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a b s t r a c t

Given a 3-graph H , let ex2(n,H) denote the maximum value of the
minimum co-degree of a 3-graph on n vertices which does not con-
tain a copy of H . Let F denote the Fano plane, which is the 3-graph
{axx′, ayy′, azz ′, xyz ′, xy′z, x′yz, x′y′z ′

}. Mubayi (2005) [14] proved
that ex2(n, F) = (1/2 + o(1))n and conjectured that ex2(n, F) =

⌊n/2⌋ for sufficiently large n. Using a very sophisticated quasi-
randomness argument, Keevash (2009) [7] proved Mubayi’s con-
jecture. Here we give a simple proof of Mubayi’s conjecture by
using a class of 3-graphs that we call rings. We also determine the
Turán density of the family of rings.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

For a family H of k-graphs, let ex(n, H) denote the maximum number of edges in an n-vertex
k-graph which contains no member of H . Determining ex(n, H) is a fundamental question in graph
theorywhich becomes extremely difficult when k ≥ 3. Letπ(H) = limn→∞

ex(n,H)

( n
k )

and call this value
the Turán density of H (as has been pointed out many times, it is easy to show that this limit exists).
WhenH consists of a single graphH , wewriteπ(H) forπ(H). Let K 3

4 denote the complete 3-graph on
four vertices. Over 70 years ago, Turán [18] famously conjectured that π(K 3

4 ) =
5
9 , but this conjecture

is still unproved. In fact, when k ≥ 3 there are very few k-graphs for which the Turán density is known
(see [8] for a detailed account). Despite this general difficulty, there is a special 3-graph called the Fano
plane for which much is known.

The Fano plane, denoted F, is the projective geometry of dimension 2 over the field with 2
elements; alternatively, F is the 3-graph on seven vertices {a, x, y, z, x′, y′, z ′

} with the seven edges
{axx′, ayy′, azz ′, xyz ′, xy′z, x′yz, x′y′z ′

}. Let B(n) denote the balanced complete bipartite 3-graph,
which is obtained by partitioning a set of n vertices into parts of size ⌈n/2⌉ and ⌊n/2⌋ and taking
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as edges all the triples intersecting both parts. Since B(n) is 2-colorable and it is easy to see that F is
not, B(n) contains no copy of F. Therefore, ex(n, F) ≥ e(B(n)) =

 n
3


−


⌊n/2⌋

3


−


⌈n/2⌉

3


. Sós [17]

conjectured that this lower bound is asymptotically best possible and hence π(F) =
3
4 . A few decades

later, de Caen and Füredi [4] proved Sós’ conjecture via a clever use of so-called link graphs. A few
years later, Keevash and Sudakov [10] and independently Füredi and Simonovits [6] proved the exact
counterpart of this result; that is, ex(n, F) =

 n
3


−


⌊n/2⌋

3


−


⌈n/2⌉

3


for sufficiently large n.

Let G be a k-graph with vertex set V . Given any subset U ⊆ V , |U| ≤ k, the degree of U , denoted
by d(U), is the number of edges of G that contain U . For simplicity, when U consists of one vertex x
or two vertices x and y, we write d(x), and d(x, y) instead of d({x}) and d({x, y}), respectively. When
k = 3, we call d(x, y) the co-degree of x and y, while the set of vertices z such that xyz ∈ E(G) is
called the co-neighborhood of x, y and will be denoted by N(x, y). For each integer 0 ≤ ℓ ≤ k, let
δℓ(G) = min{d(U) : U ⊆ V , |U| = ℓ}. We call δℓ(G) the minimum ℓ-degree of G. For a family H of
k-graphs, let exℓ(n, H) denote the maximum value of δℓ(G) in an n vertex k-graph G which contains
no member of H and let πℓ(H) = limn→∞

exℓ(n,H)
n−ℓ
k−ℓ

 . Mubayi and Zhao [16] prove that this limit exists

in the case ℓ = k − 1 and Lo and Markström [12] prove that this limit exists for all 0 ≤ ℓ ≤ k − 1 (a
fact previously sketched by Keevash [7]). Note that the case ℓ = 0 just reduces to π(H). When k = 3,
we call π2(H) the co-degree density of H . For general k-graphs, a simple averaging argument shows
that πi(H) ≥ πj(H) when i ≤ j (see [8, Section 13.2]). It is also pointed out in [8, Section 13.2] that
for any graph H , π1(H) = π(H). The same argument applies to any finite family H as well.

