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In this paper, we develop a method for studying cycle lengths 
in hypergraphs. Our method is built on earlier ones used in 
[21,22,18]. However, instead of utilizing the well-known lemma 
of Bondy and Simonovits [4] that most existing methods do, 
we develop a new and very simple lemma in its place. One 
useful feature of the new lemma is its adaptiveness for the 
hypergraph setting.
Using this new method, we prove a conjecture of Verstraëte 
[38] that for r ≥ 3, every r-uniform hypergraph with average 
degree Ωr(kr−1) contains Berge cycles of k consecutive 
lengths. This is sharp up to the constant factor. As a key 
step and a result of independent interest, we prove that every 
r-uniform linear hypergraph with average degree at least 
7r(k + 1) contains Berge cycles of k consecutive lengths.
In both of these results, we have additional control on the 
lengths of the cycles, which therefore also gives us bounds on 
the Turán numbers of Berge cycles (for even and odd cycles 
simultaneously). In relation to our main results, we obtain 
further improvements on the Turán numbers of Berge cycles 
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and the Zarankiewicz numbers of even cycles. We will also 
discuss some potential further applications of our method.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The study of cycles is one of the essential ingredients of Graph Theory. In the present 
paper, we are mainly concerned with extremal problems on cycle lengths in graphs and 
hypergraphs. One such type of problems consider the set of cycle lengths in graphs under 
certain density conditions (see, for instance, the work of Sudakov and Verstraete [33] for 
some in-depth discussions). Another type of problems, which are most pertinent to this 
paper, consider the longest possible consecutive sequence of cycle lengths.

This can be traced back to a question of Erdős and now a theorem of Bondy and 
Vince [5] that any graph with minimum degree at least three contains two cycles whose 
lengths differ by at most two. Häggkvist and Scott [23] extended this by showing that 
every graph with minimum degree Ω(k2) contains k cycles of consecutive even lengths. 
This quadratic bound was first improved to a linear one by Verstraëte in [37], who proved 
that average degree at least 8k will ensure the existence of k cycles of consecutive even 
lengths. Since then there has been an extensive research [15,33,27,29] on related topics. 
Very recently Liu and the second author [28] proved a tight result that every graph G
with minimum degree at least 2k + 1 contains k cycles of consecutive even lengths; and 
if G is 2-connected and non-bipartite, then G also contains k cycles of consecutive odd 
lengths. Among others, one closely related problem is the study of cycle lengths modulo 
a fixed integer k. This was proposed by Burr and Erdős [9] forty years ago and some 
conjectures were formalized by Thomassen [35] in 1983 (we refer interested readers to 
[34] for a thorough introduction).

Our work is also closely related to the so-called Turán problem. Let F be a family of 
r-graphs. An r-graph is F-free if it does not contain any member of F as a subhypergraph. 
The Turán number exr(n, F) of the family F denotes the maximum number of hyper-
edges contained in an n-vertex F-free r-graph. When r = 2, we will write it as ex(n, F). 
Studying the Turán function exr(n, F) for graphs and hypergraphs has been a central 
problem in extremal graph theory ever since the work of P. Turán [36]. For non-bipartite 
graphs, the problem is asymptotically solved by the celebrated Erdős–Stone–Simonovits 
Theorem [14] (see also [13]). However, the Turán problem for bipartite graphs remains 
mostly open, with the special case for even cycles C2k receiving particular attention. 
A classic theorem of Bondy and Simonovits [4] shows that ex(n, C2k) ≤ 100k · n1+1/k. 
This bound was subsequently improved by several authors in [37,31,6]. The Turán prob-
lem for cycles in hypergraphs has been investigated for different notions of hypergraph 
cycles in [3,17,18,20,21,26] among others. Our work in this paper focuses on so-called 
Berge cycles. The method we develop here also works for some other common notions of 
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cycles, such as so-called linear cycles (or sometimes known as loose cycles). See Section 6
for discussion in that direction.

A hypergraph H = (V, E) consists of a set V of vertices and a collection E of subsets 
of V. We call a member of E a hyperedge or simply an edge of H. A hypergraph H is 
r-uniform if all of its edges are r-subsets of V(H). We also simply call an r-uniform 
hypergraph an r-graph for brevity. A Berge path of length � is a hypergraph P consisting 
of � distinct edges e1, . . . , e� such that there exist � + 1 distinct vertices v1, . . . , v�+1
satisfying that vi, vi+1 ∈ ei for i = 1, . . . , �. We call the 2-uniform path v1v2 . . . v�+1 a 
spine of the Berge path P. A Berge cycle of length � is a hypergraph C consisting of �
distinct hyperedges e1, ..., e� such that there exist � distinct vertices v1, . . . , v� satisfying 
that vi, vi+1 ∈ ei for each i = 1, ..., � − 1 and v1, v� ∈ e�. We call the 2-uniform cycle 
v1v2 . . . v�v1 a spine of the Berge cycle C.

Let us now recall Verstraëte’s theorem on cycles of consecutive even lengths in graphs.

Theorem 1.1. (Verstraëte [37]) Let k ≥ 2 be a natural number and G a bipartite graph 
of average degree at least 4k and radius h. Then G contains cycles of k consecutive even 
lengths. Moreover, the shortest of these cycles has length at most 2h.

Let us note that Verstraëte’s result, together with a simple induction, immediately 
yields ex(n, C2k) ≤ 8kn1+1/k, thereby giving a short proof of the theorem of Bondy and 
Simonovits [4] along with an improved coefficient. In an attempt to generalize Theo-
rem 1.1, Verstraëte [38] made the following conjecture for Berge cycles in r-graphs.

Conjecture 1.2. (Verstraëte [38]) Let r ≥ 3. If H is an r-graph which does not contain 
Berge cycles of k consecutive lengths, then H has average degree Or(kr−1) as k → ∞.

The complete r-graph on k vertices shows that this conjecture, if true, is best possible 
up to some constant factor (depending only on r).

Our main result is to confirm Conjecture 1.2 by showing

Theorem 1.3. Let r ≥ 3. Any r-graph H with average degree at least 35rkr−1 + 21rkr−2

contains Berge cycles of k consecutive lengths.

Moreover, we will establish a stronger statement, in which, as in Theorem 1.1, we 
have additional control on the length of the shortest cycle in the collection, in terms of a 
parameter of a hypergraph that is related to the radius of a graph. This stronger version 
then immediately yields bounds on the Turán numbers of Berge cycles (for both even 
and odd cycles simultaneously). See Section 5 for detailed discussions.

A hypergraph H is linear, if |e ∩ f | ≤ 1 for any distinct hyperedges e, f ∈ E(H). For 
linear hypergraphs, we have the following even stronger result.

Theorem 1.4. Let r ≥ 3. Any linear r-graph H with average degree at least 7r(k + 1)
contains Berge cycles of k consecutive lengths.
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This is also tight up to the constant factor, by considering a Steiner triple system on k
vertices. As with Theorem 1.3, we will also establish a stronger version of Theorem 1.4
with control on the length of the shortest cycle in the collection.

As we shall see, Theorem 1.4 plays a central role in our results. In fact, we will prove 
Theorem 1.3 in Section 4 by reducing it to the r = 3 case of Theorem 1.4 via some 
reduction lemmas. These reduction lemmas given in Section 4 may be of independent 
interest in the study of Turán numbers of other Berge hypergraphs.

Let us now say a few words about the method we use in this paper, which we feel 
should find many future applications. In many Turán type results on cycles in graphs, 
the following lemma plays an important role. The lemma was implicit in Bondy and 
Simonovits [4] and was explicit in Verstraëte [37]. Let G be a graph and A, B be disjoint 
subsets of V (G). An (A, B)-path is a path that has one endpoint in A and the other 
in B.

Lemma 1.5. (The (A, B)-path lemma) ([4], see also [37]) Let H be a graph comprising 
a cycle with a chord. Let (A, B) be a nontrivial partition of V (H). Then H contains 
(A, B)-paths of every length less than |V (H)|, unless H is bipartite with bipartition 
(A, B).

