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An ordered r-graph is an r-uniform hypergraph whose vertex 
set is linearly ordered. Given 2 ≤ k ≤ r, an ordered r-graph H
is interval k-partite if there exist at least k disjoint intervals 
in the ordering such that every edge of H has nonempty 
intersection with each of the intervals and is contained in their 
union.
Our main result implies that if α > k − 1, then for each 
d > 0 every n-vertex ordered r-graph with d nα edges has for 
some m ≤ n an m-vertex interval k-partite subgraph with 
Ω(d mα) edges. This is an extension to ordered r-graphs of 
the observation by Erdős and Kleitman that every r-graph 
contains an r-partite subgraph with a constant proportion of 
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the edges. The restriction α > k− 1 is sharp. We also present 
applications of the main result to several extremal problems 
for ordered hypergraphs.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We let [n] = {1, . . . , n} and use standard asymptotic notation; in particular, given 
functions f, g : Z+ → R+, we write f(n) = Ω(g(n)) if there exists c > 0 such that 
f(n) ≥ cg(n) for all n ≥ 1. We also write f(n) = O(g(n)) if g(n) = Ω(f(n)), and write 
f(n) = Θ(g(n)) if both, f(n) = Ω(g(n)) and f(n) = O(g(n)). We associate a hypergraph 
H with its edge set and write e(H) for the number of the edges and v(H) for the number 
of the vertices in H.

An r-graph is a hypergraph with all edges of size r; it is r-partite if there is a partition 
of the vertex set into r parts such that every edge has exactly one vertex in each part. 
The following observation is due to Erdős and Kleitman:

Proposition A. (Erdős-Kleitman [6]) Every r-graph contains an r-partite subgraph with 
at least r!/rr proportion of its edges.

In particular, any extremal problem for r-graphs can be reduced to the corresponding 
extremal problem where the underlying r-graph is r-partite with the loss of only a 
constant multiplicative factor. In this paper, we consider analogs of this result in the 
ordered hypergraph setting and illustrate their use on some ordered extremal hypergraph 
problems.

An ordered hypergraph is a hypergraph together with a linear ordering of its vertex set. 
Extremal problems on ordered hypergraphs arose from several sources, in particular, from 
combinatorial geometry, enumeration of permutations with forbidden subpermutations, 
and the study of matrices with forbidden submatrices – see for instance Anstee [1,2], 
Füredi and Hajnal [11], Pach and Tardos [19], Marcus and Tardos [16], Tardos [22], 
Fox [8].

Let V be a linearly ordered set. An interval in V is a set of consecutive elements in 
the ordering. For A, B ⊂ V , we write A < B to mean that a < b for every a ∈ A, b ∈ B. 
A key definition in our work is the following:

Definition 1. Let k be a positive integer. An ordered r-graph H is interval k-partite if for 
some � ≥ k there are intervals I1 < I2 < · · · < I� such that every edge of H is contained 
in I1 ∪ . . . ∪ I� and has nonempty intersection with Ij for each 1 ≤ j ≤ �.

We allow � in the definition be larger than k because the more parts we have, the 
more structure on H is imposed. In particular, an ordered r-graph H is interval r-
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partite if there exist intervals I1 < I2 < · · · < Ir in V (G) such that every edge of H
contains exactly one vertex from each Ii. In these terms, the Erdős–Kleitman observation, 
Proposition A, does not hold for ordered graphs as witnessed by the following simple 
example: every interval bipartite subgraph of the ordered graph with vertex set [2n] and 
edge set {{2i − 1, 2i} : 1 ≤ i ≤ n} has at most one edge. However, Pach and Tardos [19]
showed that dense ordered graphs contain relatively dense interval bipartite graphs using 
the following result:

Theorem B. (Pach and Tardos [19]) Each ordered n-vertex graph G is the union of edge-
disjoint subgraphs Gi for 0 ≤ i ≤ �log2 n	 such that each Gi is a union of at most 2i
interval bipartite graphs with parts of size at most 
n/2i�.

Our first main result is the following ordered hypergraph analog of Theorem B:

Theorem 1.1. Let 2 ≤ k ≤ r ≤ n be integers. Then every ordered n-vertex r-graph H is 
the union of edge-disjoint ordered r-graphs Hi for 0 ≤ i ≤ �log2 n	 such that each Hi is 
a union of at most 1

(k−1)!
∑r

j=k

(2k−2
j

)
· 2i(k−1) interval k-partite r-graphs with parts of 

size at most 
n/2i�.

For k = r = 2, Theorem 1.1 corresponds to Theorem B. Note that Theorem B easily 
implies the following, which appears implicitly in Pach and Tardos [19]:

Theorem C. For each real α ≥ 1, d > 0 and n > 1, if G is an ordered n-vertex graph 
with e(G) = dnα, then for some m ∈ [n], G contains an interval bipartite subgraph G′

with parts of size at most m and

e(G′) =

⎧⎪⎪⎨
⎪⎪⎩

Ω
( dmα

log2 n

)
if α = 1

Ω(dmα) if α > 1

(1)

As observed by Pach and Tardos [19], the logarithmic factor in (1) for α = 1 is 
necessary: for the ordered path P with edges {vi, vi+1} : 1 ≤ i ≤ 4 such that v2 < v4 <

v3 < v1 < v5, extremal n-vertex ordered P -free graphs have n logn +O(n) edges, whereas 
an extremal n-vertex interval bipartite P -free graph has Θ(n) edges (see Füredi [10], 
Bienstock and Györi [3], and Tardos [21]).

Our second main result is the following generalization of Theorem C to ordered r-
graphs:

Theorem 1.2. Let 2 ≤ k ≤ r be fixed integers and let α be a real number with k−1 ≤ α ≤
r. Then for every integer n ≥ r, every ordered r-graph H with n vertices and dnα edges 
has an interval k-partite subgraph H ′ with parts of size at most m for some m ∈ [n] and
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e(H ′) =

⎧⎪⎪⎨
⎪⎪⎩

Ω
( dmα

log2 n

)
if α = k − 1

Ω(dmα) if α > k − 1

(2)

The case k = r = 2 is Theorem C.

