cleanly back to the root. The key idea in overcoming this difficulty
is to apply Lemma 5.3 to locate a set of vertices (called ‘dominators’) at some earlier level to act
as different roots for different vertices. This is the main innovation to the usual approach based
on breadth-first search.
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Lemma 6.1. Let r,m,h be integers, where r � 3, m � 2 and 0 � h � m−1. Let λ = 2m2r2 and
c = 2r+2λ m. Let G be a linear r-graph such that Cr

2m+1 �⊆G. Let H be an r-uniform levelled linear
quasi-tree of height h in G rooted at w with segments H0,H1, . . . ,Hh−1, levels L0,L1, . . . ,Lh and
companion levels L′

1, . . . ,L
′
h−1. Let E be a set of edges in G, each of which contains one vertex in

Lh and r−1 vertices outside H. Suppose that |E| � ch|Lh|. Then there exist a subset E∗ of E and
a set S of vertices outside H such that

(i) |E∗| � (1/ch)|E|,
(ii) S is a cross-cut of E∗,

(iii) E∗ is the r-expansion of the 2-graph Γ = {e∩ (Lh ∪S) : e ∈ E∗}, and
(iv) either δ (Γ) � 2mr or Γ is a disjoint union of stars with centres in Lh and leaves in S.

In particular, H ∪E∗ is a levelled linear quasi-tree of height h+1 rooted at w, where L′
h = S and

Lh+1 consists of one vertex from each member of E∗ \ (Lh ∪S).

Proof. We use induction on h. For the basis step, let h = 0. Then H consists of the single vertex
w and E is a set of edges containing w. Let E∗ = E and let S consist of one vertex of e\{w} for
each e ∈ E∗. It is easy to see that the claim holds.

For the induction step, let h � 1. Let E be defined as in the statement of the lemma. Let
F = {e \ Lh : e ∈ E}. Then F is an (r − 1)-graph with |F | = |E|. Let Q be a minimum vertex
cover of F . If |Q| � ((r−1)/ch)|E|, then by Lemma 3.1, F contains a matching F∗ of size at
least

|Q|
r−1

� 1
ch
|E|.

By letting E∗ be the set of edges of E corresponding to F∗ and letting S = E∗ ∩Q, it is easy to
check that E∗ and S satisfy the four conditions and we are done. We henceforth assume that

|Q| < r−1
ch

|E|. (6.1)

By Lemma 3.2, there exist F ′ ⊆ F and Q′ ⊆ Q such that

|F ′| � r−1
2r−1

|F |

and Q′ is a cross-cut of F ′. Let E ′ be the set of edges in E corresponding to F ′. Then |E ′| = |F ′|
and each edge in E ′ intersects each of Lh and Q′ at exactly one vertex. Let

B = {e∩ (Lh ∪Q′) : e ∈ E ′}.

Then B satisfies the condition of Lemma 3.3 and there is a bijection between edges of B and
edges of E ′. In particular,

|B| = |E ′| � r−1
2r−1

|E|. (6.2)

Now,

|B| � r−1
2r−1

|E| � (r−1)ch

2r−1
|Lh| >

ch

2r−1
|Lh|.



372 C. Collier-Cartaino, N. Graber and T. Jiang

Also, by (6.1) and (6.2),

|B| � r−1
2r−1

|E| � ch

2r−1
|Q|.

So,

|B| � ch

2r
(|Lh|+ |Q|) � ch

2r
|V (B)|.

Let d(B) denote the average degree of B. Then

d(B) � ch

2r−1
� 32hmr. (6.3)

Recall that

λ = 2m2r2 and c = 2r+2λ m. (6.4)

We now partition Q′ as follows. Let

Q− = {y ∈ Q′ : dB(y) < λ m} and Q+ = {y ∈ Q′ : dB(y) � λ m}.

Let B− be the subgraph of B induced by Lh ∪Q− and let B+ be the subgraph of B induced by
Lh ∪Q+. Then, by (6.1) and (6.4),

|B−| � λ m|Q−| � λ m r−1
ch

|E| < r−1
2r+2

|E| < |B|
2

. (6.5)

Hence,

|B+| > |B|
2

. (6.6)

From this point on, we will just work with B+. We further partition Q+ as follows. For
convenience, let L′

0 = L0 = {w}. Let y ∈ Q+. Then

NB(y) ⊆ Lh and |NB(y)| � λ m � λ h � (2h2r2)h.

By Lemma 5.3, there exists x ∈V (H) such that

|V (Hx)∩NB(y)| � |NB(y)|
λ h−1

and such that Hx contains a spider M with 2hr legs from x to NB(y) using monotone paths.
Suppose x∈ Li∪L′

i. By adding to M the 2hr edges of E ′ that contain y and intersect V (M)∩NB(y),
we obtain 2hr internally disjoint (x,y)-paths of length h− i+1 contained in (

⋃h−1
j=i Hj)∪E. Let us

call such an x a dominator of y in H. For each y ∈ Q+, fix a dominator α(y) of y in H. Note that
either α(y) = w or α(y) ∈ Li ∪L′

i for some 1 � i � h−1, since other vertices in H have degree
1 in H and cannot possibly be a dominator of y. Let us summarize properties of a dominator as
follows.

Claim 6.2. Let y ∈ Q+. Then

|V (Hα(y))∩NB(y)| � |NB(y)|
λ h−1

.
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If α(y) ∈ Li ∪ L′
i, then there exist 2hr internally disjoint (α(y),y)-paths of length h − i + 1

contained in (
⋃h−1

j=i Hj)∪E.

We now partition Q+ according to which level the fixed dominator of a vertex lies in. Let

Q0 = {y ∈ Q+ : α(y) = w}.

For each i = 1, . . . ,h−1, let

Qi = {y ∈ Q+ : α(y) ∈ Li} and Q′
i = {y ∈ Q+ : α(y) ∈ L′

i}.

