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1. Data Handling Details for Section 3.14

From the raw datasets provided by Chief Lewis, only medical emergencies were included, as this study5

seeks to improve ambulance response times; Table 1 lists all types of events that were classified as medical6

emergencies. Calls with missing or illogical assignment, dispatch, enroute, or on scene times were removed,7

as well as those with missing locations. For the remaining calls, the OpenStreetMap time was computed8

from the station location to the call location using the osrm package in R [1]; only calls within a factor of 1.39

of the OpenStreetMap time were included, per Chief Lewis, to remove those with probable mistakes. This10

dataset, denoted A, was used whenever reliable times for individual calls were needed.11

Emergency Medical Call Codes

CODE 2 CHEST PAIN ATTEMPT SUICIDE ASTINV-LIFT ASSIST

CHOKING DIFF BREATH DOMESTIC/MEDICAL CKPER-PERSON DOWN

LIFEALERT LIFT ASSIST OB/GYN EMERGENCY DIABETIC EMERGENCY

MEDIC MEDIC ALARM PER INJ PED MASLT-MEDIC FROM ASLT

MHEART MEDIC-MEDIC PERSON DOWN MDIAB-DIABETIC EMERGENCY

OVERDOSE MEDICAL ALARM PERSONAL INJ MDIFFB-DIFF BREATH

PSYCH MHEART-HEART PI-PERSONAL INJ MOB-OB/GYN EMERGENCY

SEIZURE MEDIC FROM ALST PIP-PER INJ PED PIHR-PERS INJ HIT/RUN

SHOOTING MOD-OVERDOSE RESCUE-RESCUE PIORV-OFF ROAD VEH PI

SQUAD MCVA-STROKE SHOOT-SHOOTING PIPHR-PER INJ PED HIT/RUN

STABBING MSEIZ-SEIZURE STAB-STABBING SUICA-ATTEMPTED SUICIDE

STROKE NEED SQUAD

Table 1: Codes for Medical Emergency Calls

2. Discrete Event Simulation Details for Section 3.212

The distribution of times between call arrivals was based on dataset B, while distribution for the other13

times were estimated from dataset A. Based on an exploratory analysis, each of these times had heavily right14

skewed distributions, which led to modeling them with gamma distributions. Plotting the distributions by15

time of day, weekday, month, season, region, and vehicle type revealed which factors influence the shape of16

the distributions. Times between call arrivals depended on the time of day and season, while assignment17

to enroute times depended on time of day and vehicle type. Both vehicle type and the binary city variable18
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were influential for the dispatch to assignment and onscene to clear times. The shape and rate parameters in19

the gamma density function were estimated for each combination of the influential factors as the maximum20

likelihood estimators (MLE) using the fitdistr function from the MASS package. This function uses the21

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm to numerically optimize the MLEs [2]. For each call,22

the DES used a randomly generated time from the corresponding distribution.23

To calibrate the OpenStreetMaps time to a realistic emergency response time, a linear regression model

was fit using dataset A (with the exception that calls responded to by any station, not just the stations

of interest, were included). Due to the heavily skewed distributions, the travel times and OpenStreetMap

times and distances were log-transformed prior to modeling. Then, along with factors including the time of

day, month, season, hour, city, vehicle, and week of year, forward and backward selection procedures were

implemented to select the preferred model. In this analysis, both techniques resulted in the same model:

log(traveli) = β0 + β1 log(timei) + β2 log(disti) + β3todi + β4seasoni + β5vehiclei + β6cityi+

+ β7 log(timei)× log(disti) + ϵi

where traveli is the predicted travel time for call i, timei is the OpenStreetMap time for call i, disti is the24

OpenStreetMap distance time for call i, todi is the time of day (early morning, morning, afternoon, evening)25

for call i, seasoni is the season (spring, summer, fall, winter) for call i, vehiclei is the responding vehicle26

type (EMS or fire) for call i, cityi is 1 if call i is in the city and 0 otherwise, and ϵi ∼ N(0, σ2). (Note that27

notation has been abused because indicator variables have not been explicitly specified for the categorical28

variables todi, seasoni, vehiclei, and cityi.) Table 2 shows the regression results. The coefficients for both the29