Remarks.

• Theorem 1.2 is sharp in that for 2 ≤ k < r and α = k−1, there exist n-vertex r-graphs 
H with e(H) = dnα where every interval k-partite subgraph H ′ with parts of size 
m has e(H ′) = O(dmα/ log2 n), and for α < k − 1, there exist n-vertex r-graphs H
with e(H) = dnα where every interval k-partite subgraph H ′ has e(H ′) = O(dnα−a)
where a = min{1, k− 1 − α} > 0. We will prove this in Section 2 (see Constructions 
1 and 2).

• For α > k−1, Theorem 1.2 guarantees that each n-vertex ordered r-graph with Θ(nα)
edges has an interval k-partite subgraph with parts of size m and Θ(mα) edges for 
some m ∈ [n]. In sharp contrast with the Erdős–Kleitman Lemma, Proposition A, 
the value of m may necessarily be small relative to the number of vertices in the 
host r-graph: we give a construction in Section 2 (see Construction 3) where we need 
m = O(n1−1/α) for α > k − 1.

• We do not optimize the constant c = c(α, k, r) in the bound e(H ′) ≥ cdmα for 
α > k − 1 in Theorem 1.2. The proof of Theorem 1.2 gives

c(α, k, r) ≥ (k − 1)!(1 − 2k−1−α)∑r
j=k

(2k−2
j

) . (3)

In particular, c(r, r, r) ≥ (r − 1)!4−r, whereas for every r-partite subgraph H ′

of the n-vertex complete r-graph Kr
n with parts of size m, e(H ′) ≤ mr, and so 

c(r, r, r) ≤ r!.
• For each (unordered) partition π of r, one can extend Theorem 1.2 to the setting of 

interval π-partite subgraphs – here π specifies the number of vertices of an edge in 
each part – by replacing the range of α to α ≥ f(π) where f(π) is the maximum 
length of a partition that is not a refinement of π. For example, if π = 1 +1 + · · ·+1, 
then f(π) = r − 1, if π = 2 + 1 + · · · + 1, then f(π) = r − 2 and if π = (r − 1) + 1, 
then f(π) = �r/2	. This has other interesting consequences which we will explore in 
forthcoming work.

1.1. Applications of Theorem 1.2

We next describe how to apply Theorem 1.2 to a variety of ordered extremal problems 
and convex geometric extremal problems for families of r-graphs. This enables us to 
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transfer classical extremal problems to the ordered setting via Theorem 1.2. The following 
definition is needed:

Definition 2. For an r-partite r-graph F , ord(F ) denotes the family of interval r-partite 
r-graphs isomorphic to F . For a family F of r-partite r-graphs, ord(F) =

⋃
F∈F ord(F ).

A first and natural example is the case that F consists of the r-graph of two dis-
joint edges. The Erdős-Ko-Rado Theorem [7] states that for n ≥ 2r + 1, the unique 
extremal n-vertex r-graph without two disjoint edges consists of all r-element subsets of 
[n] containing vertex 1, with 

(
n−1
r−1

)
edges. In [12], the following ordered version of the 

Erdős-Ko-Rado Theorem is proved:

Theorem 1.3. ([12]) Let r ≥ 3 and n ≥ 2r+1. Then the maximum number of edges in an 
ordered n-vertex r-graph that does not contain two edges of the form {v1, v2, . . . , vr} and 
{w1, w2, . . . , wr} such that v1 < w1 < v2 < w2 < · · · < vr < wr is exactly 

(
n
r

)
−
(
n−r
r

)
.

For an ordered r-graph F , let ex→(n, F ) denote the maximum number of edges in an 
n-vertex ordered r-graph that does not contain F . For a family F of ordered r-graphs, 
let ex→(n, F) denote the maximum number of edges in an n-vertex ordered r-graph that 
contains no members of F . In this language Theorem 1.3 implies that for n ≥ 2r + 1,

ex→(n, ord(F )) ≤
(
n

r

)
−
(
n− r

r

)
,

where F is the r-graph comprising two disjoint edges (in fact, it applies to a particular 
member of ord(F )). Results for hypergraph matchings (i.e., for sets of disjoint edges) by 
Klazar and Marcus [15] show that for each interval r-partite matching M , ex→(n, M) =
O(nr−1), thereby extending the celebrated Marcus-Tardos [16] theorem for matchings in 
ordered graphs to ordered r-graphs. We now give some further examples where classical 
extremal problems are transferred to the ordered setting via Theorem 1.2.

1.1.1. Simplices
A d-dimensional r-simplex is an r-graph of d + 1 edges such that any d of the edges 

have non-empty intersection, but all d + 1 edges have empty intersection. Denote by Sr
d

the family of d-dimensional r-simplices. The set Sr
d is non-empty if r ≥ d. The study of 

these abstract simplices in the context of extremal hypergraph theory was first initiated 
by Chvátal who posed the following conjecture.

Conjecture 1. (Chvátal [4]) Let r ≥ d + 1 ≥ 3 and n ≥ r(d + 1)/d. Then ex(n, Sr
d) =(

n−1
r−1

)
.

Frankl and Füredi [9] proved Conjecture 1 for large n (Keller and Lifschitz [14] im-
proved the bounds on n) and Mubayi and Verstraëte [17] proved it for d = 2, which 



6 Z. Füredi et al. / Journal of Combinatorial Theory, Series A 177 (2021) 105300
was a problem of Erdős. Very recently, Currier [5] proved the conjecture for n ≥ 2r. We 
prove the following theorem.

Theorem 1.4. For all fixed r ≥ d + 1 ≥ 3,

ex→(n, ord(Sr
d)) = Θ(nr−1).

