

Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/) Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

New bounds for a hypergraph bipartite Turán problem

Journal of Combinatorial Theory

Beka Ergemlidze ^a*,*∗*,*², Tao Jiang ^b*,*¹, Abhishek Methuku ^c*,*∗*,*²

^a *Department of Mathematics and Statistics, University of South Florida, Tampa,* FL 33620, USA
 $^{\rm b}$ Department of Mathematics, Miami University, Oxford, OH 45056, USA
 $^{\rm c}$ School of Mathematics, University of Birmingham, Birmingham B15 2TT,

United Kingdom

A R T I C L E I N F O A B S T R A C T

Article history: Received 27 February 2019 Received in revised form 8 June 2020 Accepted 9 July 2020 Available online 22 July 2020

Keywords: Hypergraph Turán problem Bipartite Turán Degenerate problem Extremal hypergraphs

Let *t* be an integer such that $t \geq 2$. Let $K_{2,t}^{(3)}$ denote the triple system consisting of the 2t triples $\{a, x_i, y_i\}$, $\{b, x_i, y_i\}$ for $1 \leq i \leq t$, where the elements $a, b, x_1, x_2, \ldots, x_t, y_1, y_2, \ldots, y_t$ are all distinct. Let $ex(n, K_{2,t}^{(3)})$ denote the maximum size of a triple system on *n* elements that does not contain $K_{2,t}^{(3)}$. This function was studied by Mubayi and Verstraëte [\[9\]](#page-17-0), where the special case $t = 2$ was a problem of Erdős [[1](#page-17-0)] that was studied by various authors [\[3,9,10](#page-17-0)].

Mubayi and Verstraëte proved that $ex(n, K_{2,t}^{(3)}) < t^4 {n \choose 2}$ and that for infinitely many *n*, $ex(n, K_{2,t}^{(3)}) \geq \frac{2t-1}{3} {n \choose 2}$. These bounds together with a standard argument show that $g(t) :=$ $\lim_{n\to\infty} \frac{\text{ex}(n, K_{2,t}^{(3)})}{(n)}$ exists and that

$$
\frac{2t-1}{3} \le g(t) \le t^4.
$$

Addressing the question of Mubayi and Verstraëte on the growth rate of $q(t)$, we prove that as $t \to \infty$,

Corresponding authors.

<https://doi.org/10.1016/j.jcta.2020.105299> 0097-3165/© 2020 Elsevier Inc. All rights reserved.

E-mail addresses: beka.ergemlidze@gmail.com (B. Ergemlidze), jiangt@miamioh.edu (T. Jiang), abhishekmethuku@gmail.com (A. Methuku).

 1 Research was supported by NSF grant DMS-1855542.

² Research was supported by the EPSRC, grant no. EP/S00100X/1 (A. Methuku), the Doctoral Research Support Grant of CEU, and by the Hungarian National Research, Development and Innovation Office NKFIH, grant K116769.

$$
g(t) = \Theta(t^{1+o(1)}).
$$

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

An *r*-graph is an *r*-uniform hypergraph. Let F be a family of *r*-graphs and let $ex(n, F)$ denote the maximum number of edges in an *r*-graph on *n* vertices containing no member of F. We call $ex(n, \mathcal{F})$ the *Turán number* of F. When F consists of a single graph *F*, we write $ex(n, F)$ for $ex(n, \mathcal{F})$. When $r \geq 3$, determining $ex(n, \mathcal{F})$ asymptotically or exactly is notoriously difficult. Katona, Nemetz, and Simonovits [[7\]](#page-17-0) showed that $\lim_{n\to\infty} \exp(n,\mathcal{F})/\binom{n}{r}$ exists and this limit is called the *Turán density* of F, and is denoted by $\pi(F)$. When $\pi(F) = 0$, that is, when $ex(n, F) = o(n^r)$, we call the problem of determining ex(*n,* F) a *degenerate hypergraph Turán problem*. For an excellent survey on the study of hypergraph Turán numbers, see [[8\]](#page-17-0). In this paper, we study a degenerate hypergraph Turán problem that is motivated by the study of Turán numbers of complete bipartite graphs as well as by a question of Erdős. In fact, the *r*-graph *F* we study in this paper satisfies $ex(n, F) = \Theta(n^{r-1})$, so in this case, the natural goal is to determine $\lim_{n\to\infty} \frac{\exp\left(\frac{n}{r-1}\right)}{n}$.

Definition 1. Let $r \geq 3$ be an integer. Let G be a bipartite graph with an ordered bipartition (X, Y) . Suppose that $Y = \{y_1, \ldots, y_m\}$. Let Y_1, \ldots, Y_m be disjoint sets of size $r-2$ that are disjoint from $X \cup Y$. Let $G_{X,Y}^{(r)}$ denote the *r*-graph with vertex set $(X \cup Y) \cup (\bigcup_{i=1}^{m} Y_i)$ and edge set $\bigcup_{i=1}^{m} \{e \cup Y_i : e \in E(G), y_i \in e\}.$

Let $s, t \geq 2$ be positive integers. If *G* is the complete bipartite graph with an ordered bipartition (X, Y) where $|X| = s$, $|Y| = t$, then let $G_{X,Y}^{(r)}$ be denoted by $K_{s,t}^{(r)}$.

Definition 2. For all $n \geq r \geq 3$, let $f_r(n)$ denote the maximum number of edges in an *n*-vertex *r*-graph containing no four edges A, B, C, D with $A \cup B = C \cup D$ and $A \cap B = C \cap D = \emptyset.$

Note that $f_3(n) = \text{ex}(n, K_{2,2}^{(3)})$, and in general $f_r(n) \leq \text{ex}(n, K_{2,2}^{(r)})$. Erdős [\[1\]](#page-17-0) asked whether $f_r(n) = O(n^{r-1})$ when $r \geq 3$. Füredi [\[3](#page-17-0)] answered Erdős' question affirmatively. More precisely, he showed that for integers *n, r* with $r \geq 3$ and $n \geq 2r$,

$$
\binom{n-1}{r-1} + \left\lfloor \frac{n-1}{r} \right\rfloor \le f_r(n) < 3.5 \binom{n}{r-1}.\tag{1}
$$

The lower bound is obtained by taking the family of all *r*-element subsets of $[n] :=$ $\{1, 2, \ldots, n\}$ containing a fixed element, say 1, and adding to the family any collection of $\lfloor \frac{n-1}{r} \rfloor$ pairwise disjoint *r*-element subsets not containing 1. For $r = 3$, Füredi also

gave an alternative lower bound construction using Steiner systems. An (*n, r,t*)*-Steiner system* $S(n, r, t)$ is an *r*-uniform hypergraph on [*n*] in which every *t*-element subset of [*n*] is contained in exactly one hyperedge. Füredi observed that if we replace every hyperedge in $S(n, 5, 2)$ by all its 3-element subsets then the resulting triple system has $\binom{n}{2}$ triples and contains no copy of $K_{2,2}^{(3)}$. This slightly improves the lower bound in ([1\)](#page-1-0) for $r = 3$ to $\binom{n}{2}$, for those *n* for which $S(n, 5, 2)$ exists. The upper bound in [\(1](#page-1-0)) was improved by Mubayi and Verstraëte [[9\]](#page-17-0) to $3\binom{n}{r-1} + O(n^{r-2})$. They obtain this bound by first showing $f_3(n) = \text{ex}(n, K_{2,2}^{(3)}) < 3\binom{n}{2} + 6n$, and then combining it with a simple reduction lemma. This was later improved to $f_3(n) \leq \frac{13}{9} {n \choose 2}$ by Pikhurko and Verstraëte [[10\]](#page-17-0).