Despite its highly successful applications, one restriction of this powerful lemma is, 
however, that it does not easily generalize to hypergraphs, especially for cycle structures 
that are more restrictive than Berge cycles. Faudree and Simonovits [16] introduced an 
alternative method, called the blowup method. They used the method to study the Turán 
number of a theta graph (which is the union of a number of internally disjoint paths of the 
same length between two fixed vertices). The method of Faudree and Simonovits allows 
for applications to hypergraphs more easily (see [7] for such an application). However, 
the constant involved in the Faudree–Simonovits method is usually very large. Therefore, 
it is desirable to look for new methods to add to the existing ones.

The method we use in this paper builds on the ones used in [21,22,18], but contains 
some novel ingredients and overcomes some drawbacks of the existing methods. The key 
ideas of our method are contained in the proofs of Lemma 3.1 and Lemma 3.2, both 
of which rely on a simple lemma (Lemma 2.6 and its hypergraph extension), used in 
place of the (A, B)-path lemma of Bondy and Simonovits. We expect our method to find 
further applications in both the graph and hypergraph settings.

The rest of the paper is organized as follows. In Section 2, we introduce notation, some 
lemmas, and a generalization of the breadth-first search tree for 3-graphs. In Section 3, 
we prove Theorem 1.4. In Section 4, we prove Theorem 1.3. In Section 5, we discuss the 
Turán numbers of Berge cycles in r-graphs and the Zarankiewicz numbers of even cycles. 
In Section 6, we discuss some future directions. Throughout this paper we make some 
but not significant efforts to optimize the constant factors used in the proofs.
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2. Preliminaries

2.1. Notation and terminology

Unless otherwise specified, all hypergraphs H discussed in this paper are simple, that 
is, all edges of H are distinct subsets. The k-shadow ∂k(H) of H denotes the k-graph on 
the same vertex set of H, whose edge set consists of all subsets of k vertices contained in 
members of E(H). If k = 2, we then just write it as ∂H and call it shadow of H. We say a 
subhypergraph G of ∂k(H) is extendable in H, if there exists an injection ψ : E(G) → E(H)
such that e ⊆ ψ(e) for each e ∈ E(G). Such an injection ψ is called an extension of G. It 
is immediate from our definition that

H contains a Berge cycle of length � ⇐⇒ ∂H contains an extendable cycle C�.

Let H be a hypergraph. By |H|, we mean the total number of hyperedges in H. For 
a vertex v ∈ V(H), the degree dH(v) denotes the number of hyperedges in H containing 
the vertex v. We use δ(H) and d(H) to denote the minimum degree and the average 
degree of H, respectively. For a subset S ⊆ V(H) of size at least two, the co-degree dH(S)
denotes the number of hyperedges of H containing S. If S = {u, v}, then we will just 
write it as dH(u, v). For k ≥ 2, the minimum k-degree δk(H) of H is the minimum of 
non-zero co-degrees dH(S) over all subsets S ⊆ V(H) of size k. A subset S ⊆ V(H) is a 
vertex cover of H if each edge of H contains a vertex in S.

A linear path of length � is a hypergraph with edges e1, e2, ..., e� such that |ei∩ei+1| = 1
for every 1 ≤ i ≤ � −1, and ei∩ ej = ∅ for other pairs {i, j}, where i �= j. A vertex in the 
first or last edge of a linear path P that has degree 1 in P is called an endpoint of P. A 
linear cycle of length � is a hypergraph with edges e1, e2, ..., e� such that |ei ∩ ei+1| = 1
for every 1 ≤ i ≤ � − 1, |e1 ∩ e�| = 1, and ei ∩ ej = ∅ for other pairs {i, j}, where i �= j. 
Certainly a linear path/cycle is also a Berge path/cycle.3

2.2. Some lemmas on paths and cycles in hypergraphs

In this subsection, we collect and establish several lemmas to be used later, including 
the pivotal Lemma 2.6 and its hypergraph extension as mentioned in the introduction.

An r-graph H is r-partite, if there exists an r-partition (A1, A2, ..., Ar) of V(H) such 
that for any edge e ∈ E(H), |e ∩Ai| = 1 for each i ∈ [r]. The following lemma from [11]
is well-known.

Lemma 2.1. ([11]) Every r-graph H has an r-partite subhypergraph H′ satisfying |H′| ≥
r!
rr · |H|.

3 The length of a path or a cycle (of any kind) always denotes the number of edges it contains.
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Lemma 2.2. Every r-graph H has a subhypergraph H′ satisfying that d(H′) ≥ d(H) and 
δ(H′) ≥ 1

r · d(H).

Proof. Let d = d(H). Then |H| = |V(H)| · d/r. Let H′ be a smallest non-empty subhy-
pergraph of H satisfying |H′| ≥ |V(H′)| · d/r; such an H′ exists since H itself satisfies 
the inequality, and it is clear that H′ has at least r vertices. If H′ contains a vertex x of 
degree less than d/r, then deleting x from H′ yields a smaller subhypergraph H′′ with 
|H′′| ≥ |V(H′′)| ·d/r, a contradiction. Hence δ(H′) ≥ d/r. Also, since |H′| ≥ |V(H′)| ·d/r, 
we have d(H′) ≥ d. �

We need the following classic result of Erdős and Gallai [10].

Theorem 2.3. [10] Every n-vertex graph with more than m(n − 1)/2 edges has a cycle of 
length at least m + 1. Every n-vertex graph with more than mn/2 edges has a path of 
length at least m + 1.

Lemma 2.4. Let H be a linear 3-partite 3-graph with a 3-partition (V1, V2, V3) such that 
d(H) ≥ 3p

2 . There exists a vertex u ∈ V1 such that for each � ∈ [p], there exists an 
extendable path of length � in ∂H from u to a vertex in V2.

Proof. Let n = |V(H)|. Let G = {(e ∩ (V1 ∪ V3) : e ∈ H}. Since H is linear, |G| =
|H| ≥ pn

2 > pn(G)
2 . Let t = �p

2�. Then 2t ≤ p + 1. Theorem 2.3, G contains a path P of 
length 2t. Let P = u1v1u2v2...utvt. By symmetry, we may assume that u1 ∈ V1. Then 
∀i ∈ [s], ui ∈ V1, vi ∈ V3. Since H is 3-partite and linear, different edges of P extend to 
different edges of H.

For s ∈ [t], we construct extendable paths of length 2s − 1 and 2s, respectively, in ∂H
from u1 to a vertex in V2. Let usvsw be the unique edge of H containing usvs, where 
w ∈ V2. Let P2s−1 = u1v1...usw. Then P2s−1 has length 2s − 1 and it is easy to see that 
it is extendable. Next, let vsus+1w

′ be the unique edge of H containing vsus+1, where 
w′ ∈ V2. Let P2s = u1v1...usvsw

′. Then P2s has length 2s and is extendable, completing 
the proof. �

We say that a hypergraph H is connected if ∂H is connected.

Lemma 2.5. Let H be a connected linear hypergraph and X, Y two disjoint sets of vertices 
in H. Then there exists a linear (X, Y )-path in H.

Proof. Since H is connected, ∂H is a connected 2-graph. Let P be a shortest (X, Y )-path 
in ∂H. Suppose P = u1u2 . . . um where u1 ∈ X, um ∈ Y . For each i ∈ [m −1], let ei denote 
the unique edge of H containing uiui+1. If ei ∩ V (P ) �= {ui, ui+1} for some i ∈ [m − 1], 
then we can find a shorter (X, Y )-path in ∂H than P , a contradiction. Likewise if ei∩ ej
contains a vertex outside V (P ) then since H is linear, |i − j| ≥ 2, in which case we can 
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find a shorter (X, Y )-path in ∂H than P , a contradiction. Therefore, e1, e2, . . . , em form 
a linear (X, Y )-path in H. �

The next lemma can be viewed as a replacement for the (A, B)-path lemma (i.e., 
Lemma 1.5). This lemma and its hypergraph extension will be crucial in our proofs.4

Lemma 2.6. Let G be a connected graph whose edges are colored with 1 and 2 such that 
there is at least an edge of each color. For i ∈ [2], let Gi denote the subgraph of G
consisting of edges of color i. If d(G1) ≥ p + 1, then there exists a path of length at least 
p in G such that the first edge has color 2 and the others all have color 1.