Then Q0,Q1,Q
′
1, . . . ,Qh−1,Q

′
h−1 partition Q+.

Let B0 denote the subgraph of B+ induced by Q0 ∪Lh. For each i = 1, . . . ,h−1, let Bi denote
the subgraph of B+ induced by Qi ∪Lh and let B′

i denote the subgraph of B+ induced by Q′
i ∪Lh.

Then B0,B1,B
′
1, . . . ,Bh−1,B

′
h−1 partition B+. One of these graphs must then have size at least

|B+|/2h. We consider three cases, depending on which Bi has size at least |B+|/2h. In each case,
we will find a set E∗ and a set S of vertices that satisfy the four conditions of the lemma. This
will complete our proof.

Case 1. |B0| � |B+|/2h.

In this case, we have |B0|� |B|/4h. Since B has average degree at least 32hmr by (6.3), B0 has
average at least 8mr. By Lemma 3.5, B0 contains a subgraph B′

0 with

δ (B′
0) � 2mr and |B′

0| �
|B0|

2
� |B|

8h
. (6.7)

Let E∗ be the set of edges in E corresponding to those in B′
0, let S = V (B′

0)∩Q0 and Γ = B′
0.

Then using (6.2) and (6.7), we have

|E∗| = |B′
0| �

|B|
8h

� r−1
2r+2h

|E| � 1
ch
|E|. (6.8)

So condition (i) of the lemma holds. Also, condition (ii) holds since E∗ ⊆ E ′, Q0 ⊆ Q′ and Q′

is a cross-cut of E ′. Also, condition (iv) holds by (6.7). So, it remains to show that condition (iii)
holds, that is, E∗ is the r-expansion of Γ. This is equivalent to saying that the default colouring
φ on B′

0 is strongly rainbow. Suppose for contradiction that φ is not strongly rainbow. Then
there exist e,e′ ∈ B′

0 such that e �= e′ and φ(e)∩φ(e′) �= /0. By Lemma 3.3, φ is strongly proper
on B′

0. So, e,e′ are two independent edges in B′
0. Let v ∈ φ(e)∩ φ(e′). Since H is linear, we

have φ(e)∩φ(e′) = {v}. Suppose e = xy,e′ = x′y′, where x,x′ ∈ Lh and y,y′ ∈ Q0. Since B′
0 has

minimum degree at least 2mr, by Lemma 3.4, B′
0 contains a path P of length 2m−2−2h starting

at y′ such that P is strongly rainbow under φ and(⋃
f∈P

φ( f )
)
∩ (φ(e)∪φ(e′)) = /0.

Let y′′ denote the other endpoint of P. The set of edges of E that correspond to those in P∪{e,e′}
forms a linear path R of length 2m−2h in which we may view x as one endpoint at one end and
y′′ as an endpoint at the other end. Let Rx be a monotone path in H from w to x. Then R∪Rx is a
linear path of length 2m−2h+h = 2m−h with w being an endpoint at one end and y′′ being an
endpoint at the other end. Since y′′ ∈ Q0, w is a dominator of y′′. By Claim 6.2. there exist 2hr
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pairwise internally disjoint (w,y′′)-paths of length h + 1. Since 2hr > |V (R∪Rx)|, one of these
paths, say R′, is internally disjoint from R∪Rx. Now R∪Rx ∪R′ is a linear cycle of length 2m+1
in G, a contradiction. This completes Case 1.

Case 2. |Bi| � |B+|/2h for some 1 � i � h−1.

Fix such an i. For each x ∈ Li, let Ax = Lh ∩V (Hx). By Lemma 5.1,

Ax ∩Ax′ = /0, for all x,x′ ∈ Li, x �= x′. (6.9)

Let y ∈ Qi. By definition, α(y) ∈ Li. Thus, we have

|V (Hα(y) ∩NB(y)| � |NB(y)|
λ h−1

.

This is equivalent to

|Aα(y) ∩NB(y)| � |NB(y)|
λ h−1

.

We define a subgraph B̃i of Bi by including only the edges of Bi from y to Aα(y) ∩NB(y) for each

y ∈ Qi. Let Ẽi denote the set of edges in E corresponding to B̃i. Then |Ẽi| = |B̃i|. Using (6.2) and
λ = 2m2r2, c = 2r+2λ m > 2r+3hλ h−1, we have

|Ẽi| = |B̃i| �
|Bi|

λ h−1
� |B|

4hλ h−1
� r−1

2r+1hλ h−1
|E| > 4(r−1)

c
|E|. (6.10)

For each x ∈ Li, let B̃x denote the subgraph of B̃i consisting of edges of B̃i that are incident to
Ax and let Cx = V (B̃x)∩Qi. So, for each x ∈ Li, B̃x is a bipartite graph with a bipartition (Ax,Cx).
For each x ∈ Li, let Ẽx denote the set of edges in E corresponding to B̃x. Then |Ẽx| = |B̃x| and
both Ax and Cx are cross-cuts of Ẽx. By our definition of B̃i, B̃x and (6.9),

Cx ∩Cy = /0, for all x,y ∈ Li, x �= y. (6.11)

Hence,

B̃x ∩ B̃y = /0 and Ẽx ∩ Ẽy = /0, for all x,y ∈ Li, x �= y. (6.12)

We call x light if |Ẽx| = |B̃x| � ch−1|Ax| and heavy if |Ẽx| = |B̃x| > ch−1|Ax|. Clearly, the
combined size of Ẽx over all light x in Li is at most ch−1|Lh| � 1

2 |Ẽi|, where the last inequality
follows from (6.10) and the assumption that |E| � ch|Lh|. Hence,

∑
x is heavy

|Ẽx| �
1
2
|Ẽi|. (6.13)

Now, consider any heavy x ∈ Li. Since Hx is a levelled linear quasi-tree rooted at x of height
h− i � h− 1 with last level Ax and Ẽx is a set of at least ch−1|Ax| edges each of which contains
one vertex in Ax and r− 1 vertices outside Hx, we can apply the induction hypothesis to obtain
E∗

x ⊆ Ẽx and Sx that satisfy the four conditions of the lemma. That is,

(i) |E∗
x | � (1/ch−1)|Ẽx|,

(ii) Sx is a cross-cut of E∗
x outside Hx (by our definition of E, Sx is also outside H),

(iii) E∗
x is the r-expansion of Γx = {e∩ (Ax ∪Sx) : e ∈ E∗

x }, and
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(iv) either (a) δ (Γx) � 2mr or (b) Γx is a disjoint union of stars with centres in Ax and leaves
in Sx.