Motivated by Füredi's work, Mubayi and Verstraëte [\[9](#page-17-0)] initiated the study of the general problem of determining $ex(n, K_{2,t}^{(r)})$ for any $t \geq 2$. They showed that for any $t \geq 2$ and $n \geq 2t$,

$$
\mathrm{ex}(n, K_{2,t}^{(3)}) < t^4 \binom{n}{2},
$$

and that for infinitely many n , $ex(n, K_{2,t}^{(3)}) \geq \frac{2t-1}{3} {n \choose 2}$, where the lower bound is obtained by replacing each hyperedge in $S(n, 2t + 1, 2)$ with all its 3-element subsets.

Mubayi and Verstraëte noted that $g(t) := \lim_{n \to \infty} \exp(n, K_{2,t}^{(3)}) / {n \choose 2}$ exists and raised the question of determining the growth rate of $g(t)$. Their results show that

$$
\frac{2t-1}{3} \le g(t) \le t^4. \tag{2}
$$

In this paper, we prove that as $t \to \infty$,

$$
g(t) = \Theta(t^{1+o(1)}),\tag{3}
$$

showing that their lower bound is close to the truth. More precisely, we prove the following.

Theorem 1. For any $t \geq 2$, we have

$$
\operatorname{ex}(n, K_{2,t}^{(3)}) \le (15t \log t + 40t) n^2.
$$

Notation. Given a hypergraph (or a graph) *H*, throughout the paper, we also denote the set of its edges by H . For example $|H|$ denotes the number of edges of H . Given two vertices x, y in a graph G , let $N_G(x, y)$ denote the common neighborhood of x and y in *G*. We drop the subscript *G* when the context is clear.

2. Proof of Theorem 1: $K_{2,t}^{(3)}$ -free hypergraphs

We will use a special case of a well-known result of Erdős and Kleitman [\[2](#page-17-0)].

Lemma 1. *Let H be a* 3*-graph on* 3*n vertices. Then H contains a* 3*-partite* 3*-graph, with all* parts of size *n*, and with at least $\frac{2}{9}$ |H| hyperedges.

Let us define the sets $A = \{a_1, a_2, \ldots, a_n\}, B = \{b_1, b_2, \ldots, b_n\}$ and $C =$ ${c_1, c_2, \ldots, c_n}$. Throughout the proof we define various 3-partite 3-graphs whose parts are A, B and C .

Suppose *H* is a $K_{2,t}^{(3)}$ -free 3-partite 3-graph on 3*n* vertices with parts *A, B* and *C*. First let us show that it suffices to prove the following inequality.

$$
|H| \le (30t \log t + 80t)n^2. \tag{4}
$$

It is easy to see that inequality (4) and Lemma 1 together imply that any $K_{2,t}^{(3)}$ -free 3-graph on 3*n* vertices contains at most $\frac{9}{2}(30t \log t + 80t)n^2$ hyperedges, from which Theorem [1](#page-2-0) would follow after replacing 3*n* by *n*.

In the remainder of the section, we will prove (4). Let us introduce the following notion of sparsity.

Definition 3 *(q-sparse and q-dense pairs).* Let *q* be a positive integer. Let *G* be a bipartite graph with parts *X,Y*. Let *x, y* be two different vertices such that $x, y \in X$ or $x, y \in Y$. Then we call $\{x, y\}$ a *q*-dense pair of *G* if $|N(x, y)| \ge q$. We call $\{x, y\}$ a *q*-*sparse* pair of *G* if $|N(x, y)| < q$ but *x*, *y* are still contained in a copy of $K_{2,q}$ in *G*. Note that it is possible that $\{x, y\}$ is neither *q*-sparse nor *q*-dense.

The following Procedure $\mathcal{P}(q)$ about making a bipartite graph $K_{2,q}$ -free lies at the heart of the proof. (We think of *q* as the parameter of the Procedure $P(q)$, that is changed throughout the proof.)

In the procedure $\mathcal{P}(q)$, initially for all the pairs $\{x, y\}$ (with $x, y \in A$ and $x, y \in B$) the sets $F(x, y)$, $D(x, y)$, $S(x, y)$ are set to be empty. Then as the edges are being deleted during the procedure, possibly, new *q*-sparse pairs $\{x, y\}$ are being created. When this happens, Step 1 redefines the sets $S(x, y)$, $F(x, y)$, $D(x, y)$ and gives them some nonempty values. (They get non-empty values due to the fact that $\{x, y\}$ is *q*-sparse, which implies that $\{x, y\}$ is contained in a copy of $K_{2,q}$, so there is at least one *q*-dense pair in the common neighborhood of *x, y*.) Therefore, these values stay unchanged throughout the rest of the procedure.

Notice that at the point $S(x, y)$ was redefined, the pair $\{x, y\}$ was *q*-sparse, so the number of common neighbors is less than *q*. Therefore, as $S(x, y)$ is a subset of the common neighborhood of x and y, we also have $|S(x, y)| < q$. Moreover, since $D(x, y)$ is defined as a spanning forest with the vertex set $S(x, y)$, we have $|D(x, y)| \leq |S(x, y)|$. Also, it easily follows from the definition of $F(x, y)$ that $|F(x, y)| = 2 |S(x, y)|$. Finally, notice that $D(x, y)$ does not contain any isolated vertices, because its vertex set $S(x, y)$ spans all of its edges, by definition. Therefore, $|D(x,y)| \geq |S(x,y)|/2$. At the end of the procedure, the sets $F(x, y), D(x, y), S(x, y)$ are renamed as $F'(x, y), D'(x, y), S'(x, y)$. Note also that if a pair $\{x, y\}$ never becomes *q*-sparse in the process then $S'(x, y) =$ $D'(x, y) = F'(x, y) = \emptyset.$

Observation 1. For every $x, y \in A$ and for every $x, y \in B$, we have

(1) |*S* (*x, y*)| *< q*. $|D'(x, y)| \leq |S'(x, y)|$. (3) $|F'(x,y)| = 2|S'(x,y)|.$ (4) $|D'(x,y)| \geq \frac{|S'(x,y)|}{2}$.

For convenience, throughout the paper we (informally) say that the sets $F'(x, y)$, $D'(x, y)$, $S'(x, y)$ are defined by applying Procedure $\mathcal{P}(q)$ to a graph *G* to obtain the graph G' , instead of saying that the input to Procedure $\mathcal{P}(q)$ is G and the output is the graph *G'* and the sets $F'(x, y)$, $D'(x, y)$, $S'(x, y)$. Note that the output is not unique and may depend on the order in which edges were deleted when Procedure $\mathcal{P}(q)$ is applied to a graph *G*, but we just fix one such output and define G' , $F'(x, y)$, $D'(x, y)$, $S'(x, y)$ with respect to that output.

Claim 1. Let the sets $F'(x, y), D'(x, y), S'(x, y)$ (for $x, y \in A$ and for $x, y \in B$) be defined *by applying Procedure* P(*q*) *to a bipartite graph G to obtain G . Let N*(*x, y*) *denote the set of common neighbors of vertices x, y in the graph G. Then*

$$
\frac{|F'(x,y)|}{4} \le |D'(x,y)| < q.
$$

Moreover $|F'(x, y)| \le 2 |N(x, y)|$.

