
Metamodel Optimization of a Complex, Rural-Urban Emergency Medical1

Services System2

Matthew Snydera, Byran J. Smuckera3

aDepartment of Statistics, Miami University, Oxford, Ohio,

Abstract4

Complex simulation systems, such as those involving emergency medical services (EMS), are often too5

computationally demanding to be used in optimization problems. Metamodeling is an attractive alternative,6

in which a sample of system configurations is evaluated using simulation, and a fast predictive model is7

developed as a surrogate for the slow simulator. Though the metamodeling literature is extensive, there8

has been little exploration of how much data is required to construct metamodels that can be used to9

solve optimization problems effectively, particularly in the context of a complicated rural-urban EMS system10

environment. In this work, the EMS system in northern St. Louis County, Minnesota, is studied, with the11

goal of discovering station configurations with improved response times. The underlying physical system is12

complex, with 12 stations spread across both rural and urban areas and a fairly large geographic footprint. A13

decade of call data is used to develop and validate a stochastic discrete event simulator (DES) for this system,14

and then the simulator and raw data is used to select realistic station configurations to train the metamodel.15

Results are first given for just a single station within the system, and then increasingly complex settings16

are examined culminating with consideration of all 12 stations. Overall, though the metamodeling approach17

was effective for simpler cases, it requires a tremendous amount of data for larger settings. Specifically for18

the St. Louis County example, improved configurations were found for the one- and two-station cases, but19

the amount of data required to produce effective metamodels for the five- and twelve-station versions of the20

system was computationally infeasible given current DES and optimization heuristic implementations.21

Keywords: Emergency medical services, Discrete event simulation, Metamodeling, Particle swarm22

optimization, Random forest23

1. Introduction24

An Emergency Medical Services (EMS) department is tasked with responding quickly to the medical25

needs of people in its community. Especially in life-threatening emergencies, faster response times can26

translate to higher chances of survival, which makes reducing this time a priority for EMS systems [1, 2]. In27

particular, organizations and governing agencies, such as the National Fire Protection Association (NFPA),28

publish guidelines that specify 90th percentile response time thresholds [3, 4]. These response times depend29

on a system’s available resources, including ambulances and staff, as well as the locations of the stations30
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with respect to the calls [5, 6]. It has been shown that adjusting the station locations or available equipment31

from a finite list of candidate configurations can reduce response times and save lives [2, 7, 8, 4].32

Many types of models and simulations have been developed to test alternative resource location, allo-33

cation, and dispatching policies [9, 10, 11]. While mathematical models are fast and can be used to solve34

optimization problems directly, they are based on many simplifying assumptions. Simulations, including35

discrete event simulation (DES), are typically much more flexible and better able to approximate such com-36

plex and interconnected systems, but are more computationally intensive which becomes a limiting issue for37

large-scale systems. In fact, the computational difficulty entailed in this problem, particularly as encoun-38

tered in a commercial application, is what motivated the current research. Indeed, attempts to use a DES39

to directly optimize station configurations under simplified settings were unsuccessful due to memory and40

connection limitations associated with the large number of simulation runs.41

Thus, this paper seeks to develop a simplified predictive model, called a metamodel, which only considers42

the relationship between the basic inputs and outputs of the simulator, rather than accounting for each of the43

detailed, complex aspects of the simulation. As such, metamodels can be evaluated much more quickly [12]44

than the DES. The main contribution of the current research, motivated by extensive work on a real EMS45

system in northern St. Louis County, MN, USA, as well as by a company doing analytics and optimization46

work for EMS systems, is to study the amount of training data needed to fit a metamodel well enough to47

usefully optimize station locations. As discussed in Section 2, there is little in the literature addressing the48

nexus of issues confronted here: optimization using a metamodel built to mimic a DES, which in turn is49

modeling an underlying complex, rural-urban EMS system. Investigating the amount of data necessary to50

effectively construct such a metamodel has not been investigated in an EMS simulation setting, and rarely51

in the metamodeling literature more broadly.52

The following section presents a review of related simulation and metamodeling work, Section 3 describes53

the methodology of the present study, and Section 4 contains the results, followed in Section 5 by a discussion54

of the findings, areas for future work, and a conclusion.55

2. Related Work56

As mentioned above, many types of models have been developed in the study of EMS systems, with57

simulation models more flexible and accurate than mathematical models. In particular, discrete event58

simulation (DES) has been shown to accurately model EMS [1, 13, 14, 15] and other healthcare systems59