We say that x is of ‘type 1’ if (a) holds and that x is of ‘type 2’ if (b) holds in condition (iv).
Let

Li,1 = {x ∈ Li,x is heavy and is of type 1},
Li,2 = {x ∈ Li,x is heavy and is of type 2}.

Note that if x is of type 2, then by case (b) of condition (iv), E∗
x consists of a collection of linear

stars in which vertices outside Ax all have degree 1. Since Cx is a cross-cut of Ẽx, it contains at
least one vertex from each edge in E∗

x . Each such vertex is a degree 1 vertex in E∗
x . Hence, we

have

|Cx| � |E∗
x |, for all x ∈ Li,2. (6.14)

If ∑x∈Li,2
|Ẽx| � 1

4 |Ẽi|, then by condition (i), (6.10) and (6.14) we have

|Qi| � ∑
x∈Li,2

|Cx| � ∑
x∈Li,2

|E∗
x | �

1
ch−1 ∑

x∈Li,2

|Ẽx| �
1

4ch−1
|Ẽi| �

1
4ch−1

4(r−1)
c

|E| = r−1
ch

|E|,

(6.15)
contradicting (6.1). Hence, by (6.13), we may assume that

∑
x∈Li,1

|Ẽx| �
1
4
|Ẽi|. (6.16)

Let

E∗ =
⋃
{E∗

x : x ∈ Li,1}, S =
⋃
{Sx : x ∈ Li,1} and Γ =

⋃
{Γx : x ∈ Li,1}.

We now verify that E∗, S and Γ satisfy the four conditions of the lemma, which would complete
Case 2. Since

|E∗
x | �

1
ch−1

|Ẽx|

for each x ∈ Li,1, using the last two inequalities in (6.15), we have

|E∗| � 1
ch−1 ∑

x∈Li,1

|Ẽx| �
1

4ch−1
|Ẽi| �

r−1
ch

|E| � 1
ch
|E|.

Hence condition (i) holds. By the definitions of E∗ and S, condition (ii) holds. Since Γx are vertex-
disjoint over different x ∈ Li,1 and δ (Γx) � 2mr for each x ∈ Li,1, we have δ (Γ) � 2mr. Hence
condition (iv) holds. It remains to verify that condition (iii) holds, that is, E∗ is the r-expansion
of Γ. In other words, we need to verify that the default edge-colouring φ of Γ is strongly rainbow.

By our assumption, for all x ∈ Li,1, E∗
x is the r-expansion of Γx. Hence the default edge-

colouring of Γx is strongly rainbow. Thus, it remains to show that whenever x,y ∈ Li,1,x �= y
and e ∈ Γx, f ∈ Γy we have φ(e)∩φ( f ) = /0. Let x,y ∈ Li,1 such that x �= y and let e ∈ Γx, f ∈ Γy.

By Lemma 5.2, there exists an (x,y)-path R0 of some even length 2 j � 2i in
⋃

t�i Ht that
intersects Li only at x and y. Suppose for contradiction that φ(e)∩φ( f ) �= /0. Let v ∈ φ(e)∩φ( f ).
Since H is linear, we have φ(e)∩φ( f ) = {v}. Suppose e = ab and f = a′b′, where a ∈ Ax,b ∈Cx
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and a′ ∈ Ay,b′ ∈Cy. Let

� = 2m− [2 j +2(h− i)+2] = 2m−2−2h+2(i− j).

Note that � is even and satisfies 2m− 2− 2h � � � 2m− 4. Since δ (Γy) � 2mr > r� + 2r, by
Lemma 3.4, there exists a path P in Γy of length � starting at b′ that is strongly rainbow under φ
and such that ( ⋃

e′∈P

φ(e′)
)
∩ (φ(e)∪φ( f )) = /0.

Let b′′ denote the other endpoint of P. Since P has even length, b′′ ∈ Cy. Let P+ denote the set
of the edges of E that correspond to the edges of P∪{e, f}. Then P+ is linear path of length
2m−2h+2(i− j) in G where a is an endpoint at one end and b′′ is an endpoint at the other end.
Furthermore, V (P+)∩V (H)⊆ Lh. Let R be a monotone path in H from x to a. Then R has length
h− i and is internally disjoint from R0 and P+. Since b′′ ∈Cy, y is a dominator of b′′. By Claim 6.2.
there exist 2hr internally disjoint (y,b′′)-paths of length h− i+1. Since 2hr > |V (P+ ∪R∪R0)|,
one of these paths, say R′, is internally disjoint from P+∪R∪R0. Now P+∪R∪R0∪R′ is a linear
cycle of length 2m− 2h + 2(i− j)+ h− i + 2 j + h− i + 1 = 2m + 1 in G, a contradiction. This
completes Case 2.

Case 3. |B′
i| � B+/2h for some 1 � i � h−1.

The arguments for this case are similar to those for Case 2, except that the argument for
condition (iii) is more delicate. As in Case 2, we define Γ and Γx analogously, with Li being
replaced by L′

i in the definitions. Let L′
i,1 = {x ∈ L′

i,x is heavy and is of type 1}. Let L′
i,2 = {x ∈

L′
i,x is heavy and is of type 2}. We only need to modify the argument for the statement that

whenever x,y ∈ L′
i,1,x �= y and e ∈ Γx and f ∈ Γy we have φ(x)∩φ(y) = /0.