Proof. Let n = |V (G)|. By our assumption, e(G1) ≥ (p +1)n/2 and there is an edge xy of 
color 2. Let G′

1 = G1−x. Then e(G′
1) > (p −1)n/2. By Theorem 2.3, G′

1 contains a cycle 
C of length at least p. Since G is connected, there exist paths in G from {x, y} to V (C). 
Among them, let P be a shortest one. Let z be the unique vertex in V (C) ∩ V (P ). Let 
z′ be a neighbor of z on C. If P has none of edges of color 2, then (P ∪C ∪{xy}) \ {zz′}
satisfies the requirement. So we may assume that P has an edge of color 2. In this case, let 
P ′ be a shortest subpath of P containing z and an edge of color 2. Then (P ′∪C) \ {zz′}
satisfies the requirement. �

We next give a hypergraph extension of Lemma 2.6. Even though the objects we study 
are Berge paths and Berge cycles, it appears that developing variants of Lemma 2.6 for 
linear paths would facilitate the arguments better and may be handy for future study 
on linear cycles.

Lemma 2.7. (The special-path lemma) Let r, p ≥ 2. Let H be a connected linear r-graph 
whose edges are colored with 1 and 2 such that there is at least one edge of each color. 
For i ∈ [2], let Hi denote the subhypergraph of H consisting of edges of color i. Suppose 
d(H1) ≥ r(r − 1)(p − 1) + 2r. Then there exists a linear path of length at least p such 
that the first edge has color 2 and the other edges all have color 1.

Proof. Let n = |V(H)|. Let h be an edge of color 2. Let u be a vertex in h. Let H′ be 
obtained from H1 by deleting the r−1 vertices in h besides u. Since H1 is linear, we lose 
at most n−1

r−1 edges by deleting any vertex. Since |H1| ≥ (r − 1)(p − 1)n + 2n, certainly 
we have |H′| > (r − 1)(p − 1)n + n. By Lemma 2.2, H′ contains a subhypergraph H′′

with minimum degree at least (r − 1)(p − 1) + 2. Call a linear path P in H good if its 
first edge has color 2 and the other edges have color 1 and if the last edge contains an 
endpoint lying in V(H′′).

First we show that there exists at least one good path in H. Let V(h) denote the set 
of vertices in h. Since H is connected, by Lemma 2.5, there exist linear paths in H from 

4 Note that this lemma yields a better constant than its hypergraph extension.
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V(h) to V(H′′). Among these paths let P be a shortest one. Let e denote the unique edge 
of P intersecting V(h) and view it as the first edge of P and let f denote the unique 
edge of P intersecting V(H′′). It is possible that e = f . Let v be a vertex in f ∩ V(H′′). 
By our choice of P, v has degree 1 in P. First suppose that all edges on P have color 1. 
By our choice of P, Q = P ∪ h is a linear path that starts with a color 2 edge (namely 
h) but has all color 1 edges otherwise and one of the endpoints of the last edge is in 
V(H′′). Hence Q is a good path. Next, suppose P contains at least one color 2 edge. In 
this case, let Q be the shortest linear-path contained in P that contains a color 2 edge 
and the edge f . Then Q is a good path.

Now, among all good paths in H, let Q∗ be a longest one. Let e, f denote the first 
and last edges, respectively. By our assumption, e is the only edge on Q∗ with color 2
and f contains an endpoint z in V(H′′). Suppose first Q∗ has length at most p −1. Since 
δ(H′′) ≥ (r − 1)(p − 1) + 2, there are at least (r − 1)(p − 1) + 1 edges of H′′ besides f
that contain z. Since there are at most (r − 1)(p − 1) vertices in V(Q∗) \ {z} and H is 
linear, one of these edges e′ is disjoint from V(Q∗) \ {z}. But then Q∗ ∪ {e′} is a good 
path in H that is longer than Q∗, a contradiction. Hence Q∗ must have length at least 
p and it is a linear path that satisfies the claim. �
2.3. Maximal extendable skeletons

We now define a generalization of the breadth-first search tree for 3-graphs, which 
was first introduced by Győri and Lemons in [21]. Let H be a 3-graph and x a vertex of 
H. A maximal extendable skeleton of H rooted at x is an extendable subgraph T ⊆ ∂H, 
obtained by running the following algorithm till its termination.

Algorithm 2.1. (Modified Breadth First Search)
Input: A 3-graph H and a vertex x ∈ V (H).
Output: A tree T rooted at x and an extension ψ : E(T ) → E(H).

Initiation: Set T = ∅, Q = {x}. Label all edges of H as unprocessed.
Iteration: Maintain Q as a queue. Let u be the first vertex in Q. Consider any unprocessed 
edge e = uvw containing u. If at least one of v, w is not in V (T ), then pick one, say v. 
Add edge uv to T and add v to the end of Q. Let ψ(uv) = e and mark e as processed 
and delete e from H. If both of v, w are already in V (T ), then skip edge e and mark it 
as processed. When all edges containing u have been processed, we delete u from Q.
Termination: Terminate when Q = ∅. �

Clearly, the graph T we obtain from Algorithm 2.1 is a tree rooted at x, in which the 
distance from a vertex y to the root x is non-decreasing in the order in which y is being 
added to T (or equivalently to the queue Q). We point out that such tree T may not be 
spanning in ∂H.
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Given a 3-graph H and a maximal extendable skeleton T in H rooted at some vertex 
x together with an extension ψ of it, let

ET,ψ = {ψ(e) : e ∈ E(T )} (1)

and

E ′
T,ψ = {e ∈ E(H) \ ET,ψ : e ∩ V (T ) �= ∅}. (2)

Note that if H is a linear 3-graph, then each edge in ∂H lies in a unique edge of H. 
So an extension ψ of a maximal extendable skeleton T in a linear 3-graph H is uniquely 
determined by T . In this case, we will simply write ET and E ′

T for ET,ψ and E ′
T,ψ, respec-

tively.
Given two vertices u, v ∈ V (T ), let dT (u, v) denote the length of the unique (u, v)-path 

in T . For each integer i ≥ 0, let

Li(T ) = {y ∈ V (T ) : dT (x, y) = i}. (3)

When the context is clear, we will simply write Li for Li(T ). We call Li level i of T .

Proposition 2.8. Let H be a 3-graph and x ∈ V (H). Let T be a maximal extendable 
skeleton in H rooted at x together with an extension ψ. For every e ∈ E ′

T,ψ, there exists 
some i ≥ 0 such that e ⊆ Li(T ) ∪ Li+1(T ).

Proof. We already observed that for any y, y′ ∈ V (T ), if y is added to T before y′

then dT (x, y) ≤ dT (x, y′). Among all vertices in e ∩ V (T ), let u be the vertex that is 
added to T the earliest. Let i = dT (x, u). Then u ∈ Li(T ). Suppose e = uvw. Consider 
the time the algorithm processed e. If one of v or w, say v, was not in T at that 
time, then the algorithm would have added uv to T , deleted e, and let ψ(uv) = e, 
contradicting e ∈ E ′

T,ψ. Hence, v, w were both in V (T ) at that time. By our earlier 
discussion, dT (x, v), dT (x, w) ≥ i. Since v was already in T , it must have been added 
to T when we processed an edge e′ containing a vertex u′ where u′ was either u itself 
or an earlier vertex in the queue Q. Hence dT (x, v) = dT (x, u′) + 1 ≤ i + 1. Similarly, 
dT (x, w) ≤ i + 1. �
3. Consecutive cycles in linear r-graphs

We devote this section to the proof of Theorem 1.4. The next two lemmas are crucial 
and their proofs contain the main ideas of our method used in this paper.

Lemma 3.1. Let H be a linear 3-graph and T a maximal extendable skeleton in H rooted 
at some vertex r. For each i ≥ 1, let Li = {v : dT (r, v) = i} and Ai = {e ∈ H : |e ∩Li| =
2, |e ∩ Li−1| = 1}. If there exists an i ≥ 1 such that |Ai| ≥ (k + 2)|Li|, then H contains 
Berge cycles of all lengths in [a, a + k − 1] for some a ≤ 2i.
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Proof. Fix an i ≥ 1 that satisfies |Ai| ≥ (k + 2)|Li|. Since H is linear, the condition 
implies that i ≥ 2. Let Gi = {e ∩ Li : e ∈ Ai}. Since H is linear, there is a bijection 
between Ai and Gi. So, Gi is a 2-graph on Li with |Gi| = |Ai| ≥ (k + 2)|Li|. Hence, 
d(Gi) ≥ 2k + 4. Let G be a connected component of Gi with d(G) ≥ 2k + 4. By our 
assumption, each uv ∈ E(G) has a unique co-neighbor w in Ai and w ∈ Li−1. Let 
S be the set of co-neighbors of uv over all edges uv ∈ E(G). Note that the condition 
d(G) ≥ 2k + 4 implies that |S| ≥ 2k + 4 ≥ 2. Indeed, the link of any single vertex can 
only be a matching.