Proof. Combining the parts (3) and (4) of Observation [1,](#page-4-0) we have

$$
|F'(x,y)|/4 \le |D'(x,y)|.
$$

Combining the parts (1) and (2) of Observation [1](#page-4-0), we obtain

$$
|D'(x,y)| < q
$$

proving the first part of the claim.

To prove the second part, notice that $S'(x, y)$ is a common neighborhood of x, y in some subgraph G of G, we have $|S'(x,y)| \leq |N(x,y)|$. Combining this with part (3) of Observation [1,](#page-4-0) we obtain $|F'(x,y)| \leq 2 |N(x,y)|$, as required. \Box

Finally, let us note the following properties of the graph obtained after applying the procedure.

Observation 2. Let the sets $F'(x, y), D'(x, y), S'(x, y)$ (for $x, y \in A$ and $x, y \in B$) be defined by applying Procedure $P(q)$ to a bipartite graph *G* to obtain *G'*. Then

- 1. Every edge *ab* in *G*' is contained in at most $q/2$ members of $\{F'(x,y) : x, y \in A\}$ and in at most $q/2$ members of $\{F'(x, y) : x, y \in B\}$.
- 2. For any set *M* of edges in *G*['], removing the edges of *M* from *G*['] decreases the number of *q*-dense pairs by less than |*M*| */*2.

Definition 4. Let *H* be a 3-partite 3-graph with parts *A, B* and *C*.

For each $1 \leq i \leq n$, let $G_i[H](A, B)$ be the bipartite graph with parts A and B, whose edge set is $\{ab \mid a \in A, b \in B, abc_i \in E(H)\}$. The graphs $G_i[H](B, C)$ and $G_i[H](A, C)$ are defined similarly.

Definition 5 *(Applying Procedure* $\mathcal{P}(q)$ *to a hypergraph*). Let *H* be a 3-partite 3-graph with parts A, B and C . We define the hypergraph H' as follows:

For each $1 \leq i \leq n$, let $G'_{i}[H](A, B), G'_{i}[H](B, C), G'_{i}[H](A, C)$ be the graphs obtained by applying the procedure $\mathcal{P}(q)$ to the graphs $G_i[H](A, B), G_i[H](B, C), G_i[H](A, C)$ respectively.

For each edge *ab* which was removed from $G_i[H](A, B)$ by the procedure $\mathcal{P}(q)$ (i.e. $ab \in G_i[H](A, B) \setminus G_i'[H](A, B)$ we remove the hyperedge abc_i from H (it may have been removed already). Similarly for each edge *bc* (resp. *ac*) which was removed from $G_i[H](B, C)$ (resp. $G_i[H](A, C)$) by the procedure $\mathcal{P}(q)$ we remove the hyperedge a_ibc (resp. $ab_i c$) from H . Let the resulting hypergraph be H' . More precisely, the edge-set of H' is

$$
\{a_i b_j c_k \in H \mid a_i b_j \in G'_k[H](A, B), \, b_j c_k \in G'_i[H](B, C), \, a_i c_k \in G'_j[H](A, C)\}.
$$

We say H' is obtained from H by applying the Procedure $\mathcal{P}(q)$.

Remark 1. Let H' be obtained by applying the Procedure $\mathcal{P}(q)$ to the hypergraph H . Then,

$$
|H| - |H'| \leq \sum_{1 \leq i \leq n} (|G_i[H](A, B)| - |G'_i[H](A, B)|)
$$

+
$$
\sum_{1 \leq i \leq n} (|G_i[H](B, C)| - |G'_i[H](B, C)|)
$$

+
$$
\sum_{1 \leq i \leq n} (|G_i[H](A, C)| - |G'_i[H](A, C)|).
$$

Indeed, if $a_i b_j c_k \in H \setminus H'$ then it is easy to see that $a_i b_j \in G_k[H](A, B) \setminus G'_{k}[H](A, B)$ or $b_jc_k \in G_i[H](B,C) \setminus G_i'[H](B,C)$ or $a_ic_k \in G_j[H](A,C) \setminus G_j'[H](A,C)$.

Lemma 2. Let $q \geq 2$ be an even integer and G be a bipartite graph with parts A and B. *Suppose G is the graph obtained by applying Procedure* $P(q)$ *to G. Then G is* $K_{2,q}$ *-free.*

Proof. Let us define a *q-broom* of size *k* to be a set of *q*-sparse pairs $\{x_0, x_j\}$ (with $1 \leq j \leq k$, and a *q*-dense pair $\{y, z\}$ such that $\{y, z\}$ is contained in the common neighborhood of x_0, x_j for every $1 \leq j \leq k$. Note that either $\{x_0, x_1, \ldots, x_k\} \subseteq A$ and $\{y, z\} \subseteq B$ or $\{x_0, x_1, \ldots, x_k\} \subseteq B$ and $\{y, z\} \subseteq A$.

Claim 2. There is no q-broom of size $q/2$ in G' .

Proof. Suppose by contradiction that there is a set of *q*-sparse pairs $\{x_0, x_j\}$ (with $1 \leq j \leq q/2$, and a *q*-dense pair $\{y, z\}$ such that $\{y, z\}$ is contained in the common neighborhood of x_0 and x_j for every $1 \leq j \leq q/2$. Then the edge x_0y is contained in the sets $F'(x_0, x_j)$ for every $1 \leq j \leq q/2$ $1 \leq j \leq q/2$, which contradicts Observation 2. \Box

Let us suppose for a contradiction (to Lemma 2) that G' contains a copy of $K_{2,q}$. Then *G'* contains at least one *q*-dense pair. Without loss of generality we may assume there is a *q*-dense pair $\{a, a_1\}$ in *A*. Suppose $\{a, a_j\}$ (for $1 \leq j \leq p$) are all the *q*-dense pairs of *G'* containing the vertex *a*. For each $1 \leq j \leq p$, let $B_j \subseteq B$ be the common neighborhood of *a* and a_j in *G*'. By definition, $|B_j| \ge q$ for $1 \le j \le p$.

Claim 3. For any $J \subseteq \{1, 2, ..., p\}$, we have $\left| \bigcup_{j \in J} B_j \right| > 2 |J|$.

Proof. Let us assume for contradiction that there exists a $J \subseteq \{1, 2, \ldots, p\}$ such that $\left|\bigcup_{j\in J}B_j\right| \leq 2|J|$. Let *G*^{*} be obtained from *G*' by deleting all the edges from *a* to $\bigcup_{j\in J} B_j$. For each $j \in J$, the pair $\{a, a_j\}$ has no common neighbor in G^* since we have removed all the edges from *a* to B_j . Thus the pair $\{a, a_j\}$ is not *q*-dense in G^* . So in forming G^* from G' the number of *q*-dense pairs decreases by at least $|J|$, while the number of edges decreases by $|\bigcup_{j\in J} B_j| \leq 2|J|$ edges, contradicting Observation [2.](#page-5-0) \Box

Let $B' = \bigcup_{1 \leq j \leq p} B_j$. For each vertex $v \in B'$ and let

$$
J(v) := \{j \mid v \in B_j\},
$$

$$
D(v) := \{\{v, u\} \mid \{v, u\} \text{ is } q\text{-dense in } G' \text{ and } \{v, u\} \subseteq B_j \text{ for some } j \in J(v)\}.
$$

In the next two claims, we will prove two useful inequalities concerning $|J(v)|$ and $|D(v)|$.