Suppose for contradiction that φ(e)∩φ( f ) �= /0. Let v ∈ φ(e)∩φ( f ). Then φ(e)∩φ( f ) = {v}.
Suppose e = ab and f = a′b′, where a ∈ Ax,b ∈ Cx and a′ ∈ Ay,b′ ∈ Cy. Let � = 2m− 2− 2h.
Since δ (Γy) � 2mr > r�+2r, by Lemma 3.4, there exists a path P in Γy of length � starting at b′

that is strongly rainbow under φ and such that( ⋃
e′∈P

φ(e′)
)
∩ (φ(e)∪φ( f )) = /0.

Let b′′ denote the other endpoint of P. Since P has even length, b′′ ∈Cy. Let P+ denote the set of
the edges of E that correspond to the edges of P∪{e, f}. Then P+ is linear path of length 2m−2h
in G where a is an endpoint at one end and b′′ is an endpoint at the other end. Furthermore,
V (P+)∩V (H) ⊆ Lh. Let R be a monotone path in H from x to a. Then R has length h− i and
is internally disjoint from P+. Since b′′ ∈ Cy, y is a dominator of b′′. By Claim 6.2, there exist
2hr internally disjoint (y,b′′)-paths of length h− i + 1 contained in (

⋃h−1
j=i Hj)∪E. Since 2hr >

|V (P+ ∪R)|, one of these paths, say R′, is internally disjoint from P+ ∪R. Now W = P+ ∪R∪R′

is a linear (x,y)-path of length 2m−2i+1 contained in (
⋃h−1

j=i Hj)∪E. Let ex denote the edge of
W containing x and let ey denote the edge of W containing y. Each of ex,ey intersects Li at exactly
one vertex. Suppose ex ∩Li = {x∗} and ey ∩Li = {y∗}. Then

V (W )∩
( i⋃

j=0

V (Hj)
)

= {x∗,y∗}.
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By Lemma 5.2 there is an (x∗,y∗)-path R0 of length 2t � 2i in
⋃i

j=0 Hj such that V (R0)∩Li =
{x∗,y∗}. If t = i, then W ∪R0 is a linear cycle in G of length 2m+1, a contradiction. So suppose
t < i. The idea now is to keep R,R0 and ey and redefine P and R′ to get a linear cycle of length
2m+1. Let � = 2m−2h+2(i− t)−3. Note that � > 0 and is odd. Since δ (Γy) � 2mr > r�+2r,
by Lemma 3.4, there exists a path P in Γy of length � starting at a′ that is strongly rainbow under
φ and such that ( ⋃

e′∈P

φ(e′)
)
∩ (φ(e)∪φ( f )) = /0.

Let b′′ denote the other endpoint of P. Since � is odd, b′′ ∈Cy. Let P+ denote the set of the edges of
E that correspond to the edges of P∪{e, f}. Then P+ is linear path of length 2m−2h+2(i−t)−1
in G where a is an endpoint at one end and b′′ is an endpoint at the other end. Furthermore,
V (P+)∩V (H) ⊆ Lh. As before, there are 2hr internally disjoint (y,b′′)-paths of length h− i + 1
contained in (

⋃h−1
j=i Hj)∪E. Since 2hr > |V (P+∪R∪ey)|, one of these paths, say R′, is internally

disjoint from P+ ∪ R ∪ ey. It is also internally disjoint from R0 by the definition of R0. Now
P+ ∪R∪R0 ∪{ey}∪R′ is a linear cycle of length 2m + 1 in G, a contradiction. This completes
Case 3 and the proof of the lemma.

Theorem 6.3. Let m,r be positive integers where m � 2 and r � 3. There exist a positive real
c′ = c′m,r and a positive integer n2 such that for all n � n2 we have exL(n,Cr

2m+1) � c′n1+1/m.

Proof. We follow the steps in Theorem 4.4, using Lemma 6.1 in place of Lemma 4.1. Let λ =
2m2r2. Let c = 2r+2λ m as in Lemma 6.1. Let c′m,r = 2mr−1cm. Choose n2 such that c′m,rn

1/m
2

� n0,

where n0 is given in Lemma 3.8. Let G be an n-vertex linear r-graph with at least c′m,rn
1+1/m

edges, where n � n2. Suppose that G does not contain a copy of Cr
2m+1, we derive a contradiction.

By our assumption, G has average degree at least rc′m,rn
1/m. By Lemma 3.6, there exists a

subgraph G0 of G with δ (G0) � c′m,rn
1/m. Let N = n(G0). Then N � c′m,rn

1/m � n0 and δ (G′) �
c′m,rN

1/m. By Lemma 3.8 (with t = m), there exists a partition of V (G′) into S0, . . . ,Sm−1 such that
for each u ∈V (G′) and i ∈ {0, . . . ,m−1}, we have

|LG′(u)∩G′[Si]| �
c′m,r

2mr−1
N1/m = cmN1/m.

Let w be any vertex in S0. Let L0 = {w}. Inside G′, we will construct a levelled linear quasi-
tree H of height m rooted at w with segments H0, . . . ,Hm−1 and main levels L0,L1, . . . ,Lm such
that, for all i ∈ {0, . . . ,m− 1}, V (Hi) ⊆ Si. (Note that this means that for all i ∈ [m], Li ⊆ Si−1.)
Furthermore, we will maintain that for all i∈ [m], |Li|� N1/m|Li−1|. This will imply that |Lm|� N,
a contradiction.