1.1.2. Expansions
Our next example is more general. If F is a family of (r−1)-graphs, let F+ denote the 

family of r-graphs F+ obtained from each F ∈ F by adding a vertex ve to edge e ∈ F

such that all the vertices ve : e ∈ F are distinct from each other and from the vertices of 
F . A study of extremal problems for families F+ is given in [18], where F+ is referred 
to as an expansion of F . Such families lend themselves naturally to an application of 
Theorem 1.2:

Theorem 1.5. Let r ≥ 3 and F be a family of (r − 1)-graphs with ex→(n, ord(F)) =
O(nr−2). Then

ex→(n, ord(F+)) = O(nr−1).

The proof of Theorem 1.5 implies that

ex→(n, ord(Tr)) = O(nr−1),

where Tr = {e, f, g} is the loose r-uniform triangle, i.e., |e ∩ f | = |f ∩ g| = |g ∩ e| = 1
and e ∩ f ∩ g = ∅:

Theorem 1.6. For r ≥ 3,

ex→(n, ord(Tr)) = Θ(nr−1).

1.1.3. Hypergraph forests
Our next application concerns hypergraph forests. The shadow ∂H of an r-graph H is 

the collection of (r−1)-sets contained in some edge of H. We follow Frankl and Füredi [9]
for an inductive definition of trees in hypergraphs: a single edge is a tree, and given any 
tree T with edges e1, e2, . . . , eh, a tree with h + 1 edges is obtained by selecting f ∈ ∂T

and a vertex x not in T , and adding the edge f ∪ {x}. A forest is a subgraph of a tree. 
By definition, each 2-uniform tree (respectively, 2-uniform forest) is a tree (respectively, 
forest) in the usual sense. Using Theorem 1.2, we prove the following:

Theorem 1.7. Fix r ≥ 2 and let F be an r-uniform forest. Then ex→(n, ord(F )) =
O(nr−1).
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Remarks.

• A conjecture of Pach and Tardos [19] would imply ex→(n, T ) = n1+o(1) for every 
2-interval-partite tree T with at least two edges. Theorems 1.5 and 1.7 suggest that 
perhaps for every interval r-partite r-uniform tree T , ex→(n, T ) ≤ nr−1+o(1).

• It remains an intriguing open problem to determine for which r-graph families F

ex(n,F) = O(nr−1) =⇒ ex→(n, ord(F)) = O(nr−1). (4)

According to Theorem 1.7, this is true for r = 2. Since for every r-uniform forest F , 
ex(n, F ) = O(nr−1), Theorem 1.7 yields that the above implication is also true if 
F contains an r-uniform forest. We do not know any explicit example for r ≥ 3 for 
which (4) fails, although we believe that many such examples exist. As pointed out 
by a referee, Theorem 1.2 implies that for each α > r− 1 and all r-graph families F ,

ex(n,F) = O(nα) =⇒ ex→(n, ord(F)) = O(nα). (5)

• In [13], we heavily used the k = r−1 case of Theorem 1.2 to prove that the extremal 
function of so called crossing paths in convex geometric hypergraphs has order nr−1

or nr−1 log n.

1.1.4. Ordered Ruzsa-Szemerédi Theorem
We consider the ordered version of the famous Ruzsa-Szemerédi (6, 3)-Theorem [20]

which states that the maximum number of edges in an n-vertex 3-graph with no 6 vertices 
spanning 3 edges is o(n2). This is equivalent to the statement ex(n, FRS) = o(n2) where 
FRS = {I2, T3} and I2 is the 3-graph comprising two edges sharing exactly two points.

Theorem 1.8. Let FRS = {I2, T3}. Then ex→(n, ord(FRS)) = o(n2).

1.1.5. Forbidden ordered intersections
Our final example addresses an r-graph problem whose answer has order of magnitude 

nα where α �= r−1. Let Ir(�) denote the r-graph consisting of two edges sharing exactly 
� vertices. The study of ex(n, Ir(�)) was initiated by Erdős. Frankl and Füredi [9] proved 
that

ex(n, Ir(�)) = Θ(nmax{�,r−�−1}) for 0 ≤ � ≤ r − 1. (6)

We are able to prove an ordered version of this result using Theorem 1.2:

Theorem 1.9. For r ≥ 2 and 1 ≤ � ≤ r − 1, and α = max{�, r − 
(� + 1)/2�}

Ω(nα) = ex→(n, ord(Ir(�))) =
{

O(nα) if � is odd
O(nα log n) if � is even.
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Note that the � = 0 case is covered by Theorem 1.3 which gives ex→(n, ord(Ir(0))) =
Θ(nr−1). A construction of a dense ord(Ir(�))-free ordered r-graph is given in Con-
struction 4. We believe the log n factor when � is even can be removed, so that 
ex→(n, ord(Ir(�))) = Θ(nα).

We present four constructions in Section 2 and prove Theorem 1.2 in Section 3. The-
orems 1.4–1.9 are proved in Section 4.

2. Constructions

Our first construction requires the following lemma.

Lemma 2.1. Let Hn1,n2 be the ordered bipartite graph with vertex set [n1 + n2] and parts 
A = [n1] and B = {n1 + 1, . . . , n1 + n2} such that for i < j, the pair ij is an edge in 
H(n1, n2) iff 1 ≤ i ≤ n1 < j ≤ n1 + n2 and j − i is a power of 2. Then for each A′ ⊆ A

and B′ ⊆ B, the number of edges in Hn1,n2 [A′ ∪B′] is at most |A′ ∪B′|.

Proof. Suppose for some A′ ⊆ A and B′ ⊆ B, graph H := Hn1,n2 [A′∪B′] has more than 
|A′| + |B′| edges. Let us assume A′ = {a1, a2, . . . , al} and B′ = {b1, b2, . . . , bm} where

a1 < a2 < · · · < al < b1 < b2 < · · · < bm.