Let r∗ be the closest common ancestor in T of vertices in S and let T ∗ be unique 
subtree of T rooted at r∗ whose set of leaves is S. Suppose r∗ ∈ Li′ . Let s1, . . . , sm
denote the children of r∗ in T ∗. Color all the descendants of s1 in T ∗ that lie in S color 
1 and the other vertices in S color 2. Call this coloring c. By our choice of r∗ and the 
fact that |S| ≥ 2, we have m ≥ 2. So both color 1 and color 2 appear in S. Now, define 
an edge-coloring φ of G as follows. For each uv ∈ E(G), let w be the unique vertex in 
S such that uvw ∈ Ai. Let φ(uv) = c(w). This defines a 2-coloring of the edges of G in 
which there is at least one edge of each color. For i ∈ [2], let Gi denote the subgraph of 
G consisting of edges of color i. We may assume that e(G1) ≥ e(G2) since the arguments 
for the e(G2) ≥ e(G1) case are identical. By our assumption, d(G1) ≥ k + 2. Since G is 
connected, by Lemma 2.6, there exists a path P of length k+1 in G such that first edge 
has color 2 and all the others have color 1. Suppose P = uv1v2 . . . vk+1, where uv1 is the 
only edge of color 2. Let x be the unique vertex in S such that uv1x ∈ Ai. Let X denote 
the unique path in T ∗ from r∗ to x. For each � ∈ [k], let y� be the unique vertex in S
such that v�v�+1y� ∈ Ai. Let Y� denote the unique path in T ∗ from r∗ to y�.

Now, P� = xv1 . . . v�y� is an extendable path of length � + 1 whose edges extend to 
different hyperedges of Ai ⊆ E ′

T . Clearly X∪Y� is an extendable path of length 2(i −1 −i′)
whose edges extend to different hyperedges in ET . Further, V (X ∪Y�) ∩V (P�) = {x, y�}. 
Hence, P�∪X∪Y� is an extendable cycle in ∂(H) of length 2(i −1 −i′) +� +1, where � ∈ [k]. 
So H contains a Berge cycle of each length in [a, a + k− 1], where a = 2(i − i′) ≤ 2i. �
Lemma 3.2. Let H be a linear 3-graph and T a maximal extendable skeleton in H rooted 
at some vertex r. For each i ≥ 1, let Li = {v : dT (r, v) = i}, Bi = {e ∈ H : e ⊆
Li}, and Ci = {e ∈ H : |e ∩ Li| = 2, |e ∩ Li+1| = 1}. For each i ≥ 1, if there is 
no a ≤ 2i + 2 such that H contains Berge cycles of all lengths in [a, a + k − 1], then 
|Bi ∪ Ci| ≤ (7k

2 + 1)|Li| + (5k
2 + 2)|Li+1|.

Proof. Fix an i for which H does not contains Berge cycles of all lengths in [a, a +k−1] for 
any a ≤ 2i +2. Let G be a connected nontrivial component of Bi∪Ci. Let ni = |V(G) ∩Li|
and ni+1 = |V(G) ∩ Li+1|. Our goal is to show |G| ≤ (7k

2 + 1)ni + (5k
2 + 2)ni+1.

Let r∗ denote the closest common ancestor of V(G) in T . Suppose r∗ ∈ Li′ . Let T ∗

be the minimal subtree of T rooted at r∗ which contains V(G). Let s1, . . . , sm denote 
the children of r∗ in T ∗. By our choice of r∗, m ≥ 2. Now, color all descendants of s1
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in V (T ∗) with color 1 and the descendants of other sj’s in V (T ∗) with color 2. Call this 
coloring c. By the minimality of T , we see that G has vertices of both colors.

In the following Claim, we present one ingredient that we will repeatedly use.

Claim 1. Suppose ∂G contains an extendable path P of length � with endpoints x, y such 
that c(x) �= c(y) and V (X ∪ Y ) ∩ V (P ) = {x, y}, where X, Y denote the unique paths 
in T ∗ from r∗ to x, y, respectively. Then X ∪ Y ∪ P is an extendable cycle of length 
(i(x) + i(y) − 2i′) + �, where i(x), i(y) denote the levels x, y are in, respectively.

Proof. Since c(x) �= c(y), V (X) ∩ V (Y ) = {r∗}. Thus C = X ∪ Y ∪ P is a cycle in ∂H
of length |X| + |Y | + �. By our assumption different edges on X ∪ Y extend to different 
hyperedges of ET , while different edges on P extend to different hyperedges of E ′

T . Hence 
C is an extendable cycle in ∂H. Lastly, note that |X| = i(x) − i′ and |Y | = i(y) − i′. �

For each edge e ∈ G, we call it monochromatic if all three vertices in e have the 
same color in c; otherwise we call it non-monochromatic. Let M denote the subgraph 
of G consisting of monochromatic edges and N the subgraph of G consisting of non-
monochromatic edges. So G = M ∪N , and by our choice of r∗, N �= ∅.

Claim 2. |M| ≤ (2k + 2)(ni + ni+1).

Proof. Suppose that |M| > (2k + 2)(ni + ni+1). We will derive a contradiction. By 
Lemma 2.7, there exists a linear path P in G of length at least k + 1 such that the first 
edge is in N and all the other edges are in M. Let the edges of P be e1, e2, . . . , ek+1
in order where e1 is the edge in N . It is easy to see that all the vertices in V(P \ e1)
must have the same color under c. By renaming the colors in c if necessary, we may 
assume that they have color 1. Also, among the two endpoints x, x′ of P contained in 
e1, either c(x) �= 1 or c(x′) �= 1. Without loss of generality, suppose that c(x) = 2. For 
each � ∈ [k + 1], let P� denote the linear path consisting of e1, . . . , e�. By our definition 
of G, x ∈ Li ∪ Li+1.

First suppose that x ∈ Li+1. Let y1 be any vertex in e1 that has color 1 and lies 
in Li (note that such a vertex exists). Let � ∈ {2, . . . , k}. By our discussion, all three 
vertices in e� have color 1, and among the two endpoints in e� of P�, there exists one 
that lies in Li, denote that vertex by y�. Now P� is a linear (x, y�)-path of length � in 
G whose vertices are contained in Li ∪ Li+1. Let P� denote a spine of it with x, y� as 
endpoints. Note that all vertices on P� except x have color 1 in c and c(x) = 2. Let 
X, Y� denote the unique paths in T ∗ from r∗ to x and y�, respectively. By the definition 
of Y�, Y� intersects P� only at y�. Also, X contains a vertex each from Li and Li+1, 
both of which have color 2 in c, but all vertices on P� other than x have color 1. Hence 
X intersects P� only at x. By Claim 1, X ∪ Y� ∪ P� is an extendable cycle of length 
(i − i′) + (i + 1 − i′) + � in ∂H. Since this holds for each � ∈ [k], we get Berge cycles of 
all lengths in [2(i − i′) + 2, 2(i − i′) + k+ 1]. This contradicts our assumption that H has 
no Berge cycles of k consecutive lengths with the shortest having length at most 2i + 2.
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Next, suppose x ∈ Li. Let � ∈ {2, . . . , k + 1}. By definition all the vertices in e� have 
color 1 under c. Among the two endpoints in e� of P�, one of them lies in Li. Let y�
denote such a vertex. By a similar argument as above, we can obtain a Berge cycle of 
length (i − i′) + (i − i′) + � for each � ∈ {2, . . . , k + 1}. Hence H has Berge cycles of all 
lengths in [2(i − i′) + 2, 2(i − i′) + k + 1]. Again, this contradicts our assumption that 
H has no Berge cycles of k consecutive lengths the shortest of which has length at most 
2i + 2. This proves Claim 2. �
Claim 3. |N | ≤ (3k

2 − 1)ni + k
2ni+1.