We construct H as follows. Let H0 consist of the edges of G′[S0] containing w. By our assump-
tion, |H0| � cmN1/m � N1/m, by our definition of c. Let L1 consist of a vertex from e \ {w} for
each e ∈ H0. We have |L1| = |H0| � N1/m|L0|. In general, suppose 1 � i � m−1 and suppose we
have defined H0, . . . ,Hi−1 and L0,L1, . . . ,Li that satisfy the requirements. Let E denote the set of
edges in G′ that contain one vertex in Li ⊆ Si−1 and r−1 vertices in Si. By the definition of the
partition (S0, . . . ,Sm−1), |E|� cmN1/m|Li|� ci|Li|. Since Cr

2m+1 �⊆ G′, by Lemma 6.1, there exists
a subset E∗ ⊆ E such that (i) |E∗| � (1/ci)|E|, and (ii) E∗ is the r-expansion of some bipartite
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2-graph Γ with one part in Li and the other part outside
⋃i−1

j=0 Hi−1. Now, let Hi be the r-graph
formed by E∗ and let Li consist of one vertex from e\V (Γ) for each e ∈ E∗ (note that this implies
that |Li| = |E∗|). Now,

⋃i
j=0 Hi is a levelled linear quasi-tree in G′ rooted at w with height i and

main levels L0,L1, . . . ,Li. Furthermore,

|Li| = |E∗| � 1
ci
|E| � cm

ci
N1/m|Li| � N1/m|Li|.

We can continue for m steps to obtain |Lm| � N, which yields the desired contradiction.

7. Cycle-complete Ramsey numbers

Given two r-graphs G and H, the Ramsey number R(G,H) is the smallest positive integer n such
that in every colouring of the edges of Kr

n using two colours red and blue, there exists either
a red copy of G or a blue copy of H. As mentioned in the Introduction, part of the motivation
behind our study of the linear Turán number of linear cycles comes from the study by Kostochka,
Mubayi and Verstraëte [29] on the hypergraph Ramsey number of a linear triangle versus a
complete graph. Their work is in part inspired by the study of graph Ramsey number R(C3,Kt). A
celebrated result of Kim [28] together with earlier upper bounds by Ajtai, Komlós and Szemerédi
[1] shows that

R(C3,Kt) = Θ
(

t2

log t

)
, as t → ∞.

Kostochka, Mubayi and Verstraëte obtained the following bounds.

Theorem 7.1 ([29]). There exist constants a,br > 0 such that, for all t � 3,

at3/2

(log t)3/4
� R(C3

3 ,K
3
t ) � b3t3/2,

and, for r � 4,

t3/2

(log t)3/4+o(1) � R(Cr
3,K

r
t ) � brt

3/2.

Theorem 7.2 ([29]). For fixed r,k � 3,

R(Ck,K
r
t ) = Ω∗(t1+1/(3k−1)), as t → ∞.

There exists a constant cr > 0 such that

R(C5,K
r
t ) � cr

(
t

ln t

)5/4

, as t → ∞.

Here the authors use f = O∗(g) to denote that for some constant c > 0, f (t) = O((ln t)cg(t))
and f = Ω∗(g) is equivalent to g = O∗( f ). The key point of Theorem 7.2 is that the exponent
1 + 1/(3k−1) of t is bounded away from 1 by a constant independent of r. The authors made
the following conjecture.
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Conjecture 7.3 ([29]). For all fixed r � 3, R(C3,K
r
t ) = o(t3/2) and R(C5,K

r
t ) = O(t5/4), as

t → ∞.

Using our bounds on the linear Turán numbers, we can quickly derive non-trivial upper bounds
on R(Cr

� ,K
r
t ) for all r, � � 3. First, however, let us recall some results on cycle-complete Ramsey

numbers of graphs. As mentioned above, the behaviour of R(C3,Kt) is now quite well understood,
particularly with the recent deep work of [6] and [17]. For the general cycle-complete Ramsey
numbers, the best known upper bound on even cycles versus cliques is

R(C2m,Kt) = O

((
t

ln t

)m/(m−1))
,

due to Caro, Li, Rousseau and Zhang [11]. The best known upper bound on odd cycles versus
cliques is

R(C2m+1,Kt) = O

(
t(m+1)/m

(ln t)1/m

)
,

due to Sudakov [39] and Li and Zang [26]. The best known lower bound is

R(C�,Kt) = Ω
(

t(�−1)/(�−2)

ln t

)
,

due to Bohman and Keevash [5].
We now obtain some upper bounds on R(Cr

� ,K
r
t ) using linear Turán numbers and a reduction

process via the well-known Sunflower Lemma. A sunflower (or Δ-system) F with core C is a
collection of distinct sets A1, . . . ,Ap such that for all i, j ∈ [p] we have Ai ∩Aj = C. We call the Ai

members of the sunflower. If a sunflower has p members and the core has size a, then we call it
an (a, p)-sunflower. Note that the core is allowed to be empty and hence a matching is considered
to be a sunflower.

Lemma 7.4 (Sunflower Lemma [14]). If F is a collection of sets of size at most k and |F| �
k!(p−1)k, then F contains a sunflower with p members.

Partly following the approach in [29], we consider non-uniform hypergraphs, but will disallow
singletons as edges. Recall that a linear cycle of length � is a list of sets A1, . . . ,A� such that
|Ai ∩Ai+1| = 1 for i = 1, . . . , �− 1, |A� ∩A1| = 1 and Ai ∩Aj = /0 for all other pairs i, j, i �= j. A
set S in a hypergraph G is an independent set in G if no edge of G is contained in S. Let α(G)
denote the maximum size of an independent set in G. The next lemma is in spirit similar to a
sequence of lemmas given in Section 3.1 of [29], except that here we use the Sunflower Lemma.
A hypergraph is simple if no edge contains another edge.