Claim 4. For each $v \in B'$, $|J(v)| > 2 |D(v)|$.

Proof. Suppose for contradiction that there is a vertex $v \in B'$ such that $|J(v)| \leq 2|D(v)|$. Let us delete all the edges of the form va_j , $j \in J(v)$, from G' and let the resulting graph be G^* . Since we deleted $|J(v)|$ edges, by Observation [2](#page-5-0), the number of *q*-dense pairs decreases by less than $|J(v)|/2 \leq |D(v)|$. So there exists $\{v, u\} \in D(v)$ such that $\{v, u\}$ is (still) *q*-dense in G^* . That is, $|N^*(v, u)| \geq q$, where $N^*(v, u)$ denotes the common neighborhood of *v* and *u* in G^* . Clearly each pair of vertices in $N^*(v, u)$ is contained in a copy of $K_{2,q}$ in G^* (and hence in G').

For each pair of vertices in $N^*(v, u)$, since it is contained in a copy of $K_{2,q}$ in G' , it is either *q*-sparse or *q*-dense in *G*'. Note that $a \in N^*(v, u)$. If all the pairs $\{a, x\}$ with $x \in N^*(v, u) \setminus \{a\}$ are *q*-sparse in *G*' then the set of these pairs together with $\{v, u\}$ is a *q*-broom of size at least $q - 1 \ge q/2$ $q - 1 \ge q/2$ in *G*', which contradicts Claim 2. So there exists a vertex $x \in N^*(v, u) \setminus \{a\}$ such that $\{a, x\}$ is *q*-dense in *G*'. Since *v* is adjacent to both *a* and *x*, by the definition of $J(v)$, $x = a_j$ for some $j \in J(v)$. However, by definition, in forming G^* we have removed *vx* from G' . This contradicts $x \in N^*(v, u)$ and completes the proof. \Box

Claim 5.

$$
\sum_{v \in B'} |D(v)| \ge \frac{1}{2} \sum_{1 \le j \le p} |B_j|.
$$

Proof. Fix any *j* with $1 \leq j \leq p$. Since $\{a, a_j\}$ is *q*-dense in *G*', every pair $\{x, y\} \subseteq B_j$ is contained in some copy of $K_{2,q}$ and hence is either *q*-dense or *q*-sparse in *G*[']. Let *v* be any vertex in B_j and let $S(v) = \{y \in B_j \mid \{v, y\} \text{ is } q\text{-sparse in } G'\}$. By definition, the set $\{\{v, y\} \mid y \in S(v)\}$ together with $\{a, a_j\}$ is a *q*-broom of size $|S(v)|$. By Claim [2,](#page-6-0) $|S(v)|$ ≤ $q/2 - 1$ ≤ $|B_j|/2 - 1$. Since $|D(v)| + |S(v)| \ge |B_j| - 1$, we have

$$
|D(v)| \ge \frac{1}{2} |B_j| \tag{5}
$$

Note that (5) holds for every $j = 1, \ldots, p$ and every $v \in B_j$.

Let us define an auxiliary bipartite graph G_{aux} with the parts $\{1, 2, \ldots, p\}$, *B'* such that a vertex $j \in \{1, 2, \ldots, p\}$ is joined to a vertex $y \in B'$ if and only if $y \in B_j$. Let

J be an arbitrary subset of $\{1, 2, \ldots, p\}$. The neighborhood of *J* in G_{aux} is precisely $\bigcup_{j\in J} B_j$. By Claim [3,](#page-6-0) $\bigcup_{j\in J} B_j\big| > 2|J| \ge |J|$. Since this holds for every $J \subseteq \{1, \ldots, p\}$, by Hall's theorem [\[5](#page-17-0)] there exist distinct vertices $w_j \in B_j$, for $j = 1, \ldots, p$. By ([5\)](#page-7-0), for every $j \in \{1, ..., p\}, |D(w_j)| \ge \frac{1}{2} |B_j|$. Hence

$$
\sum_{v \in B'} |D(v)| \ge \sum_{1 \le j \le p} |D(w_j)| \ge \frac{1}{2} \sum_{1 \le j \le p} |B_j|. \quad \Box
$$

If we view ${B_1, \ldots, B_p}$ as a hypergraph on the vertex set B' , then the degree of a vertex $v \in B'$ in it is precisely $|J(v)|$ and the degree sum formula yields

$$
\sum_{v \in B'} |J(v)| = \sum_{1 \le j \le p} |B_j| \,. \tag{6}
$$

Using Claim [4](#page-7-0) and Claim [5](#page-7-0) we have

$$
\sum_{v \in B'} |J(v)| > \sum_{v \in B'} 2|D(v)| \ge 2 \sum_{1 \le j \le p} \frac{1}{2}|B_j| = \sum_{1 \le j \le p} |B_j|,
$$

which contradicts (6). This completes proof of Lemma [2.](#page-6-0) \Box

In the next subsection we will prove a general lemma about making an arbitrary hypergraph $K_{1,2,q}$ -free (for any given value of q). This lemma is used several times in the following subsections.

2.1. Applying Procedure $\mathcal{P}(q)$ to an arbitrary hypergraph *H*

Let *q* be an even integer and let $q \geq t$. Let *H* be an arbitrary $K_{2,t}^{(3)}$ -free 3-partite 3graph with parts *A, B* and *C*. In this subsection we will prove the following lemma that estimates the number of edges removed from the graphs $G_i = G_i[H](A, B)$ for $1 \leq i \leq n$, when the Procedure $\mathcal{P}(q)$ is applied to them. This lemma together with Remark [1](#page-6-0) will allow us to estimate the number of edges removed from *H* when the Procedure $\mathcal{P}(q)$ is applied to it.

Throughout this subsection, $N_i(x, y)$ denotes the set of common neighbors of the vertices x, y in the graph G_i .

Lemma 3. Let $q \ge t$ be an even integer. Let H be an arbitrary $K_{2,t}^{(3)}$ -free 3-partite 3-graph with parts A, B and C. Let $G_i = G_i[H](A, B)$ for $1 \leq i \leq n$. For each $1 \leq i \leq n$ and any $x, y \in A$ or $x, y \in B$, let $F_i'(x, y)$ be defined by applying the procedure $\mathcal{P}(q)$ to G_i *and let the resulting graph be G ⁱ. Then,*

$$
\sum_{1 \leq i \leq n} |G_i \setminus G_i'| < \frac{2}{q} \left(\sum_{u,v \in A} \sum_{1 \leq i \leq n} |F_i'(u,v)| + \sum_{u,v \in B} \sum_{1 \leq i \leq n} |F_i'(u,v)| \right) + 2tn^2.
$$

Proof of Lemma [3.](#page-8-0) First let us prove the following claim.

Claim 6. Let $u, v \in A$ or $u, v \in B$. Then $\{u, v\}$ is q-dense in less than t of the graphs $G_i, 1 \leq i \leq n$.