Proof. We further decompose N as follows. Let S1, S2 denote the set of descendants of 
r∗ in Li with color 1 and 2, respectively. Let

N1 = {e ∈ N : |e ∩ S1| = 2}

N2 = {e ∈ N : |e ∩ S2| = 2}

N3 = {e ∈ N ∩ Ci : |e ∩ S1| = |e ∩ S2| = 1}

By definition, any e ∈ N ∩ Bi intersects both S1 and S2. Thus we see that N = N1 ∪
N2 ∪ N3. Suppose first that |N1| > k−1

2 ni. Let G1 be formed by taking the pair of 
color 1 vertices from each hyperedge in N1. Then |G1| = |N1| > k−1

2 ni > k−1
2 n(G1). 

By Theorem 2.3, G1 contains a path P of length at least k. Let P = y0y1 . . . yk. Let 
xy0y1 be the unique hyperedge in N1 containing y0y1. Then c(x) = 2 and x ∈ Li ∪Li+1. 
Let p ∈ {0, 1} such that p = 1 iff x ∈ Li+1. Let X denote the unique path in T ∗ from 
r∗ to x. For each � ∈ [k], let Y� denote the unique path in T ∗ from r∗ to y�. By the 
definition of N1, the path P� = xy1 . . . y� is an extendable path of length � in ∂G. Also 
V (X) ∩ V (P�) = {x} since x is the only vertex with color 2 on P�. By definition of Y�

and P�, V (Y�) ∩V (P�) = {y�}. So, V (X ∪Y�) ∩V (P ) = {x, y�}. By Claim 1, X ∪Y� ∪P�

is an extendable cycle of length 2(i − i′) + p + � in ∂H, where p ∈ {0, 1}. Since this holds 
for each � ∈ [k], H contains Berge cycles of k consecutive lengths, the shortest of which 
has length at most 2i + 2, a contradiction. Hence, |N1| ≤ k−1

2 ni. By symmetry, we have 
|N2| ≤ k−1

2 ni. Therefore,

|N1| + |N2| ≤ (k − 1)ni (4)

Now, consider N3. By definition, N3 is 3-partite whose three parts are contained in 
S1, S2, and Li+1, respectively. Suppose d(N3) > 3k

2 . Then by Lemma 2.4, there exists 
x ∈ S1 ∩V(N3) such that for each � ∈ [k], there is an extendable path P� in ∂N3 from x
to a vertex y� in S2 ∩ V(N3). Let X denote the unique path in T ∗ from r∗ to x and for 
each � ∈ [k] let Y� denote the unique path in T ∗ from r∗ to y�. Like before, X ∪ Y� ∪ P�

is an extendable cycle of length 2(i − i′) + � in ∂H. Thus H contains Berge cycles of k
consecutive lengths, the shortest of which has length at most 2i, a contradiction. Hence
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|N3| ≤
k

2 (ni + ni+1). (5)

Claim 3 now follows from (4) and (5). �
By Claims 2 and 3, |G| ≤ (7k

2 +1)ni+(5k
2 +2)ni+1. Since this holds for each component 

of Bi ∪Ci, it follows |Bi ∪Ci| ≤ (7k
2 +1)|Li| +(5k

2 +2)|Li+1|. This proves Lemma 3.2. �
Remark. In the proof of Claim 2 of Lemma 3.2, one could also use Lemma 2.6 instead 
of Lemma 2.7 and get slightly better constants. However, there are more subtleties to 
address if one were to use Lemma 2.6 and also we want to demonstrate the use of 
Lemma 2.7 since the lemma will be useful in the study of linear cycles.

Lemma 3.3. Let H be a linear 3-graph. Let T be any maximal extendable skeleton in 
H rooted at some vertex r and with height h. If the number of hyperedges in H that 
contain some vertex in V (T ) is at least 7(k + 1)|V (T )| then H contains Berge cycles of 
k consecutive lengths, the shortest of which is at most 2h + 2.

Proof. Suppose H does not contain such Berge cycles, we derive a contradiction. Define 
ET and E ′

T as in (1) and (2). For each i ≥ 0, let Li = {v ∈ V (T ) : dT (r, v) = i}. 
Let Ai = {e ∈ E(H) : |e ∩ Li| = 2, |Li−1| = 1}, Bi = {e ∈ H : |e ∩ Li| = 3}, and 
Ci = {e ∈ H : |e ∩ Li| = 2, |e ∩ Li+1| = 1}. By Proposition 2.8, E ′

T ⊆
⋃h

i=1(Ai ∪ Bi ∪ Ci). 
By Lemma 3.1 and 3.2, for each i ∈ [h], |Ai ∪ Bi ∪ Ci| ≤ (9

2k + 3)|Li| + (5
2k + 2)|Li+1|. 

Hence

|E ′
T | ≤ (9

2k + 3)
h∑

i=1
|Li| + (5

2k + 2)
h−1∑
i=1

|Li+1| ≤ (7k + 5)|V (T )|.

On the other hand, |ET | = |V (T )| − 1. So the number of hyperedges in H with at least 
one vertex in V (T ) is less than 7(k + 1)|V (T )|, a contradiction. �
Remark. Note that in Lemma 3.3, we not only find Berge cycles of k consecutive lengths, 
but also ensure that the shortest length is no more than twice the height of any max-
imal extendable skeleton. This extra condition on the shortest length will be useful for 
studying the Turán number of a Berge cycle of fixed length. See Section 5 for detailed 
discussions. If we do not impose any condition on the shortest length of our cycles, then 
we can both improve the bounds and simplify the proofs of Lemma 3.1 and Lemma 3.2.

We now prove the following theorem, which perhaps is the cornerstone of this paper.

Theorem 3.4. Let H be a linear 3-graph with d(H) ≥ 21(k + 1). Then H contains Berge 
cycles of k consecutive lengths.

Proof. By our assumption |H| ≥ 7(k + 1)|V(H)|. Let T be any maximal extendable 
skeleton in H. If H does not contain Berge cycles of k consecutive lengths, then by 
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Lemma 3.3, there are fewer than 7(k + 1)|V (T )| hyperedges in H that contain some 
vertex in V (T ). Let us delete V (T ) and hyperedges that contain vertices in V (T ). Denote 
the remaining hypergraph by H′. We can repeat the process until we either find Berge 
cycles of k consecutive lengths or we run out of hyperedges. Since |H| ≥ 7(k + 1)|V(H)|
and we lose fewer than 7(k + 1) hyperedges per vertex we delete, we never run out of 
hyperedges. So H must contain Berge cycles of k consecutive lengths. �

Now we can derive Theorem 1.4 promptly from Theorem 3.4.

Proof of Theorem 1.4. Let H be a linear r-graph with average degree at least 7(k+ 1)r. 
Define G to be the 3-graph with V(G) = V(H) by taking as hyperedges a 3-subset 
from each edge e of H. Since H is linear, the 3-subsets are all distinct. So |G| = |H| ≥
7(k+1)|V(H)|. Also, G is linear. By Theorem 3.4, G contains Berge cycles of k consecutive 
lengths. Since all edges of G extend to distinct edges of H, these Berge cycles in G extend 
to Berge cycles of k consecutive lengths in H. �
4. The proof of Theorem 1.3

In this section we prove Theorem 1.3, by essentially reducing it to Theorem 3.4. We 
start by providing some useful lemmas. The following lemma will be important for our 
reduction. It may be viewed as a very special case of the delta-system lemma, introduced 
by Deza, Erdős, and Frankl [8].

Lemma 4.1. Any r-graph H has either a subhypergraph H′ with δr−1(H′) ≥ k + 1, or a 
subhypergraph H′′ with |H′′| ≥ |H|/k in which each hyperedge contains an (r−1)-set with 
co-degree 1 in H′′. In particular, in the latter case, there is an extendable (r − 1)-graph 
G ⊆ ∂r−1(H) with |G| ≥ |H|/k.