[16, 17, 18, 19, 20]. DES is a method of modeling complex systems comprised of events in time, in which the60

system remains unchanged between events. It is relatively adaptable and can handle constrained resources,61

and it has been the most common simulation tool used to model EMS systems [11, 21], in comparison to62

continuous or constant time-step simulations [22]. Agent-based simulation (ABS), or a combination of ABS63

and DES, has also been used to model EMS systems as it can track and model the movement of ambulances64

in the system in more realistic and complex ways [22, 23, 24, 25] than DES alone.65
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These simulators can then be used to compare how various system configurations affect response times66

for an EMS system [26, 27, 28, 29, 30]. In the review by Li et al. [10], the authors include an overview of67

simulation techniques used to test different policies for the allocation and deployment of ambulances and68

compare multiple pre-defined ambulance location configurations, but do not consider a full optimization69

of station locations. Aringhieri et al. [11] provides a review of EMS ambulance location, relocation, and70

dispatching policy problems, including the use of simulation models and specifically DES. Of particular71

interest to the present work, the study by Mason [31] explores a simulation-optimization of vehicle base72

locations, but only performs a local optimization by perturbing existing station locations. Additional research73

has been performed specifically for EMS systems in heterogeneous rural-urban regions. Rather than treating74

all areas equivalently and only considering response time, models have been developed that vary response75

time and survival targets in different areas [32, 33, 34, 35], or employ additional optimization objectives76

such as maximizing coverage or survival [36, 37] in order to balance efficiency and equity throughout the77

system. As seen in these papers, although simulation allows for more flexibility and accuracy in modeling78

EMS systems, especially complex rural-urban systems, the added computational expense has limited the79

optimization of station locations to simply selecting from pre-defined candidate locations or implementing a80

local optimization procedure.81

The use of metamodels as a surrogate for the simulation model can simplify the underlying structure82

while hopefully maintaining high accuracy to enable a full optimization. To be more specific, a metamodel is83

a predictive model that is trained by runs of the simulator at a diverse set of system configurations. Then, if84

enough information is provided by the simulations, the metamodel effectively mimics the much more complex85

and computationally difficult simulator and can be used for decision-making and even optimization. In recent86

years, metamodeling has been widely studied, and for EMS systems has been used to compare and optimize87

both response times and survival rates by changing ambulance locations [38] and dispatch policies [39]; these88

models were based on agent-based simulators. More generally, comparisons of different types of metamodels,89

such as regression splines, kriging, artificial neural networks, and random forests, as well as different sampling90

approaches, including space-filling designs and adaptive sampling, have been conducted in many contexts on91

a variety of simulators [40, 41, 42, 43, 44, 45], including discrete event simulators [46, 47]. Depending on the92

context of the problem and the ultimate goal, the recommended model and approach varies. In a comparison93

of several metamodeling strategies, for discrete event simulators of EMS systems, Hopkins and Smucker [48]94

found that k-nearest neighbors and random forest models yield the highest accuracy and predictive power.95

The goal in metamodeling is to create a highly accurate model using the least amount of training data,96

since this training data is expensive to obtain. Jin et al. [49] was an early researcher of metamodel per-97

formance using different sample sizes and problem complexities. For large scale problems with at least ten98

predictors, the authors compare the accuracy of three sample sizes – scarce, small, and large – using R2,99

relative average absolute error (RAAE), and relative maximum absolute error (RMAE). The samples are100

generated using Latin hypercubes, with sizes determined as functions of the number of parameters p, ranging101
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from 3p to 3(p + 1)(p + 2)/2. They found that the accuracy tended to increase as sample size increased,102

with average R2 values near 70 for the large scale, nonlinear problems. Yang et al. [50] compared the RMSE103

of five types of metamodels fit using training sets with sizes ranging from 3p to 36p, where p = 4, for a104