Lemma 7.5. Let m,r � 2 be integers. Let G be a hypergraph whose edges have sizes between
2 and r. Suppose G does not contain a linear cycle of length �. Then there exists a simple
hypergraph G′ on V (G) whose edges have sizes between 2 and r such that G′ contains no linear
cycle of length �, G′ contains no (a,r�)-sunflower for any a � 2, and α(G′) � α(G).
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Proof. We iterate the following process. Let F be an (a,r�)-sunflower in G with core C, where
|C| = a � 2. Let G1 be obtained from G by replacing some edge e in F with C. If G1 contains a
linear cycle L of length �, then L must use C as an edge. Since L contains at most r� vertices and
C is the core of a sunflower F with r� members, we can find some edge e′ in F such that e′ \C is
disjoint from V (L). Now if we replace C with e′ in L, we obtain a linear cycle of length � in G, a
contradiction. So, G1 has no linear cycle of length �. Clearly, any independent set S in G is also
an independent set in G1. So α(G1) � α(G). We now replace G with G1 and repeat this process
until there is no longer an (a,r�)-sunflower for some a � 2. The process must end since the total
edge-size decreases at each step. Denote the final graph by G′. If G′ is not simple then we make
it simple by removing edges that contain other edges. This cannot create a linear cycle of length
�, or a new sunflower, or increase the independence number. Then G′ satisfies the claim.

A hypergraph G is (2,q)-linear if no pair of vertices is contained in q or more edges of G.

Lemma 7.6. Let a, p,r � 2 be integers. Let G be a simple hypergraph whose edges have sizes
between 2 and r and that contains no (a, p)-sunflower for any a � 2. Then G is (2,q)-linear,
where q = r!(p−1)r.

Proof. Otherwise some pair {a,b} would be contained in a set H of at least q edges of G. Let
H ′ = {e \ {a,b} : e ∈ H}. Since H ⊆ G is simple, |H ′| = |H| � q = r!(p− 1)r. By Lemma 7.4,
H ′ contains a sunflower F with p members. Now, adding {a,b} to each member of F yields an
(a, p)-sunflower in G, where a � 2, contradicting our assumption about G.

Lemma 7.7. Let r � 2,q be positive integers. Let G be a hypergraph whose edges have sizes
between 2 and r. Suppose G is (2,q)-linear. Then G contains a linear subgraph G′ with |G′| �
(2/qr2)|G|.

Proof. By our assumption, each edge e of G shares a pair of vertices with at most
(r

2

)
(q− 1)

other edges. Let H be a graph whose vertices are the edges of G such that two vertices u,v are
adjacent in H if the corresponding edges in G share a pair of vertices. Then Δ(H) <

(r
2

)
q− 1.

Hence H contains an independent set S of size at least

|V (H)|
Δ(H)+1

� 2|V (H)|
qr2

.

Let G′ be the subgraph of G whose edges correspond to S. Then G′ is a linear subgraph of G with
|G′| � (2/qr2)|G|.

Lemma 7.8. Let H be a linear hypergraph whose edges have sizes between 2 and r. Suppose H
does not contain a linear cycle of length �. Let D = ∂2(H). Let v be any vertex in V (D) = V (H).
Then |D[NH(v)]| � rr+4�|NH(v)|.

Proof. Since H is linear, the link graph LH(x) consists of disjoint edges each of size at most
r− 1. Let U = V (LH(v)) = NH(v). The edges of LH(x) form a partition of U into parts of size
at most r − 1 (with each part being an edge of LH(x)). Also, since H is linear, no edge of H
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contains more than one vertex from any of those parts. Let us randomly and independently pick
one vertex from each part, and call the resulting set S. For each edge in H[U ] the probability of
it being in H[S] is at least (1/(r−1))r. So there is a choice of S for which

H[S] � 1
(r−1)r

|H[U ]|.

If H[S] has average degree at least r2�, then it contains a subgraph H ′ with minimum degree
at least r�, and since H ′ is linear, one can easily find a linear path P of length �− 2, say, with
endpoint a and b. Let ea be the edge of H that contains {x,a} and let eb be the edge of H that
contains {x,b}. Then ea ∩S = {a},eb ∩S = {b}. In particular, we see that P∪{ea,eb} is a linear
cycle of length �, a contradiction. So H[S] has average degree less than r2�. Therefore

|H[U ]| � (r−1)r|H[S]| < rr r2

2
�|S| < rr+2�|U |,

and hence

|D[U ]| �
(

r
2

)
|H[U ]| < rr+4�|U |.

We need the following lemma due to Alon [2]. The version stated below is implicit in the proof
of Proposition 2.1 in [2]. Alternatively, one could also apply Theorem 1.1 of [3]. Logarithms
below are in base 2.

Lemma 7.9 ([2]). Let G be a graph with maximum degree at most d � 1, in which for any
vertex v, G[N(v)] contains an independent set of size at least |N(v)|/p. Then

α(G) � n logd
160d log(p+1)

.

Theorem 7.10. Let m,r be integers where m � 2 and r � 3. There exists a constant am,r,
depending on m and r, such that

R(Cr
2m,Kr

t ) � am,r

(
t

ln t

)m/(m−1)

.

Proof. The definition of am,r depends on various constants we defined earlier and will be
implicit in our proof. Let

n � am,r

(
t

ln t

)m/(m−1)

.

By choosing am,r to be large enough, we may assume that n � n1, where n1 is given in The-
orem 4.4. It suffices to show that if G is an n-vertex r-graph that does not contain Cr

2m then G
contains an independent set of size at least t. Let such G be given. By Lemma 7.5, there exists a
simple hypergraph G′ with V (G′) =V (G) such that α(G′) � α(G), G′ contains no linear cycle of
length 2m, and that G′ contains no (a,2mr)-sunflower for any a � 2. By Lemma 7.6, G′ is (2,q)-
linear, where q = r!(2mr−1)r. By Lemma 7.7, G′ contains a linear subgraph with |G′′|� c1|G′|,
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where c1 is a positive constant depending on m and r. Clearly, G′′ contains no linear cycle of
length 2m. Applying the O(n1+1/m) bound [7] on ex(n,C2m) and Theorem 4.4, by considering
edges of various sizes, we have |G′′| � c2n1+1/m, for some constants c2, depending on m and r.
Hence |G′| � c3n1+1/m for some constant c3, depending on m and r. So G′ has average degree
at most rc3n1/m. Clearly, at most n/2 vertices in G′ can have degree at least 2rc3n1/m. Let H
be the subgraph of G′ induced by vertices of degree at most 2rc3n1/m. Then |V (H)| � n/2 and
Δ(H) � 2rc3n1/m.