Proof. Without loss of generality, suppose that $u, v \in A$. Suppose for contradiction that $\{u, v\}$ is q-dense in t of the graphs G_i , $1 \leq i \leq n$. Without loss of generality suppose $\{u, v\}$ is *q*-dense in G_1, \ldots, G_t . Then $|N_i(u, v)| \ge q \ge t$ for $i = 1, \ldots, t$. Therefore, we can greedily choose *t* distinct vertices y_1, \ldots, y_t such that for each $i \in [t], y_i \in N_i(u, v)$. For each $i \in [t]$, since $y_i \in N_i(u, v)$ we have $uy_i c_i, vy_i c_i \in E(H)$. However, the set of hyperedges $\{uy_ic_i, vy_ic_i \in E(H) \mid 1 \leq i \leq t\}$ forms a copy of $K_{2,t}^{(3)}$ in *H*, a contradiction. \Box

Note that when procedure $\mathcal{P}(q)$ is applied to G_i (to obtain G_i'), Step 1 and Step 2 may be applied several times (and each time one of these steps is applied it may delete an edge of G_i).

For each $i \in [n]$, let m_i denote the number of q-dense pairs of G_i . By Claim 6, we know that each pair $\{u, v\}$ with $u, v \in A$ or $u, v \in B$, is q-dense in less than t different graphs G_i (for $1 \leq i \leq n$). Therefore,

$$
\sum_{1 \le i \le n} m_i \le \sum_{u,v \in A} (t-1) + \sum_{u,v \in B} (t-1) = 2 {n \choose 2} (t-1). \tag{7}
$$

For each $i \in [n]$, let α_i denote the total number of edges that were removed by Step 1 when procedure $\mathcal{P}(q)$ is applied to G_i and β_i be the number of edges removed by Step 2 when procedure $\mathcal{P}(q)$ is applied to G_i . Then $\alpha_i + \beta_i = |G_i \setminus G_i'|$, so $\sum_{i=1}^n \alpha_i + \sum_{i=1}^n \beta_i =$ $\sum_{i=1}^n |G_i \setminus G'_i|.$

First, we bound $\sum_{i=1}^{n} \beta_i$. Let $i \in [n]$. Observe that whenever a set *M* of edges were removed by Step 2 of Procedure $P(q)$ applied to G_i , the number of *q*-dense pairs decreased by at least $|M|/2$. Hence $\beta_i \leq 2m_i$. So summing up over all $1 \leq i \leq n$, and using (7), we get

$$
\sum_{1 \le i \le n} \beta_i \le 2 \sum_{1 \le i \le n} m_i \le 2n(n-1)(t-1) < 2tn^2. \tag{8}
$$

Next, we bound $\sum_{i=1}^{n} \alpha_i$. Let $i \in [n]$. If an edge xy were removed from G_i by Step 1 of the procedure $\mathcal{P}(q)$ then there are vertices $z_1, z_2, \ldots, z_{q/2}$ such that $xy \in F'_i(x, z_j)$ for every $j \in \{1, 2, ..., q/2\}$ or $xy \in F'_{i}(y, z_{j})$ for every $j \in \{1, 2, ..., q/2\}$. So

$$
\alpha_i \leq \frac{1}{q/2} \left(\sum_{u,v \in A} |F'_i(u,v)| + \sum_{u,v \in B} |F'_i(u,v)| \right).
$$

Therefore,

B. Ergemlidze et al. / Journal of Combinatorial Theory, Series A 176 (2020) 105299 11

$$
\sum_{1 \leq i \leq n} \alpha_i \leq \frac{2}{q} \left(\sum_{1 \leq i \leq n} \sum_{u,v \in A} |F'_i(u,v)| + \sum_{1 \leq i \leq n} \sum_{u,v \in B} |F'_i(u,v)| \right).
$$

This is equivalent to the following.

$$
\sum_{1 \le i \le n} \alpha_i \le \frac{2}{q} \left(\sum_{u,v \in A} \sum_{1 \le i \le n} |F'_i(u,v)| + \sum_{u,v \in B} \sum_{1 \le i \le n} |F'_i(u,v)| \right).
$$
 (9)

Combining this inequality with ([8\)](#page-9-0) completes the proof of Lemma [3.](#page-8-0) \Box

2.2. The overall plan

Let us define the sequence q_0, q_1, \ldots, q_k as follows. Let $q_0 = 2^l$ where *l* is an integer such that $q_0 = 2^l \le t^2 < 2^{l+1} = 2q_0$. For each $1 \le j \le k$, let $q_j = \frac{q_{j-1}}{2}$ and $q_k \ge t > \frac{q_k}{2}$. Clearly $\frac{q_0}{q_k} = 2^k$, moreover

$$
2^k = \frac{q_0}{q_k} \le \frac{t^2}{t} = t.
$$

So we have

$$
k \le \log t. \tag{10}
$$

Now we apply the procedure $\mathcal{P}(q_0)$ to the hypergraph *H* (recall Definition [5](#page-5-0)) to obtain a $K_{1,2,q_0}$ -free hypergraph H_0 . For each $0 \leq j \leq k$ we obtain $K_{1,2,q_{i+1}}$ -free hypergraph H_{j+1} by applying the procedure $\mathcal{P}(q_{j+1})$ to the hypergraph H_j .

This way, in the end we will get a $K_{1,2,q_k}$ -free hypergraph H_k . In the following section, we will upper bound $|H| - |H_0|$. Then in the next section, using the information that H_i is $K_{1,2,q_i}$ -free, we will upper bound $|H_{j+1}|-|H_j|$ for each $0 \leq j < k$. Then we sum up these bounds to upper bound the total number of deleted edges (i.e., $|H| - |H_k|$) from *H* to obtain H_k . Finally, we bound the size of H_k , which will provide us the desired bound on the size of *H*.

*2.3. Making H K*1*,*2*,q*⁰ *-free*

First, we are going to prove an auxiliary lemma that is similar to Lemma A.4 of [\[9](#page-17-0)]. In an edge-colored multigraph *G*, an *s-frame* is a collection of *s* edges all of different colors such that it is possible to pick one endpoint from each edge with all the selected endpoints being distinct.

Lemma 4. *Let G be an edge-colored multigraph with e edges such that each edge has* multiplicity at most p and each color class has size at most q. If G contains no t-frame $then |G| \leq {t-1 \choose 2}p + tq.$

Proof. Consider a maximum frame *S*, say with edges e_1, \ldots, e_s such that for every $i \in \{1, 2, \ldots, s\},\ e_i$ has color *i* and that there exist $x_1 \in e_1, x_2 \in e_2, \ldots, x_s \in e_s$ with x_1, \ldots, x_s being distinct. By our assumption, $s \leq t-1$. Let *f* be any edge with a color not in [*s*]. Then both vertices of *f* must be in $\{x_1, \ldots, x_s\}$, otherwise e_1, \ldots, e_s, f give a larger frame, a contradiction. On the other hand, each edge with both of its vertices in ${x_1, \ldots, x_s}$ has multiplicity at most *p*. Hence there are at most ${s \choose 2} p$ edges with colors not in $\{1, 2, \ldots, s\}$. The number of edges with color in $\{1, 2, \ldots, s\}$ is at most *sq* by our assumption. So $|G| \leq {s \choose 2} p + sq \leq {t-1 \choose 2} p + tq$. \Box

Let us recall that *H* is 3 partite $K_{2,t}^{(3)}$ -free hypergraph with *A, B, C*. For convenience we denote $G_i = G_i[H](A, B)$ where $1 \leq i \leq n$. For each $1 \leq i \leq n$ and any $x, y \in A$ or $x, y \in B$, let $F'_{i}(x, y)$, $D'_{i}(x, y)$ and $S'_{i}(x, y)$ be defined by applying the procedure $\mathcal{P}(q_0)$ on G_i and let the obtained graph be G'_i .