For each vertex a ∈ A′, remove from H the edge {a, bi} where i is the minimum index 
for which such an edge exists. After that, for each vertex b ∈ B′, remove from H the 
edge {aj , b} where j is the maximum index for which such an edge exists. Since H has 
more than |A′| + |B′| edges, and we removed at most |A′| + |B′| edges, the remaining 
graph H ′ has an edge {a, b} with a ∈ A′, b ∈ B′. Now there exist vertices a′ and b′ such 
that {a′, b} and {a, b′} are edges and a < a′ < b′ < b. However, it is not possible for 
b − a, b′ − a and b − a′ all to be powers of 2. �

In all our constructions, the extra parameter d does not need to be a constant, it may 
depend on other parameters. Our first construction shows that the logarithmic factor in 
the first bound in Theorem 1.2 is necessary.

Construction 1. An n-vertex ordered r-graph Hr(n) with dnk−1 edges such that for every 
m ≤ n

e(H ′) = O
(dmk−1

log n

)
(7)

for every interval k-partite H ′ ⊂ Hr(n) with parts of size m.

The vertex set of Hr(n) is [n] ordered as 1 < 2 < · · · < n. The edges of Hr(n) are the 
sets {v1, v2, . . . , vr} with v1 < v2 < · · · < vr such that the difference vi+1 − vi is a power 
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of 2 for i = 1, . . . , r − k + 1. Then e(Hr(n)) = Θ(nk−1(logn)r−k+1) = Θ(dnk−1) where 
d = (logn)r−k+1. Let H ′ be any interval k-partite subgraph of Hr(n), with ordered 
parts I1 < I2 < . . . < Ik each of size m, and G′ be the bipartite graph whose edges 
are pairs {v, w} ⊂ e = {v1, v2, . . . , vr} ∈ H ′ where v is the largest vertex in I1 and 
w is the smallest vertex in I2. Note, crucially, that w − v must be a power of 2, since 
otherwise the r−k+2 smallest vertices of e lie in I1, which means that some Ij is empty. 
Lemma 2.1 now yields that e(G′) ≤ v(G′) ≤ 2m. But then e(H ′) = O(mk−1(logn)r−k), 
so e(H ′) = O(dmk−1/ logn).

Our next construction shows that the bound α ≥ k − 1 in Theorem 1.2 cannot be 
improved.

Construction 2. An rn-vertex r-graph Hr
n(k) with dnα edges such that for 1 ≤ α <

k − 1 ≤ r − 1 and a = min{1, k − 1 − α} > 0,

e(H ′) = O(dmα/na) (8)

for every interval k-partite H ′ ⊂ Hr
n(k) with parts of size m.

For k ≤ r and 1 ≤ j ≤ n, let Ij = {(r − k + 2)j − (r − k + 1), (r − k + 2)j − (r − k +
1) + 1, . . . , (r − k + 2)j}, so that |Ij | = r − k + 2, and let Hr

n(k) be the ordered r-graph 
with vertex set [rn] and edge set

{Ij∪{ar−k+3, ar−k+4, . . . , ar} : 1 ≤ j ≤ n, and (�−1)n < a� ≤ �n for r−k+3 ≤ � ≤ r}.

By definition, e(Hr
n(k)) = nk−1 = dnα where d = nk−1−α. On the other hand, let H ′ be 

an interval k-partite subgraph of Hr
n(k) with parts of size m. Then there exists j such 

that every edge of H ′ contains Ij . In particular,

e(H ′) = O(mk−2) = O
(
dmα · m

k−2−α

nk−1−α

)
.

If α ≤ k − 2, then mk−2−α/nk−1−α = O(1/n). If α > k − 2, then mk−2−α/nk−1−α =
O(nα−k+1). This implies (8).

The next construction shows that the interval k-partite subgraph guaranteed by The-
orem 1.2 may have few vertices.

Construction 3. Let r be fixed and let k−1 < α ≤ r. We give an ordered n-vertex r-graph 
H(n, r) with dnα edges such that for every interval k-partite subgraph H ′ of H(n, r) with 
parts of size m and e(H ′) = Ω(dmα),

m = O(n1−1/α).
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Consider the ordered r-graph H = H(n, r) with vertex set [n] and edge set {{i, i +
1, . . . , i + r − 1} : 1 ≤ i ≤ n − r + 1}. Then

e(H) = n− r + 1 = dnα

where d = Θ(n1−α). On the other hand, if H ′ is an interval k-partite subgraph with parts 
of size m, then H ′ cannot contain two disjoint edges, so e(H ′) ≤ r. So if e(H ′) = Ω(dmα), 
then dmα = O(r) so mα = O(1/d) = O(nα−1).

Our final construction provides a lower bound on ex→(n, ord(Ir(�)) for Theorem 1.9:

Construction 4. For 0 ≤ � ≤ r − 1 and α = max{�, r − 
(� + 1)/2�}, we give an ordered 
3n-vertex r-graph H(n, r, �) with Ω(nα) edges not containing an interval r-partite r-graph 
consisting of two edges with intersection size �.

Consider first the case α = �. An easy application of the probabilistic method implies 
that there exists a 3n-vertex r-graph G(n, r, �) with Ω(n�) edges in which every � vertices 
lie in at most one edge. Let H(n, r, �) be such G(n, r, �) with any ordering of the vertices. 
Since G(n, r, �) is Ir(�)-free, H(n, r, �) is ord(Ir(�))-free.

If α = r − 
(� + 1)/2� > �, define H(n, r, �) as follows. The vertex set of H(n, r, �) is 
[3n]. Let M be the set of pairs {2i − 1, 2i} for 1 ≤ i ≤ n The edges of H(n, r, �) consist 
of 
(� + 1)/2� pairs from M and r − 2
(� + 1)/2� vertices from {2n + 1, 2n + 2, . . . , 3n}. 
Then

e(H(n, r, �)) =
(

n


(� + 1)/2�

)
·
(

n

r − 2
(� + 1)/2�

)
= Θ(nα).