Let D = ∂2(H). Then Δ(D) � 2r2c3n1/m. Note that for each vertex v we have ND(v) = NH(v),
which we will denote by N(v). As H does not contain a linear cycle of length 2m, by Lemma 7.8,
for each vertex v in D, we have |D[N(v)]|� 2mrr+4|N(v)|. So D[N(v)] has average degree at most
4mrr+4. By a well-known result of Caro and Wei [10, 41], D[N(v)] contains an independent set
of size at least

|N(v)|
4mrr+4 +1

.

By Lemma 7.9, with d = 2r2c3n1/m,

α(D) � c5
n lnn

n1/m
= c5n(m−1)/m lnn,

for some positive constant c5, depending on m and r. Since

n � am,r

(
t

ln t

)m/(m−1)

,

by choosing am,r to be large enough, we can ensure α(D) � t. Certainly any independent set in
D is also an independent set in G′. Hence α(G′) � t and α(G) � α(G′) = t.

For odd cycle-complete Ramsey numbers, we need some more definitions and a lemma. Let
H be a hypergraph whose vertices are ordered by a total order π . Let P be a linear path of length
�, that is, P consists of a list of edges e1, . . . ,e� such that |ei ∩ ei+1| = 1 for each i ∈ [�− 1]
and ei ∩ e j = /0 whenever |i− j| > 1. For each i ∈ [�− 1], let ei ∩ ei+1 = {xi}. We say that P is
an increasing linear path under π if π(v) < π(x1) for all v ∈ e1 \ {x1}, π(x�−1) < π(v) for all
v ∈ e� \ x�−1, and we have π(xi−1) < π(v) < π(xi) for each i = 2, . . . , �−1 and v ∈ ei \{xi−1,xi}.
If P is an increasing linear path and v is the largest vertex on P under π , then we say that P ends
at v.

Lemma 7.11. Let H be a hypergraph and π a total order on V (H). If H does not contain an
increasing linear path of length �, then V (H) can be partitioned into � independent sets.

Proof. For each i = 0, . . . �−1, let Si denote the set of vertices v such that the longest increasing
linear path in H that ends at v has length i. Then S0, . . . ,S�−1 partition V (H). Suppose for some
i ∈ {0, . . . , �− 1}, Si contains an edge e. Let v and v′ be the vertices in e that are smallest and
largest under π , respectively. By definition, H contains an increasing linear path P of length i
that ends at v. Now P∪e is an increasing path of length i+1 that ends at v′, contradicting v′ ∈ Si.
Hence for each i, Si contains no edge of H and hence is an independent set in H.
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The following lemma is a variant of Theorem 1 in [13]. The proof is similar.

Lemma 7.12. Let H be a hypergraph whose edges have sizes between 2 and r. Suppose H does
not contain a linear cycle of length 2m + 1. Let H∗ be the subgraph of H consisting of all the
edges of size 2 in H. Let v∈V (G). For each i, let Si be the set of vertices in H∗ that are at distance
i from v. Then for each i � m, H[Si] contains an independent set of size at least |Si|/(2m−1).

Proof. Grow a breadth-first search tree T in H∗ from v. So the levels of T are precisely the
distance classes from v in H∗. For each i � 1, define a linear order πi of Si as follows. Let π1 be
an arbitrary linear order on S1. For each i � 2, let πi be a linear order on Si obtained by listing
the children of the first vertex in πi−1, followed by the children of the second vertex in πi−1, etc.
For each 1 � i � m, we claim that H[Si] contains no increasing linear path of length 2m− 1.
Otherwise, fix an i for which H[Si] contains an increasing linear path P of length 2m− 1 with
edges e1,e2, . . . ,e2m−1 in order. Let x1 be the least vertex in e1 under πi. Let x2m be the largest
vertex in e2m−1 under πi. For each k ∈ {2, . . . ,2m−1}, let ek−1 ∩ek = {xk}. Then x1 < x2 < · · ·<
x2m in πi. Let w be a closest common ancestor of x1, . . . ,x2m in T . Suppose w∈ S j, where j < i. Let
k be the smallest positive integer such that xk and xk+1 are under different children of w. Such a k
exists by our choice of w. By our ordering on each level, the ancestors of x1, . . . ,xk in S j precede
ancestors of xk+1, . . . ,x2m in S j under π j. Hence for any a ∈ [k], b ∈ [2m]\ [k], the unique (xa,xb)-
path Qa,b in T must pass through w and has length 2(i− j). Based on the value of k, we can
find a ∈ [k], b ∈ [2m]\ [k] such that b−a = 2m+1−2(i− j). Now Qa,b ∪{ea,ea+1, . . . ,eb−1,eb}
is a linear cycle of length 2m + 1 in H, a contradiction. Hence H[Si] contains no increasing
linear path of length 2m−1. By Lemma 7.11, H[Si] contains an independent set of size at least
|Si|/(2m−1).

Theorem 7.13. Let m,r be positive integers where m � 2,r � 3. There exists a positive constant
bm,r, depending on r and m, such that R(Cr

2m+1,K
r
t ) � bm,rtm/(m−1).