complex, nonlinear finite element model. Similarly, Kim et al. [51] studied the accuracy of metamodels built105

on samples of 3p, 5p, and 7p points using RMSE for sample mathematical problems with two through eight106

predictor variables. Kianifar and Campean [52] provided a recent, comprehensive literature review of meta-107

modeling techniques with the goal of creating a guide for engineering professionals; the authors compared108

many facets of metamodeling for several mathematical-based engineering problems, including two different109

samples sizes (10- and 30-times the number of predictors), using a normalized RMSE. The general consensus110

for these studies was that increasing the sample size resulted in higher accuracies, but at varying rates for111

different model types, problem complexities, and error types. Other studies have compared the accuracy of112

simulation-based metamodels built on several pre-defined sample sizes, typically ranging from several dozen113

to several hundred training points, and occasionally reaching a thousand points [53, 54, 55, 56, 57, 58]. One114

exception is Ding and Zhang [59], who explored large-scale simulation metamodeling in settings with 10, 20,115

50, and 16,675 predictors, and tested sample sizes ranging from 200 points to 30,000 points. They compared116

the RMSE at increasing sample sizes using multiple sampling designs, and generally found sharp decreases in117

errors that eventually plateaued; however, the authors focused on metamodeling for simulation prediction,118

rather than optimization where alternative methods may be more efficient.119

Once a metamodel is constructed, it can be used to solve optimization problems, as in Osorio and Chong120

[54] who optimize signal plans in simulation-based transportation systems, and Ju et al. [56], who optimize121

turbomachinery designs in Monte Carlo simulation problems. Zeinali et al. [60] created a metamodel122

to approximate a DES for emergency departments with the goal of minimizing patients’ waiting times,123

and discovered a resource configuration that reduced waiting times by 48% for a particular hospital. The124

metamodel was fit using fewer than 100 points, and the near-optimal solution was found quickly.125

Unlike the existing literature, the current research seeks to optimize the location of the EMS stations126

over a continuous region rather than over a finite list of candidate locations or a perturbation of the existing127

system. To accomplish this, metamodels are fit over the underlying simulation, using as input only the128

locations of the EMS stations. The question considered is: How much training data is required to obtain129

metamodels reliable enough for use in optimization? Due to the intrinsic, interconnected nature of the130

rural-urban EMS system considered, the problem is significantly more complicated than the studies in the131

current literature and requires substantially more data. Further, because traditional, commonly-used space-132

filling designs are not practical in this setting since they waste computational resources on illogical station133

configurations, alternative sampling methods must be considered.134

4



3. Data and Methods135

In order to evaluate the efficacy of this metamodeling approach and determine the amount of data needed136

to obtain useful results, consider four versions of a case study, each of increasing complexity. These include a137

simple setting with one station, a two-station setting that accounts for the interaction of stations, and a full138

twelve-station setting to model at least a simplified version of the entire EMS system of northern St. Louis139

County, Minnesota (results for an intermediate five-station scenario are also reported in the Supplementary140

Material). For each situation, a DES was created and a number of samples of station configurations were141

generated to run through the DES. This resulted in a simulated 90th percentile for each configuration that142

was then used as the response for the fitted metamodel. Once fit, the metamodel and particle swarm143

optimization were used to generate a set of potentially optimal station configurations, which were then144

validated on the DES. If improvements in the metamodel and proposed configurations could be expected,145

the process repeated with a larger sample size, as illustrated by Figure 1.146

Figure 1: Flowchart of the methodology used in this article.

All data cleaning, simulation, model fitting, and optimization was done in R [61]. The packages tidyverse147

[62], simmer [63], osrm [64], caret [65], randomForest [66], and pso [67] were used extensively.148

3.1. Data Handling149

The data for this study was provided by Allen Lewis, Fire Chief and Emergency Manager of the Virginia150