OpenStreetMap times and distances were positive, indicating longer travel times for longer OpenStreetMap30

times and distances. However, the interaction between these predictors had a negative coefficient, implying31

that as the time and distances increase, the travel time does not continue to increase as quickly. Calls located32

in cities had longer travel times than those in the country, on average, provided that all other predictors are33

the same. In addition, calls arriving during the morning hours and during the winter were expected to have34

longer travel times than calls arriving during other times.35
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Coefficients Estimate St. Error t value Pr(>| t|)

(Intercept) 0.053 0.005 10.197 <0.001 ***

log(time) 0.919 0.006 151.485 <0.001 ***

log(dist) 0.049 0.005 10.648 <0.001 ***

todEarly Morning 0.010 0.003 3.637 <0.001 ***

todEvening -0.001 0.003 -0.372 0.710

todMorning 0.010 0.003 3.343 0.001 ***

seasonSpring -0.003 0.003 -1.108 0.268

seasonSummer -0.001 0.003 -0.377 0.706

seasonWinter 0.013 0.003 4.731 <0.001 ***

vehicleFire -0.025 0.009 -2.881 0.004 **

city 0.035 0.003 12.528 <0.001 ***

log(time)× log(dist) -0.007 0.001 -6.600 <0.001 ***

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

Residual standard error: 0.140 on 19163 degrees of freedom

Multiple R-squared: 0.963, Adjusted R-squared: 0.963

F-statistics: 4.606e+04 on 11 and 19613 DF, p-value: <0.001

Table 2: Multiple linear regression summary output, rounded to three decimal places.

Using this regression model, the predicted log travel time and standard error of its 95% prediction interval36

between each call and all stations in the configuration were computed. Then the values corresponding to37

the nearest station were used as the mean and standard deviation of a normal distribution, from which a38

number was randomly selected and exponentiated to obtain the travel time used in the DES.39

This simulator took just under 1 minute to run one iteration for the one-station setting, just under 240

minutes for the two-station setting, approximately 8 minutes for the five-station setting, and over 20 minutes41

for the twelve-station setting. These times were based on one core of a 3.4gHz Intel Core i5 processor with42

8 gigabytes of RAM, and scaled linearly for each additional iteration.43

3. DES Validation for Section 3.244

The discrete event simulation used for this analysis is a model of the actual EMS system in St. Louis45

County, Minnesota. To evaluate the accuracy of the created DES in simulating the actual system, an46

adjusted DES was created for the one-station, two-station, five-station, and twelve-station settings that uses47

a different sample of call locations.48

3.1. Data and Methods49

The difference between the simulators described in Section 3.2 of the article and the simulators used in50

this validation was the set of locations where calls originated. Rather than sampling from all locations in51

dataset C, only those locations found in dataset A were used in order to create a fair comparison to the true52

response times in dataset A. A full comparison using all locations from dataset C could not be conducted53

due to the missing and inaccurate times for many of the calls. Then the simulator was run 100 times using54
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the current station configuration, and both the overall density and the 90th percentile of response times were55

compared to the actual response times found in dataset A.56

3.2. Results57

3.2.1. One Station58

For the one-station setting, the mean 90th percentile of response times from the 100 simulated runs was59

11.73 minutes with a 95% confidence interval of (11.69, 11.76). The actual 90th percentile response time60

from the 6,240 calls in dataset A was 11.72 minutes. Figure 1 shows the distribution of response times from61

the actual data in red, and from one run of the simulation in blue. Both distributions are heavily right62

skewed with peaks just under five minutes.63
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Figure 1: Example density plots of simulated and actual response times for the one-station setting.