Suppose H(n, r, �) contains an interval r-partite 2-edge r-graph G(r, �) with edge 
set {e, f} and |e ∩ f | = �. Let (W1, . . . , Wr) be an interval r-partition of e ∪ f . Let 
e = (a1, . . . , ar) and f = (b1, . . . , br) be such that {aj, bj} ⊆ Wj for j = 1, . . . , r. By 
the definition of M , (a1, a2) = (2i − 1, 2i) for some 1 ≤ i ≤ n. In order to have G(r, �)
interval r-partite, a1 is the rightmost vertex in W1 and a2 is the leftmost vertex in W2. 
Similarly, a3 is the rightmost vertex in W3 and a4 is the leftmost vertex in W4, and so 
on. But for the same reasons the same must hold for f . Thus, e ∩ [2n] = f ∩ [2n]. But 
|e ∩ [2n]| = 2
(� + 1)/2� ≥ � + 1, contradicting the condition |e ∩ f | = �.

3. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let g = �log2 n	, so that 2g ≤ n < 2g+1. For 0 ≤ i ≤ g, let Ii be 
the partition of V (H) into intervals of length 2g−i plus one interval of length at most 
2g−i containing the vertex n. Note that Ig is the partition into singletons, so for each 
e ∈ H, there exists a minimum i(e) such that e intersects at least k intervals in Ii(e). 
For 0 ≤ i ≤ g, let
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Hi = {e ∈ H : i(e) = i}

so that H = �g
i=0 Hi – the Hi are edge-disjoint. Since each part in every Ii has size at 

most 2g−i ≤ 
n/2i�, Theorem 1.1 follows from the following claim:
For 0 ≤ i ≤ g, Hi is a union of ti ≤

∑r
�=k

(2k−2
�

)
· 2i(k−1)

(k−1)! interval k-partite hypergraphs 
Hij : 1 ≤ j ≤ ti with parts from Ii.

The claim is trivial for i = 0, since H0 is empty unless k = 2 and n > 2g, in which 
case H0 is k-partite and t0 = 1. To see the claim for i ≥ 1, note that for e ∈ Hi, there 
are s ≤ k− 1 intervals I1, I2, . . . , Is ∈ Ii−1 such that e =

⋃s
�=1(e ∩ I�) ⊂

⋃s
�=1 I�, by the 

definition of i(e) = i.
If |Ii−1| ≥ k − 1, then let Is+1, . . . , Ik−1 ∈ Ii−1 be k − s − 1 new intervals chosen 

arbitrarily, so that I1, . . . , Ik−1 ∈ Ii−1. There are at most 
(|Ii−1|

k−1
)
≤ |Ii−1|k−1

(k−1)! ≤ 2i(k−1)

(k−1)!

choices for these k − 1 intervals, and then at most 
∑r

�=k

(2k−2
�

)
choices for the intervals 

from Ii contained in 
⋃s

�=1 I� and intersecting e.
If |Ii−1| ≤ k − 2, then s ≤ |Ii−1| ≤ k − 2 and we add |Ii−1| − s new intervals from 

Ii−1 arbitrarily to I1, I2, . . . , Is, thereby obtaining all intervals of Ii−1. There are at 
most 

∑r
j=k

(2|Ii−1|
j

)
≤

∑r
j=k

(2k−4
j

)
choices for the intervals from Ii contained in [n]

and intersecting e. Since e intersects at least k intervals in Ii(e), k ≤ 2s ≤ 2i+1, and 

2i(k−1) ≥
(
k
2
)k−1 ≥ (k − 1)!; so the claim holds again. �

Proof of Theorem 1.2. We derive Theorem 1.2 from Theorem 1.1, using the notation of 
its proof. Let H be an n-vertex ordered r-graph with dnα edges. Let C =

∑r
j=k

(2k−2
j

)
and mi = 2g−i. We prove that some Hij has

e(Hij) ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
C

· dmα
i

1 + log2 n
if α = k − 1

1 − 2k−1−α

C
· dmα

i if α > k − 1

Note that Hij is k-partite and the parts of Hij have size at most mi, so the above 
statements imply Theorem 1.2. Suppose, for a contradiction, that no Hij satisfies the 
above bounds.

Case 1. α = k − 1. Then recalling 2g ≤ n and ti ≤ C · 2i(k−1),

e(H) =
g∑

i=0
e(Hi) ≤

g∑
i=0

ti∑
j=1

e(Hij) <
g∑

i=0

ti∑
j=1

1
C

· dmα
i

1 + log2 n

=
g∑

i=0

ti∑
j=1

d · 2(k−1)(g−i)

C(1 + log2 n)

= d

C(1 + log n)

g∑
ti · 2(k−1)(g−i)
2 i=0
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≤ dnk−1
g∑

i=0

1
1 + log2 n

= (g + 1) · d · nk−1

1 + log2 n
.

Since g ≤ log2 n, e(H) < d · nk−1, a contradiction.
Case 2. α > k − 1. Let c = (1 − 2k−1−α)/C. Then using ti ≤ C · 2i(k−1),

e(H) ≤
g∑

i=0

ti∑
j=1

e(Hij)

<

g∑
i=0

ti∑
j=1

c · dmα
i

≤
g∑

i=0
C · 2i(k−1) · c · d2α(g−i)

≤ dnα · (1 − 2k−1−α) ·
g∑

i=0
2i(k−1−α).