Proposition 1.1. For a finite family H of k-graphs, π1(H) = π(H).

Proof (Sketch). Let a = π1(H). Let ε > 0 be any small positive real. Let n be sufficiently large as a
function of ε. Let G be a k-graphwith e(G) > (a+ε)

 n
k


. By [8, Proposition 4.2], G contains a subgraph

G′ on m = Ω(n) vertices with δ1(G′) ≥ (a +
ε
2 )


m−1
k−1


. Since π1(H) = a and m → ∞ as n → ∞,

when n is large enough, we have δ1(G′) > ex1(H). So G′ contains a member of H and therefore G
contains a member of H . �

So the minimum degree problem is essentially the same as the Turán problem. The minimum
co-degree problem however is drastically different. For instance, there are 3-graphs H with π(H)
arbitrarily close to 1 and yet π2(H) = 0 (see [16]). In general, there has not been a very good
understanding of the relationship between π(H) and π2(H) (see [16,12] for detailed discussions).
Similar to the situation with the Turán density, not much is known about π2(H) even for small graphs
H such asK 3

4 (in this case CzygrinowandNagle [3] conjectured thatπ2(K 3
4 ) =

1
2 ).Mubayi [14] initiated

the study of ex2(n, F), where F is the Fano plane. As pointed out earlier, B(n) contains no copy of F. So,
ex2(n, F) ≥ δ2(B(n)) = ⌊n/2⌋.

Mubayi [14] proved an asymptotically matching upper bound thus establishing π2(F) =
1
2 . He

further conjectured that ex2(n, F) =
 n

2


, for sufficiently large n. This was later proved by Keevash [7]

using a very sophisticated argument involving hypergraph regularity, quasi-randomness, and stability
(We should mention that Keevash proves the stronger statement that the extremal example is
‘‘stable’’. Also, the scope of Keevash’s paper is not limited to the problem of determining the co-degree
threshold for the Fano plane.). In this paper, we give a simple proof of Mubayi’s conjecture which is
in the same spirit as Mubayi’s original proof of π2(F) =

1
2 . Our main result is

Theorem 1.2. There exists n0 such that if n ≥ n0, then ex2(n, F) =
 n

2


.

Since we are giving a new proof of an old result, it is worth mentioning that we only need n0 to
be large enough so that ‘‘supersaturation’’ holds (see Section 2). While we do not make an attempt to
compute the value of n0, it is considerably smaller than the value of n0 needed for the use of regularity
in [7].

The paper is organized as follows. In Section 2 we give some lemmas and introduce a family of 3-
graphs called rings. In Section 3we prove Theorem1.2 bymaking use of the family of rings. In Section 4
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we determine the Turán density of the family of rings. Finally, in Section 5, we conclude with some
remarks and open problems.

2. Lemmas

For any k-graph G, the s-blowup of G, denoted G(s), is the graph obtained from G by cloning each
vertex s times. For a family of k-graphs H , let H(s) = {H(s) : H ∈ H}. Erdős [5] used supersaturation
to show

Lemma 2.1 ([5]). For any finite family of k-graphs H and any positive integer s, π(H) = π(H(s)).

Keevash and Zhao [11] proved an analogous result for the co-degree density.

Lemma 2.2. For any finite family of k-graphs H and any positive integer s, π2(H) = π2(H(s)).

The same supersaturation argument in fact gives

Lemma 2.3. For any finite family of k-graphs H and any positive integer s, and any j, 0 ≤ j ≤ k − 1,
πj(H) = πj(H(s)).

We also make the following trivial observation based on the definitions.

Proposition 2.4. Let H and G be two families of k-graphs. Let j ∈ {0, . . . , k − 1}. Suppose that for
every member G ∈ G, some subgraph of G belongs to H . Then exj(n, H) ≤ exj(n, G). So, in particular,
πj(H) ≤ πj(G).

We now define a family of 3-graphs, called rings, which will play a central role in our proof of
Theorem 1.2.

Definition 2.5. Let t ≥ 2 and let V be a set of at most 2t vertices surjectively labeled with x0, y0,
x1, y1, . . . , xt−1, yt−1. Let R∗

t be the family of 3-graphs on V with edge set
t−1

i=0 {xi, yi, xi+1} ∪

{xi, yi, yi+1}, where addition is defined modulo t . Let Rt be the (unique) member of R∗
t which has

exactly 2t vertices and call Rt a ring on 2t vertices. Let R∗
≤t =

t
i=2 R∗

i and R≤t = {R2, R3, . . . , Rt}.