3.2.2. Two Station64

The mean 90th percentile of response times from the 100 simulated runs of the two-station version was65

11.32 minutes with a 95% confidence interval of (11.29, 11.34). Based on the 7,129 calls in dataset A, the66

actual 90th percentile response time was 12.01 minutes, approximately 30 seconds higher. Figure 2 shows67

the distribution of response times from the actual data in red, and from one run of the simulation in blue.68

Although there is some difference in the 90th percentiles, the distributions are again right skewed and match69

fairly closely.70
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Figure 2: For the two-station setting, example density plots of simulated and actual response times.

Figure 3 shows the spatial call distribution, color coded by the responding station, for a simulated run71

on the left and the actual data on the right. Since the simulation was designed to assign a call to the closest72

station, provided that it had an available ambulance, there is a clear distinction between calls responded to73

by the Virginia and Eveleth stations. In the real data, the distinction is less clear, with Virginia responding74

to many calls in the southwest and southeast corners of the region even though the Eveleth station is closer.75

An intentional choice to use distances rather than jurisdictions in the DES is likely the cause of differences76

in the 90th percentile, since most of the differences in the responding station occur in the outlying areas.77
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Figure 3: Comparison of simulated and actual call locations and responding stations from the two-station setting.

3.2.3. Five Station78

For the five-station setting, the mean 90th percentile response time of the 100 simulated runs was 11.1379

minutes with a 95% confidence interval of (11.11, 11.15). The actual 90th percentile of response times for80

these five stations was 11.15 minutes, contained within the confidence interval. Figure 4 shows similar right-81

skewed distributions for the overall response times, although the simulated curve is shifted slightly to the82

left, indicating that there are more simulated responses under five minutes than actual responses.83

Figure 5 shows which call locations were responded to by which stations for a simulated run on the left84

and the actual data on the right. In general, the DES matches the real data, with the exception of the85

Virginia and Eveleth discrepancy discussed in the two-station setting. However, there are more calls and86

more possible outlying regions for the five-station setting, so this discrepancy is less impactful on the 90th87

percentile, resulting in similar metrics.88

3.2.4. Twelve Station89

The adjusted DES for the twelve-station setting has similar results as the five-station setting. The mean90

90th percentile of response times over 100 simulated runs was 12.91 minutes with a 95% confidence interval91

of (12.57, 13.29). The actual 90th percentile fell within this range, at a value of 12.99 minutes. Figure92

6 shows the distributions of response time between a simulated run and the actual times, showing similar93

patterns as the five-station setting.94
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Figure 4: For the five-station setting, example density plots of simulated and actual response times.
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Figure 5: Comparison of simulated and actual call locations and responding stations from the five-station setting.
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Figure 6: Example density plots of simulated and actual response times for the twelve-station setting.

Finally, Figure 7 shows the spatial location of calls and their responding stations, with the most notable95

difference being the discrepancy between the Virginia and Eveleth stations described in the two-station96

setting.97
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Figure 7: Comparison of simulated and actual call locations and responding stations for the twelve-station setting.
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Figure 8: Comparison of call locations from Datasets A and C.

3.3. Discussion98

Overall, the adjusted DES appears to model the actual call data fairly well, especially with respect to the99

90th percentile of the response times. The systematic differences for the two-station setting, likely due to100

the distance-based method of assigning stations, were alleviated in the more complex systems. However, it is101

important to recall that this DES only uses a subset of the call locations found in the full dataset. Figure 8102

below shows the call locations in dataset A for the twelve-station setting in red, used for the DES in Section103

3.2.4, and the call locations in dataset C in blue, which were used for the DES in the main analysis.104

Thus, using all locations in dataset C for the full analysis is an extrapolation to this validation study.105

Even then, these results provide some evidence that the DES accurately models the true EMS system, and106

all locations from dataset C were included in the full analysis with the hopes of obtaining a more realistic107

simulation.108

4. Sampling of Station Configurations for Section 3.3109

The density.ppp function of the spatstat R package was used to construct a spatial density for calls110

based on dataset C. For every point x in a 1024-by-1024-pixel region, the intensity λ(x) was calculated based111

on all points xi in the neighborhood of x as λ(x) =
∑n

i=1 δ(x−xi)

p(x) , where δ(x) is the probability density function112

of a normal distribution with a mean of zero and standard deviation of σ. The smoothing bandwidth for the113

kernel estimation was determined using Scott’s rule of thumb so that σ is proportional to n−1/(d+4), where114

n is the number of points and d is the number of spatial dimensions; this bandwidth method is beneficial115