Proof. We apply the following greedy algorithm for H. Initially, set H′ = H and H′′ = ∅. 
If there exist an edge e ∈ E(H′) and an (r− 1)-subset e′ ⊆ e such that dH′(e′) ≤ k, then 
we place one hyperedge containing e′ in H′′ and delete all hyperedges in H′ containing 
e′. We continue this until there is no such pair (e, e′). If H′ is nonempty, then we are done 
as clearly δr−1(H′) ≥ k + 1. Hence, H′ is empty. Then H′′ satisfies that |H′′| ≥ |H|/k
and that each hyperedge e contains an (r − 1)-subset e′ with co-degree 1 in H′′. For 
the second statement, form G by selecting e′ from each hypergraph e of H′′. Clearly, 
|G| = |H′′| and G is extendable. �

In the next two lemmas, we show that if an r-graph H has large δr−1(H), then there 
exist many Berge cycles of consecutive lengths. An r-graph P is a tight path of length 
m, if it consists of m edges e1, . . . , em and m + r − 1 vertices v1, . . . , vm+r−1 such that 
each ei = {vi, . . . , vi+r−1}.
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Lemma 4.2. Let r ≥ 3 and P be an r-graph. If P is a tight path of length m, then P
contains Berge cycles of all lengths in {3, . . . , m − 1}.

Proof. Let e1, . . . , em be all edges in P such that each ei = {i, . . . , i + r − 1}. Let 
fi = {i, i + 1, i + 2}. Since each fi extends to ei, it suffices to find Berge cycles in the 
tight path P ′ = {f1, ..., fm} (i.e., it suffices to consider 3-graphs). For even t ≤ m, 
consider the following 2-cycle with spine 2, 4, ..., t, t − 1, t − 3, ..., 3, 2. This 2-cycle can 
extend to a Berge cycle of length t −1 in P ′ with edges f2, f4, ..., ft−2, ft−1, ft−3, ..., f3, f1. 
These edges cover pairs 24, 46, ..., (t − 2)t, t(t − 1), (t − 1)(t − 3), ..., 53, 32, respectively. 
For odd t ≤ m, similarly consider the following 2-cycle with spine 2, 4, ..., t − 3, t −
1, t, t − 2, ..., 3, 2. This 2-cycle can extend to a Berge cycle of length t − 1 in P ′ with 
edges f2, f4, ..., ft−3, ft−1, ft−2, ft−4, ..., f3, f1. These edges cover pairs 24, 46, ..., (t −3)(t −
1), (t − 1)t, t(t − 2), (t − 2)(t − 4), ..., 53, 32, respectively. Hence, there exist Berge cycles 
of all lengths in {3, . . . , m − 1} in P ′ (and thus in P). �
Lemma 4.3. Let r ≥ 3 and H be an r-graph with δr−1(H) ≥ k + 1. Then H contains 
Berge cycles of all lengths in {3, 4, ..., k + 2}.

Proof. Let P be a longest tight path in H, say of length m. Let e1, . . . , em be all edges 
in P such that each ei = {vi, . . . , vi+r−1}. Let S = {vm+1, ..., vm+r−1}. All edges f of 
H containing S satisfy that f\S ⊆ {v1, ..., vm}, as otherwise P ∪ f would be a longer 
tight path than P, contradicting the choice of P. This also shows that m ≥ dH(S) ≥
δr−1(H) ≥ k+1. By Lemma 4.2, P contains Berge cycles of all lengths in {3, . . . , m −1}. 
Hence, we may assume that k+1 ≤ m ≤ k+2 and in particular there exist Berge cycles 
of all lengths in {3, 4, ..., k} in H.

Suppose m = k+1. It is clear that dH(S) = k+1 and all k+1 edges f1, ..., fk+1 in H
containing S are such that fi = S∪{vi}. Then there exist a Berge cycle {e1, ..., ek+1, f1}
of length k + 2 with spine v1, v2, ..., vk+1, vk+2 and a Berge cycle {e2, ..., ek+1, f2} of 
length k + 1 with spine v2, ..., vk+1, vk+2. So H contains Berge cycles of all lengths in 
{3, 4, ..., k + 2}.

Therefore, we have m = k + 2. There are at least k + 1 edges f1, ..., fk+1 in H
containing S such that fi\S ⊆ {v1, ..., vk+2}. So there is some i ∈ [k + 2] such that 
for every j ∈ [k + 2]\{i}, S ∪ {vj} ∈ E(H). Let j0, j1 be the first and second integers in 
[k+2]\{i}. Then there exist a Berge cycle {ej : j ∈ [k+2]\{i}} ∪(S∪{vj0}) of length k+2
with spine {vj : j ∈ [k+3]\{i}}, and a Berge cycle {ej : j ∈ [k+2]\{i, j0}} ∪ (S ∪{vj1})
of length k + 1 with spine {vj : j ∈ [k + 3]\{i, j0}}. This finishes the proof. �

We are now ready to prove Theorem 1.3. We will use induction on r. The following 
theorem forms the basis step.

Theorem 4.4. Let G be a 3-graph with d(G) ≥ 105k2 +63k. Then G contains Berge cycles 
of k consecutive lengths.
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Proof. By Lemma 4.1, G has either a subhypergraph G′ with δ2(G′) ≥ k + 1, or a 
subhypergraph G′′ with |G′′| ≥ |G|/k in which each hyperedge contains a pair that has 
co-degree 1 in G′′. In the former case, by Lemma 4.3, G′ contains Berge cycles of k
consecutive lengths and we are done. Hence, we may assume the latter case. For each 
hyperedge in G′′ let us mark a pair in it that has co-degree 1. By our assumption, each 
hyperedge in G′′ has a marked pair.

Let us call a pair uv a high pair if its co-degree in G′′ is at least 3 and a low pair
otherwise. Let G1 consist of all the hyperedges in G′′ that contain a high pair and G2
consist of all the other hyperedges in G′′. Since d(G′′) ≥ d(G)/k ≥ 105k + 63, one of the 
following two cases applies.

Case 1. d(G1) ≥ 42k.

Let S be a random set of vertices with each vertex of G1 selected independently with 
probability 23 . For each hyperedge in G1, call it good for S if the two vertices in its marked 
pair are both in S and the third vertex is not in S. The probability of a hyperedge being 
good is 4

27 . So there exists a set S for which at least 4
27 |G1| of the hyperedges are good. 

Fix such a set S and let G∗
1 consist of all the good hyperedges of G1. By our assumption

d(G∗
1 ) ≥ 4

27d(G1) ≥ 6k.

Let G1 = {e ∩ S : e ∈ G∗
1}. Then G1 is a 2-graph and there is a bijection between edges 

in G1 and hyperedges in G∗
1 . In particular, |G1| = |G∗

1 |. Hence d(G1) ≥ 2
3d(G∗

1 ) ≥ 4k. 
Since G1 contains a bipartite subgraph with average degree at least 1

2d(G1) ≥ 2k, by 
Theorem 1.1, G1 contains cycles of k/2 consecutive even lengths. To complete this case, 
observe that if C is a cycle of length � in G1, then G contains a Berge cycle of length �
and a Berge cycle of length � + 1. Indeed, suppose C = u1u2 . . . u�u1. By our definition, 
all edges on C extend to different hyperedges in G. So we obtain a Berge cycle of length 
�. Let u1u2w be the unique hyperedge in G∗

1 containing {u1, u2}. By definition, w /∈ S. 
Also, at least one pair in u1u2w is a high pair. Since u1u2 is a marked pair and has 
co-degree 1, either u1w or u2w is a high pair. By symmetry suppose u1w is a high pair. 
Since u1w has co-degree at least 3 in G′′ there is a hyperedge u1wz where z /∈ {u2, u�}. 
It is easy to see that u1wu2 · · ·u�u1 is an extendable cycle in ∂(G′′) of length � + 1. So 
G contains a Berge cycle of length � + 1.

Case 2. d(G2) ≥ 63(k + 1).

By our assumption, for each hyperedge in G2, one of its pairs have co-degree 1 and 
the other two have co-degree at most 2. Define an auxiliary graph L whose vertices are 
hyperedges in G2 such that two vertices in L are adjacent if the corresponding hyperedges 
in G2 share a pair. Then L has maximum degree at most 2 and thus has an independent 
set of size at least n(L)/3. Therefore, there is a linear subhypergraph G∗

2 of G2 with 
|G∗

2 | ≥ 1
3 |G2|. Hence d(G∗

2 ) ≥ 21(k + 1). By Theorem 3.4, G∗
2 contains Berge cycles of k

consecutive lengths. �
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We now prove Theorem 1.3.