Lemma 2.6. For all positive integers t ≥ 2 and 0 ≤ j ≤ 2, we have πj(R≤t) = πj(R
∗
≤t) and

πj(Rt) = πj(R
∗
t ).

Proof. Since R≤t ⊆ R∗
≤t , we have πj(R

∗
≤t) ≤ πj(R≤t). On the other hand, for every i ≤ t, R∗

i (t)
clearly contains a copy of Ri, since in any member of R∗

i (t) there are t distinct copies of xi, yi. By
Proposition 2.4 and Lemma 2.2, πj(R≤t) ≤ πj(R

∗
≤t(t)) = πj(R

∗
≤t). Thus, πj(R≤t) = πj(R

∗
≤t).

By a similar argument, we have πj(Rt) = πj(R
∗
t ). �

Definition 2.7. A hypergraph H on l vertices is said to have the (l,m)-property if every subset of m
vertices contains at least one edge of H .

Mubayi and Rödl [15] recursively constructed for every t ≥ 2 a family Ft of 3-graphs with the
(2t + 1, t + 2)-property. They showed that π(Ft) ≤

1
2 for each fixed t ≥ 2 and used this to establish

an upper bound on the Turán density of {abc, ade, bde, cde} (sometimes referred to as the 3-bookwith
3 pages). This family Ft also played a key role in Mubayi’s proof of π2(F) =

1
2 . Here, we observe that

for every t the graph Rt has the (2t, t+1)-property andwewill also show thatπ2(R≤t) is small. Then,
by using R≤t instead of Ft we are able to establish ex2(n, F) =

 n
2


.

Lemma 2.8. Rt has the (2t, t + 1)-property.

Proof. Clearly Rt has 2t vertices. Let S be any set of vertices in Rt that contains no edge. We show
that |S| ≤ t . For each i ∈ I = {0, 1, . . . , t − 1}, if xi, yi ∈ S then xi+1, yi+1 ∉ S (addition modulo t)
otherwise we would have an edge. This implies |S| ≤ t . �
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Next, we show that π2(R≤t) is small by using an auxiliary directed graph. First we recall some
old results concerning short directed cycles in directed graphs. As usual, for a directed graph D, let
δ+(D) and δ−(D) denote the minimum out-degree and in-degree of D respectively. Caccetta and
Häggkvist [1] conjectured that if D is a directed graph on n vertices with δ+(D) ≥ r , then D contains
a cycle of length at most

 n
r


. While their conjecture remains open, Chvátal and Szemerédi [2] gave a

simple proof of a slightly weaker statement.

Theorem 2.9 (Chvátal–Szemerédi). Let D be a directed graph on n vertices. If δ+(D) ≥ r (or δ−(D) ≥ r),
then D contains a directed cycle of length at most 2n

r+1 .

There have been improvements on this result. However, Theorem 2.9 suffices for our purposes.

Theorem 2.10. For all t ≥ 2 we have π2(R≤t) ≤

√
2

√
t
.

Proof. By Lemma 2.6, it suffices to prove that π2(R
∗
≤t) ≤

√
2

√
t
. Let a =

√
2

√
t
. Let ϵ be a small positive

real and let b = a + ϵ. Let n be sufficiently large as a function of ϵ. Let G be a 3-graph on n vertices
with δ2(G) ≥ ⌈bn⌉.

Let D be an auxiliary digraph with vertex set


V (G)

2


such that ({u, v}, {u′, v′

}) is an edge of D if

and only if uvu′ and uvv′ are edges of G (in other words, if and only if u′, v′
∈ NG(u, v)). Let N =

 n
2


.

Then D has N vertices. For any {u, v} ∈ V (D), its out-neighbors in D are precisely all the 2-subsets of
NG(u, v) and thus (using n being sufficiently large)

δ+(D) ≥


⌈bn⌉
2


≥

bn(bn − 1)
2

≥
a2n2

2
≥ a2

n
2


=

2N
t

.

By Theorem 2.9, D contains a directed cycle C of length at most 2N
2N/t+1 ≤ t . The subgraph of G

corresponding to C is a member of R∗
≤t . �

3. The co-degree threshold for the Fano plane

Let F∗ be the 3-graph obtained from the complete 3-partite 3-graph with vertex set {x, x′,
y, y′, z, z ′

} by adding the vertex u and the three edges uxx′, uyy′, uzz ′. Notice that F ⊆ F∗. We obtain
Theorem 1.2 as a corollary of the following more general theorem.