Since α > k − 1, the geometric series sum is less than 1/(1 − 2k−1−α), and e(H) < dnα. 
This contradiction completes the proof. �
4. Proofs of Theorems 1.4 – 1.9

Let P r
k denote the r-uniform tight path, which has vertex set V = {v0, . . . , vk+r−2}

and edge set {{vi, vi+1, . . . , vi+r−1} : 0 ≤ i ≤ k− 1}. Then ord(P r
k ) contains the ordered 

r-graph ZP r
k with edges {vi, vi+1, . . . , vi+r−1} for 0 ≤ i < k with a partition of V into r

intervals X0 < X1 < · · · < Xr−1 such that vertices vi < vi+r < vi+2r < . . . are in Xi if 
i is even and vi > vi+r > vi+2r > . . . in Xi if i is odd. Extremal problems for ZP r

k are 
studied in [13], where the following theorem is (implicitly) proved:

Theorem 4.1. For k, r ≥ 2,

ex→(n,ZP r
k ) ≤ (k − 1)

(
n

r − 1

)
.

In particular, this theorem gives the same upper bounds for the extremal function 
for ord(P r

k ), because ZP r
k ∈ ord(P r

k ). In [13,12] we also obtain ordered versions of the 
Erdős-Ko-Rado Theorem by taking every rth edge of P r

k .

Definition 3. An ordered r-graph H with vertex set V is a (1, r − 1)-graph if there exist 
intervals X < Y or X > Y in V such that every edge of H has exactly one vertex in X
and r − 1 vertices in Y .
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Note that an interval (r− 1)-partite r-graph contains a (1, r− 1)-graph with at least 
half the edges: if I1 < I2 < · · · < Ir−1 are intervals intersecting every edge in the r-graph, 
then some X ∈ {I1, Ir−1} contains exactly one vertex from at least half of the edges of 
the r-graph.

Proof of Theorem 1.4. A strong d-dimensional r-simplex Ŝr
d is an r-graph consisting of 

d + 2 edges such that we may order the edges so that the first d + 1 edges form a d-
dimensional simplex (see the definition in Section 1.1.1), and the last edge contains at 
least one vertex from the intersection of every d-tuple of the edges of the d-dimensional 
simplex. For example, a strong 1-dimensional simplex comprises three edges e, f, g such 
that e ∩ f = ∅ (so e and f form a 1-dimensional simplex), and both e ∩ g and f ∩ g are 
nonempty. It is convenient to assume such an ordering of the edges of a strong simplex 
is given. We introduce strong simplices for the purpose of doing a simple induction on 
d: we show that

ex→(n, ord(Ŝr
d)) ≤ r10drnr−1.

The base case d = 1 follows easily from Theorem 4.1: if H is an ordered r-graph with 
more than r10r( n

r−1
)

edges, then ZP r
r+1 ⊂ H, and any three edges of ZP r

r+1 that include 
the first and last edge form a strong 1-dimensional simplex. Now suppose we have proved 
the theorem for strong (d − 1)-dimensional simplices for some d ≥ 2, and let H be an 
n-vertex ordered r-graph with more than r10drnr−1 edges. Applying Theorem 1.2 with 
k = α = r−1 and the bound on c(r−1, r−1, r) in (3), we find an interval (r−1)-partite 
subgraph G of H with parts of size at most m and

e(G) ≥ c(r − 1, r − 1, r) · r10drmr−1

for some m > 0 with intervals X and Y = V (G) − X as the parts of G. By (3), it is 
straightforward to check that c(r − 1, r − 1, r) > r−4r, and therefore

e(G) > r−4rr10drmr−1 > 2r10(d−1)rmr−1. (9)

We remove from G each edge containing an (r−1)-set in Y which is contained in at most 
two edges of G. This way, we delete at most 2

(
m

r−1
)

edges. Since r ≥ 3, this is less than 
mr−1, and hence the remaining (1, r − 1)-subgraph G′ of G has at least r10(d−1)rmr−1

edges. By averaging, some vertex x ∈ X is contained in at least

r1+10(d−1)rmr−2 ≥ r10(d−1)(r−1)mr−2

edges of G′. By induction, {e\{x} : e ∈ G′} – the link hypergraph of x in G′ – contains 
a strong (d − 1)-dimensional (r − 1)-simplex F , say with edges e1, e2, . . . , ed, f , with 
e1, e2, . . . , ed forming a (d − 1)-dimensional simplex. Since f is contained in at least 3
edges of G, there exists y ∈ X\{x} such that f∪{y} ∈ G. Then e1∪{x}, e2∪{x}, . . . , ed∪
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{x}, f ∪{y} is a d-dimensional simplex in H, and together with f ∪{x}, we have a strong 
simplex in H. This proves the theorem. �
Proof of Theorem 1.5. Let M denote the largest number of edges in an r-graph 
in F+ and suppose ex→(n, ord(F)) ≤ cnr−2 for all n > 1. We will prove that 
ex→(n, ord(F+)) ≤ c′nr−1 where c′ = 1

2 (M + c)r10r. Suppose that H is an ordered n-
vertex r-graph with more than c′nr−1 edges. Applying Theorem 1.2 with k = α = r− 1, 
we find an m-vertex (1, r−1)-subgraph G of H with at least r−4rc′mr−1 > 2c′r−10rmr−1

edges as in (9), with parts X and Y , such that every edge has one vertex in X. For each 
(r − 1)-set in Y contained in at most M − 1 edges of G, remove all edges of G contain-
ing that (r − 1)-set. The number of edges that we removed is at most Mmr−1, so the 
remaining r-graph G′ ⊂ G has more than

(2c′r−10r −M)mr−1 = cmr−1

edges. By averaging, there exists a vertex x ∈ X whose link hypergraph G′′ = {e\{x} :
e ∈ G′} has more than cmr−2 edges. Then G′′ contains a member F of ord(F). Since 
every edge of F is contained in at least M edges of G, we can expand the edges of F to 
distinct vertices of X to obtain a copy of F+ in H. �
Proof of Theorem 1.6. The proof of Theorem 1.5 gives a statement which is slightly 
stronger than the statement of Theorem 1.5: if F is a family of (r− 1)-graphs such that 
ex→(ord(F) ≤ cnr−2, then for any M ≥ 1 in any n-vertex ordered r-graph H with more 
than 1

2 (M + c)r10rnr−1 edges, we find intervals I1 < I2 < · · · < Ir−1 and an interval 
X < I1 or X > Ir−1 with the following structure:

(i) a copy F0 ⊂ H of F has intervals I1 < I2 < · · · < Ir−1,
(ii) for some v ∈ X, F0 is contained in {e\{v} : e ∈ H},
(iii) for every e ∈ F0, there exist M vertices x ∈ X such that e ∪ {x} ∈ H.