Proof of Theorem 1.3. We prove by induction on r ≥ 3 that every r-graph H with 
d(H) ≥ r ·(35kr−1 +21kr−2) contains Berge cycles of k consecutive lengths. Theorem 4.4
forms the basis step. For the induction step, let r ≥ 4.

Assume the claim holds for (r − 1)-graphs. Let H be an r-graph with d(H) ≥ r ·
(35kr−1 + 21kr−2). By Lemma 4.1, either there exists a subhypergraph H′ ⊆ H with 
δr−1(H′) ≥ k + 1, or there exists an extendable (r − 1)-graph G ⊆ ∂r−1(H) such that 
|G| ≥ |H|/k. In the former case, by Lemma 4.3, we can find Berge cycles of lengths in 
{3, 4, ..., k+2} in H and we are done. So assume the latter case. Then d(G) ≥ r−1

r · d(H)
k ≥

(r − 1) · (35kr−2 + 21kr−3). By induction, G contains Berge cycles of k consecutive 
lengths. Because G is extendable, H also contains Berge cycles of the same k consecutive 
lengths. �

We then have the following corollary.

Corollary 4.5. For all r ≥ 3, any n-vertex r-graph H with at least 56kr−1n edges contains 
Berge cycles of k consecutive lengths.

5. Related Turán type results

5.1. Cycles of consecutive even lengths in graphs

Following arguments along the lines of Lemma 3.2 (i.e., to define monochromatic and 
non-monochromatic edges and then apply Lemma 2.6), we can readily prove the following 
slightly weaker version of Verstraëte’s theorem.

Proposition 5.1. Let G be a bipartite graph with average degree at least 6k and radius h. 
Then G contains cycles of k consecutive even lengths. Further, the shortest of these cycles 
has length at most 2h.

This provides a first proof which does not use the (A, B)-path lemma (Lemma 1.5). 
This also gives yet another proof of the theorem of Bondy and Simonovits on ex(n, C2k)
without using either the (A, B)-path lemma or the Faudree-Simonovits blowup method. 
As Lemma 2.6 (and its hypergraph extension) can be easily adapted, we anticipate this 
new method will find further applications in Turán type extremal problems on cycles in 
graphs or hypergraphs.

5.2. Berge cycles of prescribed consecutive lengths

Let BC� denote the family of r-graphs consisting of all Berge cycles of length �. Let 
r ≥ 3 and H be an r-graph with n vertices. Corollary 4.5 shows that if |H| ≥ 56kr−1n, 



T. Jiang, J. Ma / Journal of Combinatorial Theory, Series B 133 (2018) 54–77 71
then H contains Berge cycles of k consecutive lengths. If in addition to find Berge cycles 
of k consecutive lengths one also wants to control the lengths to not be large, i.e., the 
maximum length is no more than k+ p, then how many edges in an r-graph will suffice? 
In this subsection we provide an answer to this question (see Theorem 5.3).

Using Lemmas 3.1 and 3.2, we can prove the following theorem for linear 3-graphs. Its 
proof uses similar arguments as the ones in [18] by Füredi and Özkahya, who proved that 
any n-vertex BC2k+1-free linear 3-graph has at most 2k · n1+1/k + 9k · n edges. However 
their proof method was not designed for finding Berge cycles of consecutive lengths.

Theorem 5.2. Let h, k ≥ 2. Every n-vertex linear 3-graph H with |H| ≥ 18kn1+1/h+42kn
contains Berge cycles of k consecutive lengths, the shortest of which has length at most 2h.

Proof. Suppose for a contradiction that H does not contain Berge cycles of k consecutive 
lengths, the shortest being at most 2h. By Lemma 2.2, there exists a subhypergraph 
H′ of H with δ(H′) ≥ 18kn1/h + 42k. Let T be a maximal extendable skeleton in 
H′ rooted at some vertex r. For each i ≥ 0, let Li = {v ∈ V (T ) : dT (r, v) = i}, 
Ai = {e ∈ H′ : |e ∩ Li| = 2, |Li−1| = 1}, Bi = {e ∈ H′ : |e ∩ Li| = 2, |e ∩ Li+1| = 1}, and 
Ci = {e ∈ H′ : e ⊆ Li}. By Lemmas 3.1 and 3.2, for any i ≤ h − 1 we may assume (being 
quite generous for the sake of simplicity) that

|Ai| ≤ 2k|Li| and |Bi ∪ Ci| ≤ 4k|Li| + 4k|Li+1|. (6)

We prove by induction on 1 ≤ i ≤ h − 1 that |Li| ≥ |Li−1| · n1/h. The base case 
i = 1 follows by the facts that H′ is linear and δ(H′) ≥ 18kn1/h. Now suppose that 
it holds for i ≤ h − 2. We consider the number m of edges intersecting Li. We have 
m = |Ai| + |Bi| + |Ci| + |Ci−1| + |Ai+1|. By (6),

m ≤ 2k|Li| + 4k|Li| + 4k|Li+1| + 4k|Li−1| + 4k|Li| + 2k|Li+1|

= 4k|Li−1| + 10k|Li| + 6k|Li+1| ≤ 14k|Li| + 6k|Li+1|.

On the other hand, m ≥ 1
3 ·

∑
v∈Li

dH′(v) ≥ |Li| · (6kn1/h + 14k). Combining the above 
inequalities, it follows that |Li+1| ≥ |Li| · n1/h. Therefore, |Lh| ≥ n. This contradiction 
completes the proof. �

We point out that just like in the proof of Theorem 1.4, one can establish a similar 
statement for linear r-graphs for all r ≥ 3 (by reducing them to linear 3-graphs).

Remark. Observe that the proof of Theorem 5.2 in fact yields the following more general 
statement: If H is an n-vertex linear 3-graph with average degree d ≥ 45k, then H
contains Berge cycles of k consecutive lengths, the shortest of which has length at most 
O(logd/k n).
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Using the reduction lemmas in Section 4, along the same lines as in the proof of The-
orem 1.3 (and Theorem 4.4), we also can obtain the following result from Theorem 5.2. 
We omit the details.

Theorem 5.3. There exists an absolute constant c > 0 such that the following holds for all 
h, k ≥ 2 and r ≥ 3. Every n-vertex r-graph H with at least ckr−1n1+1/h edges contains 
Berge cycles of k consecutive lengths, the shortest of which has length at most 2h.

When choosing k = 2h, this may be viewed as an unification for the results on 
exr(n, BC2h) and exr(n, BC2h+1).

5.3. Turán numbers of Berge cycles in r-graphs

In this subsection we investigate the upper bounds of Turán numbers exr(n, BC�) for 
r ≥ 3. We start by mentioning the Turán numbers of even cycles in the graph case. A 
classic theorem of Bondy and Simonovits [4] shows that ex(n, C2k) ≤ 100k · n1+1/k, and 
this bound was improved by several authors in [37,31,6]. The current best known upper 
bound is the following one obtained by Bukh and Jiang [6]

ex(n,C2k) ≤ 80
√
k log k · n1+1/k + O(n). (7)

For 3-graphs, Győri and Lemons proved that ex3(n, BC2k+1) ≤ O(k4) · n1+1/k in [21]
and that ex3(n, BC2k) ≤ O(k2) · ex(n, C2k) in [22]. Füredi and Özkahya [18] improved 
this by showing that

ex3(n,BC2k+p) ≤ O(k) · ex(n,C2k) + 12p · exlin
3 (n,BC2k+1) for every p ∈ {0, 1},

where exlin
r (n, F) denotes the maximum number of hyperedges in an n-vertex F-free 

linear r-graph and it is also proved in [18] that exlin
3 (n, BC2k+1) ≤ 2k · n1+1/k + 9k · n. 

(See [1] for related problems.) In view of (7), one can obtain

ex3(n,BC2k+p) ≤ O(k
√

k log k) · n1+1/k for every p ∈ {0, 1}. (8)

In [22], Győri and Lemons also showed for general r-graphs, where r ≥ 4, that

exr(n,BC2k+1) ≤ Or(kr−2) · ex3(n,BC2k+1), (9)
exr(n,BC2k) ≤ Or(kr−1) · ex(n,C2k). (10)

Using the lemmas in Section 4, one can also derive some Turán type results on Berge 
cycles, which improve the above inequalities (9) and (10) by an Ω(k) factor.