Theorem 3.1. For sufficiently large n, ex2(n, F) =
 n

2


for all F ⊆ F ⊆ F∗.

Proof. In the Introduction we pointed out that B(n) gives the lower bound ex2(n, F) ≥
 n

2


, thus it

suffices to prove ex2(n, F∗) ≤
 n

2


.

By Theorem 2.10 and Lemma 2.2, π2(R≤9(2)) ≤

√
2
3 < 1

2 . Let n be large enough such that
ex2(n, R≤9(2)) <

 n
2


. Let G be a graph on n vertices with δ2(G) ≥

 n
2


+ 1. Then G contains a

copy H of Rt(2) for some t ≤ 9.
For each vertex v in Rt , let v′ denote the clone of v in Rt(2). For all v ∈ Rt , let Cv = {u ∈ V (G) : u ∈

N(v, v′)}. Summing over all v ∈ Rt and using the exact condition δ2(G) ≥
 n

2


+ 1 (the only place

where the exact condition is needed), gives
v∈Rt

|Cv| ≥ 2t
n

2


+ 1


≥ 2t


n + 1
2


> tn. (1)

This implies that there exists some u∗
∈ V (G) which is contained in more than t different sets Cv .

Therefore, by Lemma 2.8, there are vertices x, y, z ∈ Rt such that xyz is an edge in Rt with u∗
∈ Cx,

u∗
∈ Cy and u∗

∈ Cz . So in Rt(2), S := {x, x′, y, y′, z, z ′
} induces a complete 3-partite 3-graph and thus

S ∪ {u∗
} ∼= F∗ (see Fig. 1). �
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Fig. 1. Obtaining the subgraph F∗ .

4. Turán density of rings

Let R denote the family ∪i≥2{Ri}. The fact that Rt has the (2t, t + 1)-property and the family R≤t
has small co-degree densitywas key to our short proof ofMubayi’s conjecture. Conceivably, the family
R≤t can be useful elsewhere in the study of the Turán problem for 3-graphs. For instance, if R≤t also
has relatively small Turán density, then it could potentially be used in bounding the Turán densities
of other 3-graphs, just like how Ft was used by Mubayi and Rödl [15]. In this section, we show that
similar to Ft the family R also has Turán density at most 1

2 . In fact, we will show that the Turán
density of R is exactly 1

2 . The family R does, however, have some advantages over Ft . One, it has the
(2t, t + 1)-property versus Ft having the (2t + 1, t + 2)-property. Two, the structure of Rt is simple
and explicit, while in forcing a member of Ft , we do not quite know which particular structure that
member has.

Next, we show that R has Turán density at least 1
2 via a construction inspired by the ‘‘half-graph’’

constructions from bandwidth problems.

Example 4.1. Let A = {a1, a2, . . . , a⌊n/2⌋} and B = {b1, b2, . . . , b⌈n/2⌉}. Let Gn be a 3-graph on A ∪ B
whose edges are all the triples of the form {ai, bj, ak} and {ai, bj, bk} where i, j < k.

It is easy to check that limn→∞ e(Gn)/
 n
3


=

1
2 .

Proposition 4.2. For all n the graph Gn given in Example 4.1 contains no member of R and hence
π(R) ≥

1
2 .

Proof. Observe first that, based on the definition of Gn, for any i, j with i < j, the pair {ai, aj} has no
co-neighbor in {bj, bj+1, . . . , b⌈n/2⌉} and the pair {bi, bj} has no co-neighbor in {aj, aj+1, . . . , a⌊n/2⌋}.
Suppose for a contradiction that G contains a copy H of Rt , for some t . Suppose V (Rt) = {x0, y0, x1,
y1, . . . , xt−1, yt−1} and E(Rt) =

t−1
i=0 {xiyixi+1, xiyiyi+1}. For each v in Rt , let v′ denote its image in Gn

under a fixed isomorphism from Rt to H . For any w in A (or B), let ι(w) denote its subscript in A (or B).
In other words, if w = aℓ, then ι(w) = ℓ. There are two cases to consider.

Case 1. For some i ∈ {0, . . . , t − 1}, x′

i and y′

i are in the same set.
Without loss of generality, we may assume that i = 0 and that x′

0, y
′

0 are both in A. Then
x′

1, y
′

1 must both be in B. Furthermore, by the observation we made at the beginning of this proof,
max{ι(x′

1), ι(y
′

1)} < max{ι(x′

0), ι(y
′

0)}. By repeating this argument, we get max{ι(x0), ι(y0)} <
max{ι(xt−1), ι(yt−1)} < · · · < max{ι(x0), ι(y0)}, which is a contradiction.