Fire Department in Virginia, Minnesota. Calls related to medical emergencies between 2009 and 2019 were151

included, extracted from two sets of data. Calls collected between December 27, 2009 and April 3, 2016152

were reported weekly, while those collected between January 1, 2018 and December 30, 2019 were reported153

daily. For every call, the date (or week), type of emergency, radio name of the responding vehicle, address,154

latitude, and longitude were recorded, along with the time that the call arrived as well as the times that the155

vehicle was dispatched, enroute, on scene, and cleared from the emergency.156

Several additional variables were constructed based on the data. Both the station and vehicle type of157

the responding vehicle were extracted from the radio name; ambulances, Medical Response vehicles, and158

Battalion Chief vehicles were classified as “EMS”, while other vehicles were recorded as “Fire”. A binary159

city variable marked calls that were located in the cities of Virginia, Mountain Iron, Hibbing, Ely, Eveleth,160

or Chisholm and within 5 miles (8.1 km) of the station as true, while others were marked false. The time161
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of day was recorded as “early morning” for calls arriving before 6:00 a.m., “morning” for calls arriving162

before noon, “afternoon” for calls arriving before 6:00 p.m., and “evening” for other times. The season was163

recorded as “winter” for calls arriving from December to February, “spring” for those arriving from March164

to May, “summer” for those arriving from June to August, and “fall” for those arriving from September to165

November.166

To obtain accurate and reliable data for this study, the data was cleaned using the following procedures. In167

all, three datasets were constructed from the raw data. The first dataset, denoted A, omits calls with missing168

locations and missing or illogical times. It also omits calls whose times were judged to be unreasonable,169

when compared to the OpenStreetMap time. Dataset A is the most filtered set of calls (Table 1) and is170

used whenever it is necessary to have a set of calls with reliable times. More details regarding Dataset A are171

provided in Section 1 of the Supplementary Material. Another dataset, denoted B, was generated to assess172

the call frequency over time by computing the difference in call arrival times between unique emergencies.173

Only the 2018 and 2019 call data was used, as earlier data was reported weekly and not daily. Time of day174

and season variables were also computed as described above based on the arrival times. Finally, dataset C175

consists of call locations from the entire decade of call data. A binary city variable marked calls that were176

located in any city (Virginia, Mountain Iron, Hibbing, Ely, Eveleth, or Chisholm) as true, while others were177

marked false.178

Together, these three datasets served as the foundation for the simulation and analysis of each version179

of the case study. Based on the number of stations in each scenario, datasets were filtered to include a180

subset of the responding stations. The one-station setting only accounted for the Virginia station; the two-181

station version added the Eveleth station; and the twelve-station setting encompassed the full system which182

includes the Aurora, Babbitt, Bois Forte, Buhl, Chisholm, Cook, Ely, Eveleth, Hibbing, Orr, Tower, and183

Virginia stations. (A five-station scenario is included in the Supplementary Material which includes Virginia184

and Eveleth as well as the Hibbing, Buhl, and Chisholm stations.) The two largest stations, Virginia and185

Hibbing, had four ambulances, while all other stations had two ambulances. Table 1 shows the amount186

of data in each dataset for each scenario based on this data handling. These sets of calls, locations, and187

available ambulances were used as the basis for the discrete event simulator described next.188

Scenario
Dataset A Dataset B Dataset C

(Calls) (Calls) (Calls) (Unique Locations)

One Station 6,240 8,788 22,335 5,285

Two Station 7,129 10,333 27,877 6,461

Five Station 16,524 18,768 49,640 11,588

Twelve Station 19,625 23,233 64,847 15,956

Table 1: Number of calls used for each dataset in each case study. Dataset A is filtered in order to have calls with reliable

response times. Dataset B is a set of calls used to measure frequency and time between calls. Dataset C is a complete set of

call locations.
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3.2. Discrete Event Simulation189

Figure 2: Discrete Event Simulation

process. The various aspects of the re-

sponse time are denoted by solid ar-

rows. The travel time is denoted by

the dashed arrow.