Now we prove ex→(n, ord(Tr)) = Θ(nr−1) for r ≥ 3. First note that any ordered r-graph 
on n vertices with transversal number 1 has 

(
n−1
r−1

)
and no subgraph in ord(Tr). Therefore 

ex→(n, ord(Tr)) = Ω(nr−1). For an upper bound on ex→(n, ord(Tr)), fix r ≥ 3, and let H
be an ordered n-vertex r-graph with more than 2r10rnr−1 edges. Let F denote the (r−1)-
graph consisting of three edges e = {v1, v2, . . . , vr−1}, f = {vr−1, vr, . . . , v2r−3}, g =
{v2r−3, v2r−2, . . . , v3r−5} – this is the loose path with three edges. Then F is contained 
in the hypergraph P consisting of all edges {vi, vi+1, . . . , vi+r−2} for 1 ≤ i ≤ 2r − 3. 
Since ZP r−1

2r−3 ∈ ord(P ), Theorem 4.1 gives:

ex→(n, ord(F )) ≤ ex→(n, ord(P )) ≤ (2r − 4)
(

n
)

< 2nr−2.

r − 2
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Taking c = M = 2, since e(H) > 2r10rnr−1 ≥ 1
2 (M + c)r10rnr−1, we find the structure 

prescribed by (i) – (iii) in H. Now since e, g ∈ F0, by (iii) there exists a vertex v ∈ X such 
that e ∪ {v}, g ∪ {v} ∈ H. Since M = 2, there exists x ∈ X\{v} such that f ∪ {x} ∈ H. 
The three edges e ∪{v}, f ∪ {x}, g ∪ {v} form an r-graph in ord(Tr) contained in H. We 
conclude ex→(n, ord(Tr)) ≤ 2r10rnr−1. �
Proof of Theorem 1.7. We first present an easy proof for r = 2, and then a significantly 
more involved general proof.

Case 1: r = 2. Suppose that F is a forest with k edges. By adding edges, we may assume 
that F is a tree. We prove by induction on k that ex→(n, ord(F )) ≤ 2k2n. Let H be an 
ordered n-vertex graph with more than 2k2n edges and let F ′ be a tree obtained from F
by deleting a leaf y. Let x ∈ V (F ′) be the neighbor of y. For each vertex v of H, mark the 
edges from v to the k smallest neighbors of v and the edges to the k largest neighbors of 
v. Note that if v has fewer than k smaller neighbors then we marked all edges between v
and those neighbors, and similarly for larger neighbors. We marked at most 2kn edges so 
the resulting unmarked graph H ′ ⊂ H has more than 2k2n −2kn ≥ 2(k−1)2n edges. By 
induction, H ′ contains an interval 2-partite subgraph K ′ isomorphic to F ′, with parts 
A < B. Suppose that v is the vertex of K ′ that plays the role x in F ′, and assume first 
that v ∈ A. Then there is a vertex w ∈ B with {v, w} ∈ K ′, so by construction of H ′, 
there is another vertex w′ > w such that {v, w′} ∈ H and w′ /∈ V (K ′). Adding edge 
{v, w′} to K ′ gives a copy K of the 2-interval-partite graph F (w′ plays the role of y). 
The same argument applies if v ∈ B. �

Case 2: r ≥ 3. By Theorem 1.2 with α = r− 1 = k, it is enough to prove Theorem 1.7
for interval (r− 1)-partite r-graphs. Let H be an interval (r− 1)-partite r-graph with n
vertices and a partition of V (H) into intervals X1 < X2 < · · · < Xr−1 where for some 
i, and every e ∈ H, |e ∩ Xi| = 2 and |e ∩ Xj | = 1 for j �= i. It is easy to check that 
every forest F is contained in a tight tree T with the same set of vertices. We show 
by induction on t = v(T ) ≥ r that if e(H) > 2t2

(
n

r−1
)
, then H contains a member of 

ord(T ). If t = r, then T has one edge and clearly e(H) = 0 if H is ord(T )-free. Suppose 
the statement is true for all tight trees with fewer than t vertices, and let T be a tight 
tree with t vertices. Let H be an n-vertex interval (r−1)-partite r-graph with more than 
2t2

(
n

r−1
)

edges. For each f ∈ ∂H, let S(f) and L(f) denote the set of the t smallest and 
t largest vertices x ∈ V (H) such that f ∪ {x} ∈ H. Then we remove all edges f ∪ {x}
from H such that x ∈ S(f) ∪ L(f). We obtain a new ordered interval (r − 1)-partite 
r-graph H ′ with parts X1 < X2 < · · · < Xr−1.

Fix a leaf y of T . Let e be the edge of T containing y, T ′ = T − {y} and g = e − {y}. 
By induction, H ′ contains a member of ord(T ′), since

e(H ′) > 2t2
(

n
)
− 2t

(
n

)
> 2(t− 1)2

(
n

)
.

r − 1 r − 1 r − 1



16 Z. Füredi et al. / Journal of Combinatorial Theory, Series A 177 (2021) 105300
Let this member of ord(T ′) be denoted by S, and have parts A0 < A1 < · · · < Ar−1, 
where Ai−1, Ai ⊆ Xi and Aj ⊆ Xj for j �= i. Let g′ be the image of g in S. Since 
f ∈ ∂S ⊂ ∂H ′, f∩Aj = ∅ for some j ≤ r. If j /∈ {i, i −1}, then S(f) ∪L(f) ⊂ Xj , and since 
|S(f) ∪L(f)| > t and |V (T ) ∩Xj | < t, there exists x ∈ Xj\V (T ) such that f ∪ {x} ∈ H

together with S forms a copy of T in H, with interval coloring A′
0 < A′

1 < · · · < A′
r−1

where A′
h = Ah for h �= j and A′

j = Aj ∪{x}. If j = i, then f ∪{z} ∈ S for some z ∈ Ai. 
For every x ∈ L(f), we have x > z and x ∈ Xi. Since |L(f)| = t, there exists x ∈ L(f)
such that x > z and x /∈ V (S). Now f ∪{x} ∈ H together with S is a copy of an element 
of ord(T ) in H, with interval r-coloring A′