Case 2. For all i ∈ {0, . . . , t − 1}, x′

i and y′

i are in different sets.
By the symmetry of Rt , we may assume that all the x′

i ’s are in A and all the y′

i ’s are in B. Based
on the observation we made at the beginning of the proof, we now must have max{ι(x′

i), ι(y
′

i)} <
max{ι(x′

i+1), ι(y
′

i+1)} for all 0 ≤ i ≤ t − 1 (with addition defined modulo t). This leads to a
contradiction like in Case 1. �

We now prove themain result of this section. This follows immediately from the following lemma.
Given a 3-graph G and a vertex x, the link graph L(x) of x is a 2-graph whose edges are all the pairs ab
such that xab ∈ E(G).
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Lemma 4.3. π(R≤t) ≤
1
2 +

1
t−1 .

Proof. By Proposition 1.1 and Lemma 2.6, it suffices to prove π1(R
∗
≤t) ≤

1
2 +

1
t−1 . Let n be sufficiently

large as a function of t . Let G be a 3-graph on n vertices with δ1(G) ≥ ( 1
2 +

1
t−1 )


n−1
2


≥ ( 1

2 +
1
t )

 n
2


.

We prove that G contains a member of R∗
≤t . Create an auxiliary digraph with vertex set


V (G)

2


(all

2-subsets of V (G)) where ({u, v}, {u′, v′
}) is an edge of D if and only if uvu′ and uvv′ are edges of G (in

other words, if and only if uv is in the link graph of both u′ and v′). Let N =
 n
2


.

Let {u, v} be a vertex in D. Since δ1(G) ≥ ( 1
2 +

1
t )

 n
2


, the link graph of u has at least ( 1

2 +
1
t )

 n
2


edges and the link graph of v has at least ( 1

2 +
1
t )

 n
2


edges. Therefore there are at least 2

t

 n
2


edges

in the intersection of their link graphs, which implies δ−(D) ≥
2
t N . So we can apply Theorem 2.9 to

the directed graph D to obtain a directed cycle C of length at most 2N
2
t N+1

≤ t . Notice that the directed

cycle C corresponds to a subgraph of Gwhich is a member of R∗
≤t . �

Proposition 4.2 and Lemma 4.3 now yield.

Theorem 4.4. π(R) =
1
2 .

We have now determined the Turán density of the entire family of rings. However, computing its
value for any single member Rt appears to be difficult. After all, R2 is just K 3

4 and determining π(K 3
4 )

has been notoriously difficult. A quick observation that one can make is.

Proposition 4.5. For any positive integers p, q we have π(Rpq) ≤ π(Rp). Thus, for all even t, we have
π(Rt) ≤ π(K 3

4 ).

Proof. Since Rpq is contained in the q-blowup of Rp, we have π(Rpq) ≤ π(Rp(q)) = π(Rp). Now
suppose t is even. Since R2 = K 3

4 , we have π(Rt) ≤ π(R2) = π(K 3
4 ). �

Recall that the conjectured value for π(K 3
4 ) is 5

9 . For the lower bound, Turán’s construction T (n)
is obtained by partitioning n vertices as equally as possible into three sets V1, V2, V3 and including
as edges all triples of the form, v1v2v3, u1v1v2, u2v2v3, u3v3v1 for all ui, vi ∈ Vi (see Fig. 2(a)). It is
straightforward to check that if T (n) contains Rt for some t , then t must be divisible by 3. Hence, T (n)
contains no Rt when t ≡ 1, 2 (mod 3). So we have the following.

Proposition 4.6. For t ≡ 1, 2 mod 3, π(Rt) ≥
5
9 .

So by Propositions 4.5 and 4.6, if Turán’s conjecture is true, then we would have π(Rt) =
5
9 for

every even t with t ≡ 1, 2 (mod 3).
Finally, for odd t , the following construction shows that π(Rt) is larger than

√
3
3 . Let S(n) be a 3-

graph on n vertices where the vertices are partitioned into three sets V1, V2, V3 with sizes |V1| =
√
3
3 n, |V2| = |V3| = ( 1

2 −

√
3
6 )nwhose edges are all triples of the form, u1v1x, v1v2v3 for all ui, vi ∈ Vi

and x ∈ V2 ∪ V3 (see Fig. 2(b)). It is easy to check that limn→∞ e(S(n))/
 n
3


=

√
3
3 and that if S(n)

contains Rt then t must be even. Furthermore, we can iterate this construction inside V2 and V3 to
push the density above

√
3
3 while maintaining the fact that there are no odd rings. So we have the

following.