As described in the previous section, discrete event simulation (DES) is190

common in the EMS space. In this work, the use of DES is motivated by its191

appropriateness to the problem as well as collaboration with Levrum Data192

Technologies, a fire and EMS analytics company that employs similar193

tools. Thus, to model the EMS system, a DES was built using the simmer194

package [63] which corresponds to the first step in Figure 1. In an EMS195

system, the specific events modeled by the DES include the call arriving196

to the dispatcher, the dispatcher assigning an ambulance, the ambulance197

leaving for the scene, arriving at the scene, and being cleared from the198

emergency, as seen in Figure 2. The coordinates of the stations are the199

input to the DES, and the ambulances are the constrained resources. For200

this analysis, stations were assigned either two or four ambulances based201

on the current resources in Northern St. Louis County. Once a call arrives202

and is assigned to a station, an ambulance is seized until the call is cleared.203

If no ambulances are available, the call is queued and waits until a vehicle204

is cleared for the one-station case, or is assigned to the next closest station205

for the more complex cases. The location of the call is randomly selected206

from a list of all locations found in dataset C.207

The time between call arrivals, dispatch to assignment times, assig-208

ment to enroute times, and onscene to clear times are randomly gener-209

ated from gamma distributions and are represented by the solid arrows210

in Figure 2. These distributions were investigated in case they varied as211

a function of variables like time of day and time of year. The distribution212

for time between call arrivals was found to be based on time of day and213

season; assignment to enroute times based on time of day and vehicle type; and the dispatch to enroute and214

on scene to clear times based upon the binary city variable and vehicle type. As an example, the shape and215

rate parameter values for the gamma distributions used in the one-station setting are provided in Table 2.216

The remaining time needed to build the DES is the travel time, represented by the dashed arrow in Figure217

2. This was estimated using a linear regression model that calibrated the OpenStreetMap times to realistic218

emergency response travel times, while accounting for variables like time of day and season. Based on a219

prediction interval from this regression analysis, a distribution was constructed from which the travel time220

was drawn. Further details are provided in the Supplementary Material, Section 2.221

Putting all these fitted distributions together, the DES was constructed and run for one simulated year.222

The response time for each generated call was calculated as the difference in time between the call being223

assigned to a station and the ambulance arriving at the scene. Then, for a given configuration, the 90th224
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percentile of the response times was computed across all calls since this is the primary metric of interest. In225

Section 3 of the Supplementary Material, the simulated 90th percentiles are compared to the 90th percentiles226

based on the historical data. Overall, the simulation provides response time distributions that are very similar227

to those found in the data.228

Factor Early Morning Morning Afternoon Evening
Time Difference

Levels Shape Rate Shape Rate Shape Rate Shape Rate

Spring 1.271 0.007 0.768 0.005 0.889 0.010 1.106 0.011

Summer 1.501 0.008 0.842 0.005 1.043 0.012 1.180 0.012

Fall 1.234 0.007 0.745 0.005 0.972 0.011 1.208 0.013
Call Arrival

Winter 1.428 0.008 0.774 0.005 1.055 0.013 1.243 0.013

Assignment to Enroute EMS Vehicle 1.572 0.817 0.824 0.468 0.952 0.868 1.191 0.943

In City Not in City

Shape Rate Shape Rate

Dispatch to Enroute EMS Vehicle 2.578 1.108 1.992 0.677

Onscene to Clear EMS Vehicle 1.789 0.031 1.617 0.022

Table 2: Parameter values for the gamma distributions used in the discrete-event simulator at each factor level combination.

229

3.3. Metamodeling230

Once constructed, the DES was used to generate a set of training data for the metamodeling process.231

This data came from a set of sample configurations that were run through the DES in order to obtain the232

simulated 90th percentiles, as illustrated in the second and third steps of Figure 1. Using the latitudes and233

longitudes of the station locations as inputs and the simulated 90th percentiles as outputs, the random forest234

metamodels were fit. Since the DES takes time to run, the goal is to fit the metamodels on the smallest set235

of training data that still yields accurate and informative results. Table 3 shows each of the training data236

sample sizes considered for the four settings.237

Scenario Sample Sizes

One Station 50, 100, 200, 300, 400, 500, 1000

Two Station 500, 1000, 2000, 3000, 4000, 5000

Five Station 2000, 10000, 50000

Twelve Station 5000, 10000, 50000

Table 3: Sample sizes studied for each version of the case study. Note that the five-station case is treated in the Supplementary

Material.