9



when estimating gradual trends in the region [3], which is the goal of this analysis. The end correction116

was computed as p(x) =
∫
R
δ(x− u)du where R is the design region. Finally, the density at point x was117

calculated as ρ(x) = λ(x)∑
λ(xi)

and these densities were used for the weighted sampling.118

5. Sampling Approach Exploration for Section 3.3119

5.1. Introduction120

In order to train the metamodels for this analysis, a sample of station configurations must be generated121

and run through the DES. Since each DES run takes computation time, the goal is to select a sampling122

method that minimizes the amount of data needed while still maintaining accurate and informative results.123

Intuitively, a well-placed configuration has stations near the majority of the calls but is also spread throughout124

the region so that it can reach all locations relatively quickly. Thus, four sampling techniques were explored125

that balance various weighting and distance-based approaches in this brief, exploratory study.126

5.2. Data and Methods127

The five-station setting with 2,000 samples was selected for this comparison in order to account for128

the complexity of multiple stations but not require extensive DES run times. Four sampling techniques –129

Unweighted, Weighted, Constrained, and Adjusted Bandwidth – were compared.130

For the Unweighted sampling approach, a convex hull of the call locations found in dataset C was131

constructed using the chull function of the grDevices package in base R [4]. Then a sample of 2,000132

configurations was randomly generated, each consisting of five points, using the spsample function from the133

sp package [5; 6], resulting in the unweighted sample.134

Next the Weighted samples were generated as described in Section 4 using the density of call locations135

based on Scott’s rule of thumb for the bandwidth, but extended for the five-station setting by sampling136

five locations for each configuration. The Constrained sampling approach is described in Section 3.3 of the137

article where a four mile constraint on the locations within a configuration is incorporated. Finally, the138

Adjusted Bandwidth method was implemented in the same way as the Weighted method, but multiplying139

the bandwidth, based on Scott’s rule of thumb, by ten. The larger bandwidth resulted in a more even140

distribution rather than strong peaks in a few areas, encouraging the configurations to be spread out more141

broadly across the region.142

The average and average minimum distances between stations were compared across the 2,000 configura-143

tions for the four approaches. Then, metamodels were fit and station locations optimized for each approach,144

and the proposed configurations were validated on the DES, as described in Section 3 of the article. In145

addition to considering the model fit, the best approaches were chosen based on the improvement in 90th146

percentiles for the proposed configurations compared to the current.147
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5.3. Results148

Table 3 displays the average and average minimum distances between stations across the 2,000 con-149

figurations for the four methods. On average, the Unweighted method resulted in the most spread out150

configurations, while the Weighted method had much tighter configurations. The Constrained technique151

increased the average minimum distance between stations from just over two miles (3.3 km) to just over152

five miles (8.2 km) compared to the Weighted method. The Adjusted Bandwidth method increased these153

distances even more, but not nearly as much as the Unweighted method.154

Method
Average Distance

between Stations (miles)

Average Minimum Distance

between Stations (miles)

Unweighted 62.7 18.4

Weighted 12.2 2.0

Constrained 14.9 5.1

Adjusted Bandwidth 19.9 6.2

Table 3: Average Distances between Stations by Sampling Method

After running the DES for each of the 2,000 configurations and each of the four methods, a metamodel155

was fit for each method. Figure 9 shows the average R2 values from the cross-validation procedure, which156

show that the Unweighted and Weighted methods had values between 65% and 75%, while the Constrained157

and Adjusted Bandwidth methods had much lower values, around 35% and 50%, respectively.158
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Figure 9: Metamodel fit by sampling method using the five-station setting.
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Figure 10: Boxplots of inital DES validation of proposed configurations by sampling method for the five-station setting. The

red line represents the current configuration’s average simulated 90th percentile along with 95% confidence bands.