First, observe that $t^2/2 < q_0 \leq t^2$ according to our definition.

Claim 7. Let $u, v \in A$ or $u, v \in B$. Then $\sum_{1 \leq i \leq n} |F'_i(u, v)| \leq 6t^3$.

Proof. Let *D*[∗] be an edge-colored multigraph in which a pair of vertices *e* is an edge of color $i \in [n]$ whenever *e* is an edge of $D'_i(u, v)$. The number of edges of color i in D^* is $|D'_i(u, v)|$. By Claim [1](#page-4-0) we have $|D'_i(u, v)| < q_0$. Hence the number of edges in each color class of D^* is less than q_0 .

Let *xy* be an arbitrary edge of D^* and let $I = \{i \in [n] \mid xy \in D'_i(u, v)\}$. For each $i \in I$, the pair $\{x, y\}$ is q_0 -dense in G_i by the definition of $D'_i(u, v)$. Therefore, by Claim [6,](#page-9-0) we have $|I| < t$. So *xy* has multiplicity less than *t* in D^* . Since *xy* is arbitrary, the multiplicity of each edge of *D*[∗] is less than *t*.

Next, observe that *D*[∗] contains no *t*-frame. Indeed, otherwise without loss of generality we may assume that D^* contains t edges x_1y_1, \ldots, x_ty_t , where x_iy_i has color i for each $i \in [t]$ and y_1, \ldots, y_t are distinct. For each $i \in [t]$ since $x_i y_i \in D_i'(u, v)$, in particular $y_i \in N_i(u, v)$ (where $N_i(u, v)$ denotes the common neighborhood of *u* and *v* in G_i), which means that $uy_ic_i, vy_ic_i \in H$. But now, $\{uy_ic_i, vy_ic_i \mid i \in [t]\}$ forms a copy of $K_{2,t}^{(3)}$, contradicting *H* being $K_{2,t}^{(3)}$ -free.

Therefore, applying Lemma [4](#page-10-0), we have $|D^*| \leq {t-1 \choose 2}t + tq_0$ $|D^*| \leq {t-1 \choose 2}t + tq_0$ $|D^*| \leq {t-1 \choose 2}t + tq_0$. By Claim 1, we have

$$
\frac{|F_i'(u,v)|}{4} \le |D_i'(u,v)|.
$$

So

$$
\sum_{1 \leq i \leq n} \frac{|F'_i(u,v)|}{4} \leq \sum_{1 \leq i \leq n} |D'_i(u,v)| = |D^*| \leq {t-1 \choose 2}t + tq_0 < \frac{3}{2}t^3,
$$

which proves the claim. \Box

By Lemma [3](#page-8-0) we have

$$
\sum_{1 \leq i \leq n} |G_i \setminus G_i'| < \frac{2}{q_0} \left(\sum_{u,v \in A} \sum_{1 \leq i \leq n} |F_i'(u,v)| + \sum_{u,v \in B} \sum_{1 \leq i \leq n} |F_i'(u,v)| \right) + 2tn^2.
$$

Combining it with Claim [7](#page-11-0) we get

$$
\sum_{1 \le i \le n} |G_i \setminus G_i'| < \frac{2}{q_0} \left(\sum_{u,v \in A} 6t^3 + \sum_{u,v \in B} 6t^3 \right) + 2tn^2.
$$

Therefore, as $q_0 > t^2/2$, we have

$$
\sum_{1 \le i \le n} |G_i \setminus G_i'| < \frac{4}{t^2} \left(12t^3 \binom{n}{2} \right) + 2tn^2 < 26tn^2.
$$

So,

$$
\sum_{1 \leq i \leq n} |G_i \setminus G_i'| = \sum_{1 \leq i \leq n} |G_i[H](A, B) \setminus G_i'[H](A, B)| < 26tn^2.
$$

By symmetry, using the same arguments, we have

$$
\sum_{1 \leq i \leq n} |G_i[H](B, C) \setminus G_i'[H](B, C)| < 26tn^2,
$$

and

$$
\sum_{1 \le i \le n} |G_i[H](A, C) \setminus G_i'[H](A, C)| < 26tn^2.
$$

Therefore, by Remark [1](#page-6-0), we have

$$
|H| - |H_0| < 78tn^2. \tag{11}
$$

2.4. *Making a* $K_{1,2,q}$ *, -free hypergraph* $K_{1,2,q_{i+1}}$ *-free*

In this subsection, we fix a *j* with $0 \leq j < k$. Recall that H_j is $K_{1,2,q_j}$ -free, and H_{j+1} is obtained by applying the $\mathcal{P}(q_{j+1})$ to H_j . Our goal in this subsection is to estimate $|H_j| - |H_{j+1}|$. The key difference between arguments in this subsection and in the previous subsection is that now in addition to H_j being $K_{2,t}^{(3)}$ -free we can also utilize the fact that H_j is $K_{1,2,q_j}$ -free. In particular, this extra condition leads to Claim [8,](#page-13-0) which improves upon Claim [7](#page-11-0).

For convenience of notation, in this subsection, let $G_i = G_i[H_i](A, B)$ for each $1 \leq$ $i \leq n$. For every $1 \leq i \leq n$ and every $u, v \in A$ or $u, v \in B$ let the sets $F_i'(u, v)$ and $D'_{i}(u, v)$ be defined by applying the procedure $\mathcal{P}(q_{j+1})$ to the graph G_i , to obtain the graph G_i' .

Claim 8. Let $u, v \in A$ or $u, v \in B$. Then $\sum_{1 \leq i \leq n} |F'_i(u, v)| < 2q_j t$.

Proof. For each $i \in [n]$ we denote the set of common neighbors of u, v in G_i as $N_i(x, y)$. For each $i \in [n]$, since H_j is $K_{1,2,q_j}$ -free, G_i is K_{2,q_j} -free and so $|N_i(u,v)| < q_j$.

Without loss of generality let us assume $u, v \in A$. For each vertex *w* of *B*, let $I_w =$ $\{i \in \{1, 2, \ldots, n\} \mid w \in N_i(u, v)\}.$ We claim that $|I_w| < q_i$. Indeed, for each $i \in I_w$, we have $uwc_i, vwc_i \in H_i$. So the set of hyperedges $\{uwc_i, vwc_i \mid i \in I_w\}$ form a copy of $K_{1,2,|I_w|}$ in H_j . Thus if $|I_w| \ge q_j$, then H_j contains a copy of $K_{1,2,q_j}$, a contradiction. Therefore, $|I_w| < q_j$, as desired.

Consider an auxiliary bipartite graph *GAUX* with parts *B* and [*n*] where the vertex $i \in [n]$ is adjacent to $b \in B$ in G_{AUX} if and only if $b \in N_i(u, v)$. Then by the discussion in the previous paragraph, each vertex $w \in B$ has degree $|I_w| < q_j$, and each vertex $i \in [n]$ has degree $|N_i(u, v)| < q_i$. In other words, the maximum degree in G_{AUX} is less than q_i .