Proposition 5.4. For all r ≥ 4, it holds that

exr(n,BC2k+1) ≤ (2k)r−3 · ex3(n,BC2k+1)
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exr(n,BC2k) ≤ (2k)r−2 · ex(n,C2k).

Therefore for any p ∈ {0, 1},

exr(n,BC2k+p) ≤ Or(kr−2
√

k log k) · n1+1/k.

The proof of Proposition 5.4 follows easily from Lemmas 4.1 and 4.3. We omit the 
details. We mention another related result. In [22], the following result was also proved 
for non-uniform hypergraphs: for any p ∈ {0, 1}, if H is a multi-hypergraph on n vertices 
with all of its hyperedges of size at least 4k2 and containing no Berge cycle of length 
2k + p, then

∑
e∈E(H)

|e| ≤ (16k6 + 8k2) · n1+1/k + (16k7 + 32k6 + 16k5) · n. (11)

5.4. Asymmetric Turán numbers of even cycles in graphs

Let the Zarankiewicz number z(m, n, C2k) of the even cycle C2k to be the maximum 
number of edges in a C2k-free bipartite graph with two parts of sizes m and n. An upper 
bound was proved by Naor and Verstraëte [30] that for m ≤ n and k ≥ 2,

z(m,n,C2k) ≤
{

(2k − 3) · [(mn) k+1
2k + m + n] if k is odd,

(2k − 3) · [m k+2
2k n

1
2 + m + n] if k is even.

(12)

In this subsection, we consider a different form of upper bounds on z(m, n, C2k).
Erdős, Sárközy and Sós [12] conjectured that z(m, n, C6) < 2n + c(nm)2/3 for some 

constant c > 0. A weaker version of this conjecture was obtained by Sárközy in [32]. 
Győri [19] proved a general result: there exists some ck > 0 such that for n ≥ m2,

z(m,n,C2k) ≤ (k − 1)n + ck ·m2. (13)

The first term (k−1)n is sharp (at least in a sense) by considering the complete bipartite 
graph Kk−1,n; and when n = Ω(m2) this function becomes linear in n. Some related 
results also can be found in [2,20].

The following upper bound of z(m, n, C2k) can be derived from the Turán numbers 
of Berge cycles in hypergraphs, which is stronger than (13).

Proposition 5.5. There exists a constant dk > 0 such that for any positive integers n, m,

z(m,n,C2k) ≤ (k − 1)n + dk ·m1+1/�k/2�.

Proof. Let G be any bipartite C2k-free graph with two parts A and B, where |A| = m

and |B| = n. Define H0 and Hi for every k ≤ i < k2 to be multi-hypergraphs with the 
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vertex-set A such that E(H0) = {NG(u) : dG(u) ≥ k2 for u ∈ B} and E(Hi) = {NG(u) :
dG(u) = i for u ∈ B}. Then

e(G) =
∑
u∈B

dG(u) ≤ (k − 1)n +
∑

e∈E(H0)

|e| +
∑

k≤i<k2

∑
e∈E(Hi)

|e|.

Observe that H0 and all Hi do not contain Berge cycle of length k, as otherwise it will 
give a C2k in G. Since H0 has no Berge cycle of length k and each hypergraph of H0 is 
of size at least k2 ≥ 4(�k/2�)2, by the equation (11), one can get that

∑
e∈E(H0)

|e| ≤ O(k6) ·m1+1/�k/2�.

Consider the multi-hypergraph Hi, where k ≤ i < k2. It is easy to see that there are 
at most k − 1 hyperedges which are identical (otherwise we have C2k ⊆ Kk,k ⊆ G). 
Thus, there exists a simple BCk-free i-graph H′

i ⊆ Hi such that |H′
i| ≥ |Hi|/k. By 

Proposition 5.4 (or Theorem 5.3), |Hi| ≤ k · |H′
i| ≤ O(ki) · m1+1/�k/2�. Combining the 

above inequalities, one can obtain that

e(G) ≤ (k − 1)n + O(k6) ·m1+1/�k/2� +
∑

k≤i<k2

i · |Hi| ≤ (k − 1)n + dk ·m1+1/�k/2�,

where dk = O(kk2+1). This finishes the proof. �
One may compare this proposition with (12). In the range m1+1/�k/2�/n → 0, in-

terestingly both upper bounds become linear in n. To be precise, (12) gives that 
z(m, n, C2k) ≤ (2k−3 +o(1)) ·n, and this proposition yields z(m, n, C2k) ≤ (k−1 +o(1)) ·n, 
which is nearly tight.

6. Concluding remarks

6.1. Finding tight conditions for Berge cycles of consecutive lengths

It will be interesting to completely solve the problem on Berge cycles of consecutive 
lengths.

Problem 6.1. For r ≥ 3, find the minimum fr(k) such that any r-graph with average-
degree fr(k) (or minimum-degree) contains Berge cycles of k consecutive lengths.

Note that Theorem 1.3 implies that fr(k) exists as a finite number. The complete 
r-graph on k+1 vertices shows that fr(k) >

(
k

r−1
)
. One also can ask for the tight degree 

condition for the existence of Berge cycles of k consecutive lengths in linear r-graphs.
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6.2. Linear cycles of consecutive lengths and the linear Turán problem

It is natural to consider the analogous problem for forcing linear cycles (rather than 
Berge cycles) of consecutive lengths in an r-graph. When the host graph G is a general 
r-graph, we need Ω(nr−1) edges to force any linear cycle at all. Indeed, the full star on 
[n] contains 

(
n−1
r−1

)
hyperedges and no linear cycle. So any average degree condition on 

G to ensure the existence of linear cycles of k consecutive lengths has to involve n, the 
number of vertices. It may therefore be more natural to cast this as a Turán problem. 
Note that the Turán problem for a single linear cycle of a fixed length has been precisely 
solved for large n by Füredi and Jiang [17] (for r ≥ 5) and by Kostochka, Mubayi and 
Verstraëte [26] (for r ≥ 3). Asymptotically, exr(n, C2k+p) ∼ (k + p − 1) ·

(
n

r−1
)
, where 

p ∈ {0, 1}.
One may also consider both the Turán problems of a single linear cycle of a fixed 

length and the linear cycles of k consecutive lengths in linear r-graphs. The former 
problem was studied by Collier-Cartaino, Graber and Jiang [7]. Let exlin

r (n, C�) denote 
the maximum number of hyperedges in an n-vertex linear r-graph that does not contain 
a linear cycle of length �. Extending Bondy–Simonovits [4], the authors of [7] showed that 
exlin

r (n, C2k+p) ≤ cr,kn
1+1/k for some constant cr,k > 0 depending on r and k, where 

p ∈ {0, 1}. Concerning the problem of forcing linear cycles of some k consecutive lengths 
in a linear r-graph, it is natural to ask if there exists a constant αr,k depending only on 
r and k such that every linear r-graph with average degree at least αr,k contains linear 
cycles of k consecutive lengths. Very recently, building on the method developed in this 
paper, some ideas in [7] and some new ideas, the authors of [24] showed that this is indeed 
the case. Specifically, they proved that every linear r-graph with average degree Ωr(k)
contains linear cycles of k consecutive lengths. This strengthens Theorem 1.4 (except 
for the constant). The authors of [24] were also able to improve the constant cr,k in the 
upper bound of exlin

r (n, C2k) to Or(k).

6.3. Rainbow Turán problem for even cycles

A problem that is closely related to the linear Turán problem of linear cycles is rainbow 
Turán problem for even cycles. For a fixed graph H, define the rainbow Turán number
ex∗(n, H) to be the maximum number of edges in an n-vertex graph that has a proper 
edge-coloring with no rainbow H. Keevash, Mubayi, Sudakov and Verstraëte [25] made 
the following conjecture

Conjecture 6.2. ([25]) For all k ≥ 2, ex∗(n, C2k) = O(n1+1/k).

The conjecture was verified for k = 2, 3 in [25], but is otherwise still open. It will be 
interesting to see if the method developed here can be used to make some progress on 
the problem.
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We direct readers to the recent survey [38] by Verstraëte for various other extremal 
problems on cycles.
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