Next, station configurations were optimized using each metamodel with 100 different initial configura-159

tions and the resulting optimal stations were validated one time on the DES. Figure 10 shows boxplots of the160

simulated 90th percentile response time for the proposed configurations for each method, with a solid line161

representing the mean 90th percentile response time of the current configuration. This shows that all pro-162

posed configurations using the Unweighted and Adjusted Bandwidth methods had simulated 90th percentiles163

well above the current configuration. The Weighted and Constrained methods resulted in configurations with164

similar simulated 90th percentile distributions and were much closer to the current configuration’s simulated165

90th percentile. However, only one configuration for the Weighted case and four configurations for the Con-166

strained case had simulated 90th percentiles below the upper 95% confidence interval for the 90th percentile167

of the current configuration.168

5.4. Discussion169

The Unweighted and Adjusted Bandwidth methods resulted in configurations spread throughout the170

region, while the Weighted and Constrained methods encouraged stations to be located in areas with high171

call densities. While the metamodels built on the Unweighted and Weighted samples had much better fit than172

the other methods, the Weighted and Constrained methods resulted in much better optimal configurations,173

in general. So, even though a sample of size 2,000 is insufficient to consistently improve upon the current174
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configuration, this exploratory study demonstrates that weighting the configurations based on the call density175

is beneficial for finding configurations with improved 90th percentiles. Thus, the Constrained method was176

implemented for the case studies with more than two stations in the full analysis, but a more rigorous177

comparison should be performed to obtain more reliable results.178

6. Random Forest Details for Section 3.3179

Random forest models are composed of several regression decision trees. A regression decision tree starts180

by splitting the predictor space into j non-overlapping regions Ri, i = 1, 2, . . . , j, which are decided such181

that the residual sum of squares,
∑J

j=1

∑
i∈Rj

(yi− ŷRj
)2, is minimized. Here the predictors are the latitudes182

and longitudes of each station in the configuration, yi is the 90th percentile from the simulation, and ŷRj183

is the fitted 90th percentile value from the metamodel. This greedy algorithm then repeats, continuing to184

split into smaller regions to minimize the sum of squares.185

Random forest models fit multiple decision trees and average the predicted value from each tree in186

order to reduce the variance of the prediction. However, at each step, only a sample of m predictors are187

considered for splitting, in order to prevent all trees from following the same path [7]. For this analysis,188

10-fold cross-validation was used to select the value of this tuning parameter that maximizes the R2 of the189

model. This value is computed as the squared correlation between the fitted and observed values, so that190

R2 =

(
n
∑

(yiŷi)−
∑

yi
∑

ŷi√
[n

∑
y2
i−(

∑
yi)2][n

∑
ŷ2
i−(

∑
ŷi)2]

)2

, where n is the number of data points, ŷi is the fitted value from191

the metamodel, and yi is the observed 90th percentile from the simulation [8].192

For the one- and two-station settings, models were fit and compared with m = 1, . . . , p, where p is the193

number of predictors. For the more complex five- and twelve-station versions, values of m ranged from 1 to194

p/3, as recommended by Liaw and Wiener (2002), to simplify the computational costs [9].195

7. Particle Swarm Optimization Details for Section 3.4196

As introduced in Section 3.4 of the article, the 2007 version of standard particle swarm optimization197

(SPSO 2007), as defined by Clerc [10], was implemented. The first step is the initialization of the swarm,198

consisting of S = 10 + ⌊2
√
d⌋ particles where d = 2K, K = 1, 2, 5, 12, is the number of dimensions. Each199

particle, i = 0, 1, 2, . . . , S − 1, is assigned a random starting configuration within the search space and a200

random initial velocity. An adaptive random topology is used for the neighborhood of each particle, so that201

each particle informs three random particles in the swarm.202

Once the initialization is complete, the iterative process begins, starting at time step t = 1. Each203

particle moves around the search space based on a combination of its previous velocity, its previous best204

configuration (in terms of minimizing the objective function), and the best configuration previously found205