Intuitively, a well-situated configuration that reduces the 90th percentile of response times would have238

stations located in the vicinity of the majority of calls, yet still spread throughout the region. Thus, rather239

than using a space-filling design to generate sample locations, a weighted sampling technique was used based240
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on the spatial density of calls. This allows for more sample data in the intuitive locations, increasing the241

precision of the results in these areas. The spatial density of the calls were computed from dataset C using the242

density.ppp function of the spatstat R package [68], which increased the probability of choosing station243

locations in areas that have many emergency calls and decreased the probability of choosing irrelevant station244

locations. Details of the density estimation are provided in Section 4 of the Supplementary Material.245

The one- and two-station versions simply selected one or two locations from this density for each con-246

figuration to generate the samples. For the twelve-station case (as well as the five-station scenario in the247

Supplementary Material), an additional constraint was added that forced all locations in a configuration to248

be at least four miles (6.4 km) apart, which is the distance between the two closest stations in the current249

configuration. This constraint was implemented due to the extremely high density of calls in the city of250

Virginia, which resulted in many configurations with several stations in very close proximity. While this251

added constraint introduces some limitations in the fitted metamodels, it allows for more exploration of252

intuitive configurations—those with stations spread throughout the region—while requiring less data. A253

brief exploratory study comparing several alternative sampling techniques is provided in Section 5 of the254

Supplementary Material, which found that using the constrained weighted technique ultimately resulted in255

the most promising proposed station configurations.256

Once the sample of input configurations was generated, a random forest model was fit as the metamodel257

for each of the sample sizes considered, corresponding to the fourth step of Figure 1. Random forests were258

chosen due to their high predictive power in EMS settings [48]. Details on the implementation of the random259

forest are provided in Section 6 of the Supplementary Material.260

3.4. Optimization261

Optimizing the locations of the stations using the metamodel was attempted, via particle swarm opti-

mization (specifically SPSO 2007), in order to find the station configuration that the metamodel predicts will

have the shortest 90th percentile response time. Corresponding to the fifth step in Figure 1, this technique

is based on a swarm of several configurations, called particles. The metamodel is evaluated for each particle,

and the latitude and longitude of each station in the particle are assigned a velocity. The particles then

move around the search space based on these velocities and are reevaluated by the metamodel, continuing

until the global optimum is found. In particular, the optimization problem can be specified as follows:

Minimize f(lat1, long1, lat2, long2, . . . , latK , longK) (1)

s.t. (lati, longi) ∈ (min
n∈C

yn,max
n∈C

yn)× (min
n∈C

xn,max
n∈C

xn), i = 1, 2, . . . ,K

where f is the metamodel-predicted 90th percentile of the response times for a configuration with K stations,262

K = 1, 2, 5, 12; station k is located at latitude latk and longitude longk; xn and yn are the longitude and263

latitude of call n in dataset C; and C is the set of all row indices in dataset C. Additional details of the264

PSO specification can be found in Section 7 of the Supplementary Material. Note that while the data used265
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to fit the models included a distance constraint between stations for the five- and twelve-station cases, the266

optimization procedure did not, allowing stations to become close or even overlap.267

Given the highly nonlinear and black-box nature of f , optimization in this setting is limited to the use268

of heuristics. Techniques including genetic algorithms [2, 69], tabu search [6], ant colony [10], and PSO269

[70], have been used to optimize models relating to EMS station locations and ambulance deployment, with270

GA and tabu search as the most popular methods [10]. In more general applications, comparisons between271

heuristics have often found PSO or GA to be the most promising techniques [21, 71, 72, 73], with PSO shown272

to more consistently find global optimal solutions. Thus, PSO is a reasonable approach to use in this setting.273

For this study, the heuristic was run for each metamodel using 100 different initializations, with each274

procedure terminating after 50 iterations passed without improvement in the objective function. This tech-275

nique provides a set of up to 100 different station configurations that, ideally, have low metamodel-predicted276

90th percentile response times. Rather than proposing a single solution, it provides a set of configurations277

allowing for additional exploration and visualization of trends, which is desired since the use of metamodels278

has been shown to find improved, but not necessarily optimal, solutions for the underlying simulation system.279