We claim that *GAUX* does not contain a matching of size *t*. Indeed, suppose for a contradiction that the edges $i_1b_{i_1}, i_2b_{i_2}, \ldots, i_t b_{i_t}$ (i.e., $b_{i_l} \in N_{i_l}(u, v)$ for $1 \leq l \leq t$) form a matching of size *t* in G_{AUX} . Then the set of hyperedges $ub_i, c_i, v_{bi_i}c_i, 1 \leq l \leq t$, form a copy of $K_{2,t}^{(3)}$ in H_j , a contradiction, as desired.

Since G_{AUX} does not contain a matching of size *t*, by the König-Egerváry theorem it has a vertex cover of size less than *t*. This fact combined with the fact that the maximum degree of *GAUX* is less than *q^j* , implies that the number of edges of *GAUX* is less than $q_j t$. On the other hand, the number of edges in G_{AUX} is $\sum_{i \in [n]} |N_i(u, v)|$. Therefore, $\sum_{i\in[n]} |N_i(u,v)| < q_j t$. This, combined with the fact that for each $i \in [n]$, $|N_i(u, v)| \ge |F'_i(u, v)|/2$ (see Claim [1](#page-4-0)), completes the proof of the lemma. \Box

By Lemma [3](#page-8-0), we have

$$
\sum_{1 \leq i \leq n} |G_i \setminus G'_i| \leq \frac{2}{q_{j+1}} \left(\sum_{u,v,\in A} \sum_{1 \leq i \leq n} |F'_i(u,v)| + \sum_{u,v,\in B} \sum_{1 \leq i \leq n} |F'_i(u,v)| \right) + 2tn^2.
$$

Now using Claim 8, we have

$$
\sum_{1 \le i \le n} |G_i \setminus G_i'| \le \frac{8q_j t}{q_{j+1}} {n \choose 2} + 2tn^2 < \frac{4tq_j}{q_{j+1}}n^2 + 2tn^2.
$$

Since $q_{j+1} = q_j/2$, we have

B. Ergemlidze et al. / Journal of Combinatorial Theory, Series A 176 (2020) 105299 15

$$
\sum_{1 \le i \le n} |G_i \setminus G_i'| < 8tn^2 + 2tn^2 = 10tn^2.
$$

So,

$$
\sum_{1 \leq i \leq n} |G_i \setminus G_i'| = \sum_{1 \leq i \leq n} |G_i[H_j](A, B) \setminus G_i'[H_j](A, B)| < 10tn^2.
$$

By symmetry, using the same arguments, we have

$$
\sum_{1 \leq i \leq n} |G_i[H_j](B, C) \setminus G_i'[H_j](B, C)| < 10tn^2,
$$

and

$$
\sum_{1 \leq i \leq n} |G_i[H_j](A,C) \setminus G_i'[H_j](A,C)| < 10tn^2.
$$

Therefore, by Remark [1](#page-6-0), we have

$$
|H_j| - |H_{j+1}| < 30 \n\text{t}^2. \tag{12}
$$

2.5. Putting it all together

By (11) (11) and (12) we have

$$
|H| - |H_k| = |H| - |H_0| + \sum_{0 \le j < k} (|H_j| - |H_{j+1}|) < 78tn^2 + k(30tn^2).
$$

By ([10\)](#page-10-0) we have $k \leq \log t$, so we obtain,

$$
|H| - |H_k| < 78tn^2 + 30t \log tn^2. \tag{13}
$$

Notice that H_k is $K_{1,2,q_k}$ -free and $q_k < 2t$. Therefore H_k is $K_{1,2,2t}$ -free. Moreover, we know that the hypergraph H_k is 3-partite and $K_{2,t}^{(3)}$ -free with parts A, B, C (as it is a subhypergraph of H). Now we bound the size of H_k .

Claim 9. We have $|H_k| \leq 2tn^2$.

Proof. Suppose for a contradiction that $|H_k| > 2tn^2$. For any pair $\{a, b\}$ of vertices with *a* ∈ *A* and *b* ∈ *B*, let codeg(*a, b*) denote the number of hyperedges of H_k containing the pair $\{a, b\}$. Then the number of copies of $K_{2,1,1}$ in H_k of the form $\{abc, a'bc\}$ where $a, a' \in A, b \in B, c \in C$ is

$$
\sum_{\substack{b,c\\b\in B,c\in C}}\binom{\text{codeg}(b,c)}{2}.
$$

As the average codegree (over all the pairs $b \in B$, $c \in C$) is more than 2t, by convexity, this expression is more than

$$
\binom{2t}{2}n^2 > (2t-1)^2 \binom{n}{2}.
$$

This means there exist a pair $a, a' \in A$ and a set of $(2t-1)^2 + 1 > (t-1)(2t-1) + 1$ pairs $S := \{bc \mid b \in B, c \in C\}$ such that $abc, a'bc \in E(H_k)$ whenever $bc \in S$. Let G_{AUX} be a bipartite graph whose edges are elements of *S*. Since G_{AUX} has $|S| \ge (t-1)(2t-1) + 1$ edges, it either contains a matching *M* with *t* edges or a vertex *v* of degree 2*t* (see Lemma A.3 in [[9\]](#page-17-0) or the last paragraph of our proof of Claim [8](#page-13-0) for a proof). In the former case, the set of all hyperedges of the form abc , $a'bc$ with $bc \in M$, form a copy of $K_{2,t}^{(3)}$ in H_k , a contradiction. In the latter case, let u_1, u_2, \ldots, u_{2t} be the neighbors of *v* in G_{AUX} . Then the set of hyperedges $\{avu_i, a'vu_i \mid 1 \leq i \leq 2t\}$ form a copy of $K_{1,2,2t}$ in H_k , a contradiction again. This completes the proof of the claim. \Box

Combining [\(13](#page-14-0)) with Claim [9,](#page-14-0) we have $|H| \leq 80tn^2 + 30t \log tn^2$, thus proving ([4\)](#page-3-0), which implies Theorem [1,](#page-2-0) as desired.

3. Concluding remarks

Recall that given a bipartite graph *G* with an ordered bipartition (X, Y) , where $Y =$ $\{y_1, \ldots, y_m\}$, $G_{X,Y}^{(r)}$ is the *r*-graph with vertex set $(X \cup Y) \cup (\bigcup_{i=1}^m Y_i)$ and edge set $\bigcup_{i=1}^{m}$ {*e* ∪ *Y*_{*i*} : *e* ∈ *E*(*G*)*, y*_{*i*} ∈ *e*}, where *Y*₁*, ..., Y_m* are disjoint (*r* − 2)-sets that are disjoint from $X \cup Y$. The proof of Theorem 1.4 in [\[9](#page-17-0)] implies the following.

Proposition 1. Let $n, r \geq 3$ be integers and G a bipartite graph with an ordered bipartition (X, Y) *. There exists a constant* c_r *depending only on r such that*

$$
\mathrm{ex}(n, G_{X,Y}^{(r)}) \le c_r n^{r-3} \cdot \mathrm{ex}(n, G_{X,Y}^{(3)})
$$
.

Thus, by Theorem [1](#page-2-0) and Proposition 1, for all $r \geq 4$, we have $ex(n, K_{2,t}^{(r)}) \leq$ $c_r t \log t {n \choose r-1}$ for some constant c_r , depending only on *r*. On the other hand, taking the family of all *r*-element subsets of [*n*] containing a fixed element shows that $\text{ex}(n, K_{2,t}^{(r)}) \geq {n-1 \choose r-1}$. Recall that in the $r=3$ case, a better lower bound of $\Omega(t{n \choose 2})$ was shown by Mubayi and Verstraëte [[9\]](#page-17-0). For $r = 4$, we are able to improve the lower bound to $\Omega(tbinn{n})$ as follows.