within the particle’s neighborhood. At the new particle location, the metamodel is evaluated and the current206

configuration xi(t), best configuration pi(t), and best configuration in the neighborhood ni(t) are updated.207
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Note that xi(t), pi(t), and ni(t) each have d components, one for each latitude and longitude of every208

station in the configuration. Using these values, the velocity vi(t) is then updated coordinate-by-coordinate209

as vi,d(t + 1) = 1
2 log(2)vi,d(t) + c1 × (pi,d(t) − xi,d(t)) + c2 × (ni,d(t) − xi,d(t)) where c1 and c2 are random210

numbers taken from a Uniform(0, 1/2 + log(2)) distribution. The exploitation constant ( 1
2 log(2) ) and local211

and global exploration constants (1/2+log(2)) are standard for SPSO 2007. If the velocity forces the particle212

outside of the search space, the particle is moved to the boundary and the velocity is set to zero.213

This definition of the velocity, which incorporates both past information and random components, allows214

the procedure to converge to the optimum while still exploring the search space. Further, for each time step,215

the particles move in a random permutation in order to prevent premature convergence. This process stops216

after 50 iterations pass without any improvement in the objective function.217

8. Details for One Station Results (Section 4.1)218

This PSO algorithm was used to optimize the station locations using each of the fitted metamodels from219

Section 4.1 of the article 100 times using different initializations. See an example of the convergence rate in220

Figure 11. There are significant improvements in the first 30 iterations, after which the change is minimal.221
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Figure 11: An example of the convergence of the PSO algorithm, for the one-station setting in which the metamodel was built

based upon a sample size of 1,000.

Figure 12 shows the resulting station locations from all 100 optimization procedures for each metamodel,222

along with the current station location in red and all call locations in black. For a given sample size, most223
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Figure 12: For the one-station setting, locations identified by the various PSO runs, by sample size.

locations are in similar regions, and all are west of the current location. An evaluation of these proposed224

configurations is presented in Section 4.1 of the article.225

9. Details for Two Station Results (Section 4.2)226

Gamma distributions based on the same factor levels described in Section 3.2 of the article were used to227

represent the times between call arrivals, and the times from dispatch to assignment, assignment to enroute,228

and arrival to clear for each call. Table 4 shows the parameter values for each combination of factor levels229

in this set of data. In addition, the same regression model was used for the travel time that is described in230

Section 2 for this two-station setting. Using these distributions, the DES was constructed and a validation231

is presented in Section 3 of this Supplementary Material.232

In order to fit a random forest metamodel over this DES, weighted samples of six incremental sizes were233

generated as inputs, as described in Section 3.3 of the article. Figure 13 shows four example configurations234

with stations in blue and call locations in black; due to the high call density in the center of this region,235

many stations were placed close together near the current Virginia station. Then, for each configuration in236

each sample size, the DES was run for one year and the 90th percentile response time was computed.237

Next the particle swarm optimization procedure was performed using 100 different starting configurations238

for each of these six metamodels. Figure 14 shows an example of one procedure’s convergence for the239

metamodel built on a sample of 5,000 configurations. There are significant improvements in the first 30240

iterations, additional decreases until the 75th iteration, and minimal improvement after. Although similar241
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Figure 13: For the two-station setting, example configurations used as inputs for the metamodels.

Factor Early Morning Morning Afternoon Evening
Time Difference

Levels Shape Rate Shape Rate Shape Rate Shape Rate

Spring 1.069 0.007 0.784 0.006 0.897 0.012 1.101 0.012

Summer 1.322 0.008 0.824 0.006 1.013 0.013 1.093 0.013

Fall 1.238 0.008 0.766 0.006 0.969 0.124 1.172 0.014
Call Arrival

Winter 1.232 0.008 0.753 0.007 1.017 0.015 1.156 0.014

Assignment to Enroute EMS Vehicle 1.466 0.731 0.817 0.440 0.866 0.686 1.030 0.719

In City Not in City

Shape Rate Shape Rate

Dispatch to Enroute EMS Vehicle 2.511 1.085 1.844 0.612

Onscene to Clear EMS Vehicle 1.841 0.032 1.632 0.023

Table 4: For the two-station setting, parameter values for the gamma distributions used in the DES.

to the one-station setting, this optimization procedure required more iterations to reach the termination242

criterion.243
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Figure 14: An example of the convergence of the PSO algorithm, for the two-station setting in which the metamodel was built

based upon a sample size of 5,000.