Proof. Our choice of bm,r will depend on other constants defined earlier and will be implicit in
the proof. Let n � bm,rtm/(m−1). By choosing bm,r to be large enough, we may assume that n � n2,
where n2 is specified in Theorem 6.3. Let G be any n-vertex r-graph on n vertices not containing
a copy of Cr

2m+1. We show that G contains an independent set of size at least t.
By Lemma 7.5, there exists a simple hypergraph G′ on V (G) whose edges have sizes between

2 and r such that α(G′) � α(G), G′ contains no linear cycle of length 2m + 1, and that G′

contains no (a,(2m+1)r)-sunflower for any a � 2. By Lemma 7.6, G′ is (2,q)-linear where q =
r![(2m+1)r−1]r. For each j = 3, . . . ,r, let Gj denote the subgraph of G′ consisting of edges of
size j. Let G′′ =

⋃r
j=3 Gj. Then G′′ is (2,q)-linear. By Lemma 7.7, G′′ contains a linear subgraph

G∗ with |G∗| � (2/qr2)|G′′|. By Theorem 6.3, |G∗| � c′1n1+1/m for some positive constant c′1
depending on m and r. Hence |G′′| � c′2n1+1/m for some positive constant c′2 depending on m
and r. The number of vertices of G′′ of degree at least 2rc′2n1/m is at most n/2. Let U be the
set of vertices of degree at most 2rc′2n1/m in G′′. Then |U | � n/2. Let H = G′[U ]. Let H∗ be the
subgraph of H consisting of edges of size 2. Let H ′ be subgraph of H consisting of edges of
size 3 or more. By our definition of H, Δ(H ′) � 2rc′2n1/m. We obtain a large independent set W
in H as follows. Initially set W = /0. Let v be any vertex in H, and for each i � 2 let Si denote
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the set of vertices at distance i from v in H∗. Let k ∈ [m− 1] be the smallest integer such that
|Si+1|/|Si|� n1/m. Such a k exists since otherwise we would have |Sm|> n, a contradiction. Since
H contains no linear cycle of length 2m+1, by Lemma 7.12, H[Sk] contains an independent set
S′ of size at least |Sk|/(2m−1). Let S̃ = Sk−1 ∪Sk ∪Sk+1. Then the neighbours in H∗ of vertices

in S′ lie in S̃. By our choice of k,

|S̃| < (n1/m +2)|Sk| < (2m−1)(n1/m +2)|S′| < 3mn1/m|S′|.

Let Z be a set of vertices in H obtained by picking a vertex in e \ S̃, if it exists, for each edge e
in H ′ that contains a vertex in S′. Since Δ(H ′) � 2rc′2n1/m, we have |Z| � 8rc′2n1/m|S′|. By our
discussion above, |S̃∪Z| � c′3n1/m|S′| for some positive constant c′3 depending on m and r. We
add S′ to U and delete S̃∪ Z from H, and iterate the process until we run out of vertices. By
design, the final W is an independent set in H that has size at least

n/2
c′3n1/m

� n(m−1)/m

2c′3
.

Since n � bm,rtm/(m−1), by choosing bm,r to be large enough, we can ensure α(H) � t. Since
H = G′[U ], we have α(G) � α(G′) � t.

8. Concluding remarks

Our main objective in this paper has been to establish an upper bound on exL(n,Cr
�) of the

form O(n1+1/��/2�). We chose constants cr,� and c′r,� in Theorem 4.4 and Theorem 6.3 larger than
necessary in order to simplify our presentation. Motivated by the known bounds on graph even
cycles, we would like to ask the following question.

Problem 8.1. Determine whether or not there exists a constant c(r), depending only on r, such
that exL(n,Cr

2m) � c(r)mn1+1/m.

The study of exL(n,C3
2m) has a natural connection to the so-called rainbow Turán number

ex∗(n,C2m) of a cycle of length 2m, which denotes the maximum number of edges in an n-vertex
graph that admits a proper edge-colouring that contains no cycle of length 2m all of whose
edges have different colours. The main conjecture from [27] is that ex∗(n,C2m) = O(n1+1/m),
which remains open except for C4 and C6. See Das, Lee and Sudakov [12] for some recent
progress on the problem. Interestingly, there it is not too hard to obtain an Ω(n1+1/m) lower bound
on ex∗(n,C2m) through an explicit construction using B∗

k-sets. Here, we are able to establish
an O(n1+1/m) upper bound on exL(n,Cr

2m) and exL(n,Cr
2m+1), but no good lower bounds on

exL(n,Cr
�) are currently known, except for C3

3 , C3
4 and C3

5 . Using generalized Sidon sets such as
those considered in [37] and [32], one could obtain some non-trivial lower bounds on exL(n,Cr

�).
This is an area worth exploring.

Our Ramsey bounds on R(Cr
� ,K

r
t ) are similar to those for graphs. However, as speculated

in [29], for r � 3 perhaps R(Cr
� ,K

r
t ) = Θ∗(t�/(�−1)) holds, where O∗ and Ω∗ are defined in

Section 7. It will be interesting to further sharpen our bounds on R(Cr
� ,K

r
t ). By analysing the

proof of Theorem 6.3, together with Lemma 7.8 and Lemma 7.9, one might be able to improve
our bound on R(Cr

2m+1,K
r
t ) by a factor of (ln t)c. However, since the exponent m/(m−1) is
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likely not the correct one, we have made no such attempt. Since the submission of our original
paper, A. Méroueh [33] has made some improvements upon our bounds. Using our linear Turán
bounds, it is not hard to show that RL(Cr

� ,K
r
t ) = O∗(t�/(�−1)), where RL(Cr

� ,K
r
t ) is defined to be

the smallest n such that every linear r-graph not containing Cr
� has an independent set of size t

(see Theorem 1.2 of [29] for a proof for C3
3).
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[23] Győri, E. and Lemons, N. (2012) Hypergraphs with no cycle of a given length. Combin. Probab.
Comput. 21 193–201.
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