Proposition 2. *We have*

$$
\operatorname{ex}(n, K_{2,t}^{(4)}) \ge (1 + o(1))\frac{t-1}{8}n^3.
$$

Proof. (Sketch.) Consider a $K_{2,t}$ -free graph *G* with $(1+o(1))\frac{\sqrt{t-1}}{2}n^{3/2}$ edges where each vertex has degree $(1+o(1))\sqrt{(t-1)}\sqrt{n}$. (Such a graph exists by a construction of Füredi [\[3](#page-17-0)].) Let us a define a 4-graph $H = \{abcd \mid ab, cd \in G \text{ and } ac, ad, bc, bd \notin G\}$. In other words, let the edges of *H* be the vertex sets of induced 2-matchings in *G*. Via standard counting, it is easy to show that $|H| = (1+o(1))\frac{t-1}{8}n^3$. It remains to show *H* is $K_{2,t}^{(4)}$ -free.

Claim 10. If $axyz, bxyz \in H$, then there is a vertex $c \in \{x, y, z\}$ such that $ac, bc \in G$.

Proof. By our assumption, $\{a, x, y, z\}$ and $\{b, x, y, z\}$ both induce a 2-matching in *G*. Without loss of generality, suppose $ax, yz \in G$. If $bx \in G$ then we are done. Otherwise, we have $b\psi, xz \in G$ or $bz, xy \in G$, both contradicting $\{ax, yz\}$ being an induced matching in G . \Box

Suppose for contradiction that *H* has a copy of $K_{2,t}^{(4)}$ whose edgeset is $\{ax_iy_iz_i, bx_iy_iz_i\}$ $1 \leq i \leq t$. By Claim 10, for each $1 \leq i \leq t$, there exists a vertex $w_i \in \{x_i, y_i, z_i\}$ such that $aw_i, bw_i \in G$. This yields a copy of $K_{2,t}$ in G , a contradiction. \Box

For $r \geq 5$, we do not yet have a lower bound that is asymptotically larger than $\binom{n-1}{r-1}$. It would be interesting to narrow the gap between the lower and upper bounds on $ex(n, K_{2,t}^{(r)})$.

It will be interesting to have a systematic study of the function $ex(n, G_{X,Y}^{(r)})$. Mubayi and Verstraëte [[9\]](#page-17-0) showed that $ex(n, K_{s,t}^{(3)}) = O(n^{3-1/s})$ and that if $t > (s-1)! > 0$ then $\exp(n, K_{s,t}^{(3)}) = \Omega(n^{3-2/s})$ and speculated that $n^{3-2/s}$ is the correct order of magnitude. The case when *G* is a tree is studied in [[4\]](#page-17-0), where the problem considered there is slightly more general. The case when *G* is an even cycle has also been studied. Let $C_{2t}^{(r)}$ denote $G_{X,Y}^{(r)}$ where *G* is the even cycle C_{2t} of length 2*t*. It was shown by Jiang and Liu [\[6](#page-17-0)] that $c_1 t\binom{n}{r-1} \leq \exp(n, C_{2t}^{(r)}) \leq c_2 t^5\binom{n}{r-1}$, for some positive constants c_1, c_2 depending on *r*. Using results in this paper and new ideas, we are able to narrow the gap to $c_1 t {n \choose r-1} \le \exp(n, C_2^{(r)}) \le c_2 t^2 \log t {n \choose r-1}$, for some positive constants c_1, c_2 depending on *r*. We would like to postpone this and other results on the topic for a future paper.

Finally, motivated by results on $K_{2,t}^{(r)}$ and $C_{2t}^{(r)}$, we pose the following question.

Question 1. Let $r \geq 3$. Let G be the family of bipartite graphs G with an ordered bipartition (X, Y) *in which every vertex in Y has degree at most* 2 *in G*. *Is it true that* $\forall G \in \mathcal{G}$ *there is a constant c depending on G such that* $ex(n, G_{X,Y}^{(r)}) \le c\binom{n}{r-1}$?

Acknowledgments

The authors thank the anonymous referees for their valuable comments. Ergemlidze and Methuku are also grateful for the generous hospitality of Miami University.

References

- [1] P. Erdős, Problems and results in [combinatorial](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibF8712123F05A88C6AEAB005C241791E1s1) analysis, in: Proceedings of the Eighth Southeastern Conference on [Combinatorics,](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibF8712123F05A88C6AEAB005C241791E1s1) Graph Theory and Computing, Louisana State University, Baton Rouge, LA, 1977, in: Congressus [Numerantium,](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibF8712123F05A88C6AEAB005C241791E1s1) vol. XIX, Utilitas Mathematics, Winnipeg, [Manchester,](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibF8712123F05A88C6AEAB005C241791E1s1) 1977, pp. 3–12.
- [2] P. Erdős, D. Kleitman, On coloring graphs to maximize the proportion of [multicolored](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib6AA451B53D492A8F5A2FA1FA2855BE8Bs1) *k*-edges, J. Comb. Theory 5 (2) (1968) [164–169.](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib6AA451B53D492A8F5A2FA1FA2855BE8Bs1)
- [3] Z. Füredi, Hypergraphs in which all disjoint pairs have distinct unions, [Combinatorica](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibE8E2523482CA7692D15D084CEC47AF6Es1) 4 (2–3) (1984) [161–168.](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibE8E2523482CA7692D15D084CEC47AF6Es1)
- [4] Z. Füredi, T. Jiang, D. Mubayi, A. Kostochka, J. Verstraëte, The extremal number for (*a, b*)-paths and other hypergraph trees, Manuscript, 19 pp. (2018).
- [5] P. Hall, On [representatives](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib75002FE48442A02A55971F48CEBBE3E4s1) of subsets, J. Lond. Math. Soc. 10 (1935) 26–30.
- [6] T. Jiang, X. Liu, Turán numbers of enlarged cycles, Manuscript.
- [7] G. Katona, T. Nemetz, M. [Simonovits,](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib3662D9232A711D362B6FC5F45E3A1260s1) On a problem of Turán in the theory of graphs, Mat. Lapok 15 (1964) [228–238.](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib3662D9232A711D362B6FC5F45E3A1260s1)
- [8] P. Keevash, [Hypergraph](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib54FD86496FAE01D7BFC63E9E67454184s1) Turán problems, Surv. Comb. 392 (2011) 83–140.
- [9] D. Mubayi, J. Verstraëte, A [hypergraph](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib77D96FC8E5C080038B043EAD02DADFC3s1) extension of the bipartite Turán problem, J. Comb. Theory, Ser. A 106 (2) (2004) [237–253.](http://refhub.elsevier.com/S0097-3165(20)30091-1/bib77D96FC8E5C080038B043EAD02DADFC3s1)
- [10] O. Pikhurko, J. Verstraëte, The maximum size of [hypergraphs](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibA565153DF227B0510B1C789D5CDC39ECs1) without generalized 4-cycles, J. Comb. Theory, Ser. A 116 (3) (2009) [637–649.](http://refhub.elsevier.com/S0097-3165(20)30091-1/bibA565153DF227B0510B1C789D5CDC39ECs1)