The proposed configurations were then validated on the DES, with results displayed in Figure 7b of the244

article. Note that in this figure, 95% confidence intervals are not shown due to the large number of different,245

proposed configurations. The size of each dot represents the proportion of the 100 procedures that resulted246

in a location with the same 90th percentile response time based on the metamodel.247

10. Five-Station Results248

For the more complex settings, the same distributions, factor levels, and regression model described in249

the previous scenarios were used to create the DES, with parameter values for the gamma distributions listed250

in Table 5 for the five-station version. A validation of an adjusted DES can be found in Section 3 which251

compares the response times with actual data.252
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Factor Early Morning Morning Afternoon Evening
Time Difference

Levels Shape Rate Shape Rate Shape Rate Shape Rate

Spring 1.087 0.011 0.796 0.012 0.952 0.023 1.055 0.021

Summer 1.080 0.011 0.816 0.012 1.030 0.025 1.026 0.021

Fall 1.111 0.012 0.769 0.012 1.010 0.025 1.053 0.023
Call Arrival

Winter 1.050 0.011 0.844 0.014 1.010 0.026 1.039 0.021

Assignment to Enroute EMS Vehicle 1.454 0.534 0.782 0.296 0.781 0.409 1.016 0.526

In City Not in City

Shape Rate Shape Rate

Dispatch to Enroute EMS Vehicle 2.444 1.076 1.895 0.695

Onscene to Clear EMS Vehicle 1.602 0.026 1.569 0.021

Table 5: Parameter values for the gamma distributions used in the DES for the five-station setting.

Figure 15a shows that the quality of fit improves as a function of sample size, and there is no indication253

that the rate of improvement is slowing down for the five-station setting. This suggests that given more254

computational resources, larger sample sizes would result in higher average R2 values. Figure 15b shows a255

boxplot of simulated 90th percentile response times for the initial validation of each proposed configuration256

by sample size, along with a horizontal line representing the average simulated 90th percentile under the257

current configuration. It indicates that most of the solutions produced by optimizing station locations using258

the metamodels are, according to the DES, inferior to the current configuration; however, for the 50,000259

case, there are a few solutions (represented by the lower whisker on the box-and-whisker plot) that offer a260

potential improvement. In fact, 13 configurations in the 50,000 case have simulated 90th percentiles below261

the upper 95% confidence bound of that of the current configuration. For configurations in each sample size262

that rivaled the 90th percentile of the current configuration, the DES was run four times in total, based on263

the power analysis, to compute an average. Figure 15c shows the current configuration in red, along with264

the average and 95% confidence intervals of the simulated 90th percentiles for each of these configurations.265

None of the proposed configurations based on samples of size 2,000 or 10,000 proved superior to the current266

configuration, while several configurations based on the sample size of 50,000 had lower average simulated267

90th percentiles, though the difference was less than 30 seconds for each.268

Figure 16 shows the locations of the stations for two of the proposed configurations based on the sample269

of size 50,000, in comparison to the current configuration in red. The stations shown in green are only270

slightly shifted from each of the current stations in red, and represent the configuration with the smallest271

average simulated 90th percentile, with a value of 13.9 minutes compared to 14.3 minutes for the current272

configuration. The stations in blue represent the configuration with an average simulated 90th percentile of273

14.0 minutes, and also resemble the current stations with the exception that there is an additional station274

to the south of Eveleth rather than in Buhl.275
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Figure 15: For the five-station setting, (a) metamodel fit by sample size, with standard error bars; (b) boxplot of single

DES validation of 100 proposed configurations produced by optimizing the metamodel-predicted 90th percentile response time;

and (c) an evaluation of several promising solutions on the DES. The red line in (b) is the DES performance of the current

configuration, with 95% confidence band.
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Figure 16: Location of several example proposed configurations for the five-station setting compared to the current configuration

in St. Louis County.