3.5. Validation280

As the final step in Figure 1, each location proposed by the 100 metamodel optimizations of station281

locations (Section 3.4) was tested on the DES and compared to the current configuration. Due to the inherent282

randomness in the simulator, the configurations were run several times and the average 90th percentile283

response time was calculated. To start, the DES was run 100 times for the current station location and284

the mean and standard deviation of the 90th percentile response times were computed. Next, a simple285

statistical power analysis was conducted to determine how many runs of the DES were needed in order to286

detect differences of at least 30 seconds compared to the mean 90th percentile of the current station location,287

with 90% power and a significance level of 0.05. The DES was then run for each of the station configurations288

proposed by the optimization procedure, and average 90th percentile response times and corresponding 95%289

confidence intervals were compared to those from the current system.290

Note that since the metamodels for the twelve-station case were substantially more complex than for the291

simpler cases, a majority of the 100 optimization procedures resulted in different configurations. Further,292

these simulations took additional time to run, so each proposed configuration was tested on the DES only293

once to start. Then, based on this single run, the configurations with a simulated 90th percentile below the294

upper 95% confidence interval bound for the current configuration were run on the DES additional times295

using the findings from the sample size analysis. Finally, the means and 95% confidence intervals of the296

simulated 90th percentile of response times were computed for these proposed configurations and compared297

to the current system.298
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50 Stations 200 Stations 500 Stations 1000 Stations

Figure 3: Sample locations (in blue) used as inputs for the one-station setting metamodels, overlaid on the historic call locations

(in black).

4. Results299

Using the methodology described in Section 3, this section reports on the results for the study of meta-300

modeling as a strategy to perform optimization in a complex simulation environment. Included are the301

one-, two-, and twelve-station scenarios (with a five-station version in the Supplementary Material) so that302

metamodeling data needs can be better understood in increasingly complex environments.303

4.1. One Station304

In order to fit a random forest metamodel over the DES, weighted samples of seven incremental sizes305

were generated as inputs, as described in Section 3.3. Figure 3 shows the samples of size 50, 200, 500, and306

1,000 in blue on top of all possible call locations shown in black. For samples of 200 and fewer locations,307

the stations were primarily located in the center of the region, while increasing the sample sizes to 500 or308

1,000 expanded the coverage to the outlying areas as well. The DES was then run at each location, each309

run resulting in a corresponding 90th percentile response time. The metamodel, then, was fitted to each310

simulated dataset using the station locations as inputs and the 90th percentile response times as outputs.311

Figure 4a shows the goodness of fit of the models by sample size using the cross-validated R2 of the selected312

random forest metamodel along with standard error bars. Although the R2 is relatively high for a sample313

size of 50, it drops to a mean of 64% for a sample size of 100. It then approaches 80% for samples of size314

200 and 300 before peaking with values around 88% for the larger sample sizes. The variability in the R2
315

values is smallest for samples of size 400 and above.316

Next, the station locations were optimized using each of the seven metamodels, the particle swarm317

optimization procedure, and 100 different initializations, which resulted in a set of proposed station locations.318

Each of these locations with a unique 90th percentile based on the metamodel, as well as the current location,319
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Figure 4: For the one-station setting, (a) metamodel fit by sample size with standard error bars; and (b) average DES simulated

90th percentile response times for proposed locations.
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Figure 5: For the one-station setting, (a) distributions of response times for the current and proposed configurations; and (b)

distributions of response times for proposed configurations based on the single- and multi-objective optimization discussed in

Section 5.
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were then used as the input to the DES. Based on the sample size analysis (see Section 3.5), ten runs of320

the DES were required to detect mean 90th percentile differences of at least 30 seconds below that of the321

current station. The mean and 95% confidence intervals were computed for the simulated 90th percentile322

response time across these ten runs, which are shown in Figure 4b. Each bar corresponds to a unique location323

proposed by the optimization procedure, and the size of each dot corresponds to the proportion of the 100324

procedures that resulted in a location with the same 90th percentile response time based on the metamodel.325