0 < A′
1 < · · · < A′

r−1 where A′
h = Ah for h �= i

and A′
i = Ai ∪ {x}. Finally, if j = i − 1, then f ∪ {z} ∈ S for some z ∈ A0. For every 

x ∈ S(f), we have x < z and x ∈ Xi−1. Since |S(f)| = t, there exists x ∈ S(f) such that 
x < z and x /∈ V (S). Now f ∪{x} ∈ H together with S is a copy of an element of ord(T )
in H, with interval r-coloring A′

0 < A′
1 < · · · < A′

r−1 where A′
h = Ah for h �= i − 1 and 

A′
i−1 = Ai−1 ∪ {x}. This completes the proof. �

Proof of Theorem 1.8. By Theorem 1.2 with k = α = 2, it is enough to prove The-
orem 1.8 for interval 2-partite 3-graphs. Suppose that ε > 0 and n0 is sufficiently 
large. Let H be an n-vertex ordered interval 2-partite 3-graph with at least εn2 edges 
(n > n0) containing no member of ord(I2) and A < B be intervals where every edge 
of H has exactly one vertex in A. Let G be the graph with vertex set B and edge set 
{yz : ∃x ∈ A, xyz ∈ H}. Since H contains no member of ord(I2), e(G) = e(H) ≥ εn2. 
By Theorem C, there is an interval 2-partite subgraph G′ ⊂ G with at least δn2 edges, 
for some δ depending only on ε. Consequently, there is an interval 3-partite subgraph 
H ′ ⊂ H with δn2 edges and we apply the Ruzsa-Szemerédi Theorem to H ′ to obtain a 
copy of some member of ord(T3). �
Proof of Theorem 1.9. We use the result of Frankl and Füredi [9] stating that for 0 ≤
� ≤ r − 1 and some constant C(r, �) > 0,

ex(n, Ir(�)) < C(r, �) · nmax{�,r−�−1}. (10)

Construction 4 gives a lower bound of order nα for ex→(n, ord(Ir(�))), so it remains to 
prove the upper bound in Theorem 1.9. We first prove the upper bound when � is odd.

Recall α = max{�, r − (� + 1)/2}, and let k = α, �′ = � − r + k ≥ 0. Let H be an 
ordered n-vertex r-graph with C(k, �′)(kn)α/c edges, where c is the implicit constant in 
the second inequality of Theorem 1.2, namely (3). We aim to show that H contains a 
member of ord(Ir(�)). By Theorem 1.2 with k = α, there is for some m ∈ [n] an interval 
k-partite subgraph H ′ of H with e(H ′) ≥ C(k, �′)(km)α and parts of size at most m. 
For each edge e ∈ H ′,

k∑
(|e ∩ Ij | − 1) = r − k.
j=1
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Let f(e) be the set of the first |e ∩ Ij | − 1 elements of e ∩ Ij for 1 ≤ j ≤ k, so that 
|f(e)| = r − k. By the pigeonhole principle, there exists a set S of size r − k such that 
f(e) = S for at least |H ′|/mr−k ≥ C(k, �′)(km)α−r+k edges e ∈ H ′. Let H ′′ = {e\S :
S ⊂ e ∈ H ′}, so H ′′ is an ordered k-uniform k-partite hypergraph with N = v(H ′′) ≤ km

and e(H ′′) ≥ C(k, �′)Nα−r+k. Since 2α = max{2�, 2r − � − 1} ≥ 2r − � − 1,

max{k − �′ − 1, �′} = max{r − �− 1, �− r + k}
= max{2r − �− 1 − k, �} − r + k

≤ max{2α− k, �} − r + k = max{α, �} − r + k = α− r + k.

It follows from (10) that e(H ′′) ≥ C(k, �′)Nα−r+k > ex(N, Ik(�′)). Therefore there 
exist f, g ∈ H ′′ with |f ∩ g| = �′. Since H ′′ is k-partite, {f, g} ∈ ord(Ik(�′)) and now 
{f ∪ S, g ∪ S} ∈ ord(Ir(�)). We conclude

ex→(n, ord(Ir(�))) < C(k, �′)
c(α, k, r) (kn)α.

This completes the proof of Theorem 1.9 when � is odd.

When � ≥ 2 is even, α = max{�, r − (� + 2)/2}. Let k = α + 1, �′ = � − r + k ≥ 0, 
and let H be an ordered n-vertex r-graph with C(k, �′)(kn)α(1 + log2 n)/c edges where 
c is the implicit constant in the first inequality of Theorem 1.2. Then for some m ∈ [n]
there is an interval k-partite subgraph H ′ of H with e(H ′) ≥ C(k, �′)(km)α and parts of 
size at most m. Define the interval k-partite k-graph H ′′ ⊆ H ′ as above. Since � is even, 
2α = max{2�, 2r − � − 2} ≥ 2r − � − 2, and therefore

max{k − �′ − 1, �′} = max{r − �− 1, �− r + k}
= max{2r − �− 1 − k, �} − r + k

≤ max{2α− k + 1, �} − r + k = max{α, �} − r + k = α− r + k.

In the last line we used k = α + 1. It follows from (10) that H ′′ contains a member of 
Ik(�′) and then H contains a member of Ir(�). This completes the proof of Theorem 1.9
when � is even. �
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