11. Details for the Twelve-Station Results (Section 4.3)276

The computed parameter values for the gamma distributions in the twelve-station setting are listed in277

Table 6, which are based on the same factor levels as the other scenarios. All results for the metamodeling,278

optimization, and validation are presented in Section 4.3 of the article.279

Factor Early Morning Morning Afternoon Evening
Time Difference

Levels Shape Rate Shape Rate Shape Rate Shape Rate

Spring 1.033 0.013 0.835 0.016 0.951 0.028 1.002 0.025

Summer 0.996 0.013 0.826 0.016 1.038 0.032 0.992 0.026

Fall 1.134 0.015 0.774 0.015 1.047 0.031 1.029 0.027
Call Arrival

Winter 1.088 0.014 0.837 0.017 1.034 0.032 1.030 0.024

Assignment to Enroute EMS Vehicle 1.282 0.405 0.757 0.245 0.766 0.334 0.964 0.425

In City Not in City

Shape Rate Shape Rate

Dispatch to Enroute EMS Vehicle 2.468 1.089 1.783 0.644

Onscene to Clear EMS Vehicle 1.633 0.026 1.766 0.023

Table 6: For the twelve-station setting, parameter values for the gamma distributions used in the DES.

12. Sensitivity Analyses280

In this section, details on two sensitivity analyses are reported.281

12.1. Perturbation of selected station locations282

A set of 500 perturbed configurations were generated by randomly shifting the station locations by283

distances (in feet) selected from a Lognormal(6.5, 0.7) distribution and directions (in degrees) selected from284

a Uniform(0, 360) distribution. The log-normal distributional parameters were selected such that the mode of285
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the distribution was approximately 330 feet, a common distance of a city block, and approximately 90% of the286

perturbed locations would be within five city blocks, or 1650 feet, of the originally selected locations. Figure287

17a zooms in on the two station locations and displays the metamodel-predicted 90th percentiles for each288

of 500 perturbed configurations. The color of each point represents the 90th percentile, with darker shades289

indicating longer 90th percentiles. The proposed configuration, shown using squares, has the lowest predicted290

90th percentile, with a general, gradual increase in the times as the stations move further from the proposed291

locations. Similarly, Figure 17b depicts the average simulated 90th percentiles for each perturbation. Here292

too, the configurations with the smallest mean simulated 90th percentiles tend to be closer to the proposed293

locations, while those further from the center had higher values. These results are encouraging, implying294

that the best configuration proposed by these methods does in fact have a low 90th percentile response time,295

and small perturbations of the locations yield only slightly different results.296
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Figure 17: Perturbations of proposed configuration for the two-station setting, color-coded by metamodel-predicted 90th per-

centile in (a) and average simulated 90th percentile in (b). The top plots represent the northern station; the bottom plots

represent the southern station. Squares represent locations of the proposed configuration, and circles represent the perturba-

tions.
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12.2. Perturbation of DES distributional parameters297

Since the results in this paper are dependent on stochastic simulators that were developed using samples298

of call data, a sensitivity analysis using the one-station setting was performed as well. Specifically, the299

perturbed α (shape) and β (rate) parameters for the gamma distribution were randomly generated from a300

multivariate N([α̂ β̂]T ,Σg) distribution, where α̂ and β̂ are the MLEs of the α and β parameters and Σg301

is the corresponding variance-covariance matrix of the gamma parameters, based on the data. Similarly, the302

perturbed regression coefficients were randomly generated from a multivariate N(β̂̂β̂β,Σr) distribution where β̂̂β̂β303

is a vector of the MLEs of the regression coefficients and Σr is the corresponding variance-covariance matrix304

of these regression parameters. The effects of perturbing the DES parameters are discussed in Section 5.1305

of the article.306
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