Proposition 4.7. For odd t, π(Rt) >
√
3
3 .

Given the results of this section and Theorem 2.10, it would be interesting to solve the following
problem.

Problem 1. Determine π(Rt) or π2(Rt) for each fixed value of t .
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(a) Turán’s construction T (n). (b) The construction S(n).

Fig. 2. Constructions for Propositions 4.6 and 4.7.

5. Concluding remarks

Let q be a prime power and let PG2(q) be (q+1)-graphwith vertex set equal to the one dimensional
subspaces of F3

q and edges corresponding to the two-dimensional subspaces of F3
q . We call PG2(q) the

projective geometry of dimension 2 over Fq; note that PG2(2) is the Fano plane. In [7], Keevash also
proved the following more general theorem about projective geometries.

Theorem 5.1. exq(PG2(q)) ≤
n
2 .

Furthermore, there is a nearly matching lower bound when q is an odd prime power (see [11,7]). The
proof we present in Section 3 relies on the fact that there is a family of 3-graphs R≤t , such that each
member Ri ∈ R≤t has the (2i, i+1)-property and π2(R≤t) < 1

2 . In fact, our same proof could be used
to give a simple proof of Theorem 5.1 if there was an affirmative answer to the following question.

Problem 2. Let k ≥ 4. Does there exist a finite family F k of k-graphs such that for each F ∈ F k there
exists a positive integer t such that F has the (2t, t + 1)-property and πk−1(F

k) < 1
2 .

It seems conceivable that obtaining a k-graphwith the (l,m)property for someother values of l and
m might give us the same benefit and be easier to obtain; however, this is not the case. On one hand,
we must have l ≥ 2(m − 1) so that Eq. (1) holds. On the other hand, when m ≤

 l
2


the complete

balanced bipartite k-graph Bk(n), which has δk−1(Bk(n)) ≥ ⌊n/2⌋, does not contain any subgraph
with the (l,m)-property (any subgraph of Bk(n) with l vertices must contain an independent set of
size

 l
2


). So we must have

 l
2


< m ≤

l
2 + 1, which implies that l is even and m =

l
2 + 1.

A different problem is the following. Instead of determining the co-degree threshold for a single
copy of H in G, one can ask about the co-degree threshold for |V (G)|

|V (H)|
vertex disjoint copies of H in

G (assuming |V (H)| divides |V (G)|). This has been referred to as the tiling or factoring problem and
received much attention lately. Interestingly, the co-degree threshold for tiling with K 3

4 and K 3
4 − e

have been determined (see [9,13]), but the co-degree threshold for a single copy of K 3
4 or K 3

4 − e is still
unknown and appears to be difficult. Since the co-degree threshold for a single copy of F is known
and seems to be much easier than K 3

4 or K 3
4 − e, it would be interesting to determine the co-degree

threshold for tiling with F.

Problem 3. Let n be divisible by 7 and let G be a 3-graph on n vertices. Determine theminimum value
d such that δ2(G) ≥ d implies that G contains n

7 vertex disjoint copies of F.

The relationship between the edge density of a hypergraph and its subgraphs with large co-degree
is also very intriguing. Even the following simple questions do not seem to have an easy answer. A
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k-graph H is said to cover pairs if H has at least k + 1 vertices and every pair of vertices lies in some
edge, i.e. δ2(H) ≥ 1.

Problem 4. What is

lim sup
n→∞


e(G) n

k

 : G ⊆


[n]
k


, G contains no subgraph that covers pairs


?

Since K 3
4 − e covers pairs, for k = 3 the answer to Problem 4 is certainly no more than π(K 3

4 − e),
which is known to be at most 0.2871.

Problem 5. Given any positive integer s, what is

lim sup
n→∞


e(G) n

k

 : G ⊆


[n]
k


, G contains no subgraph on s vertices that covers pairs


?

More generally, one may ask

Problem 6. Given positive integers s, t , what is

lim sup
n→∞


e(G) n

k

 : G ⊆


[n]
k


, G contains no subgraph H on s vertices with δ2(H) ≥ t


?
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