Based on this plot, the proposed station locations from the metamodel optimization built on all considered326

sample sizes reduced the simulated 90th percentile response time by at least 30 seconds compared to the327

current station. Note that for the sample size of 50, 1 optimization run resulted in a location with an328

average 90th percentiles response time of 142 minutes which is not included in Figure 4b. The best location,329

on average, was found by one optimization procedure with a sample size of 200, for a mean 90th percentile330

response time of 17.3 minutes compared to the current station’s mean of 19.1 minutes. The next best location331

was found by 80% of the optimization procedures on the metamodel built on 1,000 locations, with a mean332

90th percentile response time of 17.4 minutes.333

In addition to the 90th percentile, Figure 5a shows the distribution of response times for several of these334

proposed locations as well as the current location from one run of the DES. While all distributions are right335

skewed, the current station’s response times distribution has a peak near 3.8 minutes. The other curves,336

shown for sample sizes of 100, 400, and 1,000, have peaks between 4.5 and 6.5 minutes. This indicates that337

although the proposed locations reduce the simulated 90th percentile of response times, effectively reducing338

the amount of time needed to reach calls in outlying areas, they require additional time for many of the calls339

that are within five minutes of a response under the current system.340

To understand the results described above, Figure 6a plots several of the proposed locations in relation to341

the city of Virginia. The current station, shown in red, is in the center of the city, allowing for a fast response342

to many calls in a dense area. However, the proposed locations based on the metamodel optimization are on343

the western side of the city, along US 53 or US 169, which allow for quicker access to the outlying regions.344

Thus, while there is some variability in the simulated response time distributions and 90th percentiles, the345

general trend suggests that moving the station along the highway on the western edge of the city will reduce346

the 90th percentile of the response times.347

4.2. Two Station348

Here results are presented for the case in which two stations are considered. Weighted random samples of349

two-station configurations were taken according to the sample sizes specified in Table 3, and these samples350

were used to fit and optimize station configurations using the metamodels. Additional details are provided351

in Section 9 of the Supplementary Material.352

Figure 7a again shows the goodness of fit of the models by sample size using the cross-validated R2 of the353

selected random forest metamodel along with standard error bars. Though the sample sizes are necessarily354

larger than the one-station version, an informative metamodel can still be achieved.355
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Figure 6: For the one-station setting, (a) location of proposed configurations in relation to Virginia; and (b) location of proposed

configurations from the the multiobjective median-90th percentile optimization described in the Discussion. See Section 5.
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The results of the optimization are not as clean here, with more diversity of locally optimal solutions for356

each sample size. Validating each of these metamodel-proposed solutions with ten runs on the DES found357

that, with the exception of a few outliers, nearly all proposed configurations improved upon the current358

system (Figure 7b). The best configuration was found by two optimization procedures on the metamodel359

built on a sample of 5,000 configurations, with a average 90th percentile of 13.5 minutes.360

Figure 8 shows the distributions of simulated response times for the best configurations indicated by361

the metamodel with sample sizes of 1,000, 3,000, and 5,000. As with the one-station setting, while these362

proposed configurations decrease the 90th percentile, they increase the lower quantiles of response times.363

The peak of the distributions for each proposed configuration represented is shifted to the right of the current364

configuration’s peak, signifying longer response times for many of the calls that are within three minutes of365

a response under the current system.366

To understand this trend, Figure 9 shows the geographic locations of the most commonly proposed367

configuration for each sample size. The current configuration is shown in red, with locations in the center of368

Virginia and Eveleth. Each proposed configuration consisted of one station in the northern area to the west369

of Virginia and one station in the southern region to the southeast of Eveleth. All proposed configurations370

have locations closer to the highway than the current configuration, with the distances between stations371

slightly farther than the current distance. Similar to the one-station case, this general trend suggests that372

moving the stations closer to the highway would reduce the 90th percentile of the response times.373

4.3. Twelve Stations374

Here, briefer results are provided for the twelve-station case. Additional details for the twelve-station DES375

are in Supplementary Material Section 11, while results for an intermediate five-station case are provided376

in Section 10 of the Supplementary Material. Overall, the metamodels for this scenario needed much more377

data than the one- and two-station systems, while at the same time requiring much larger computational378

resources to simulate and optimize. The twelve-station case, and even the five-station case, were challenging379

scenarios that stretched this methodology and computational infrastructure, and consequently, the results380

are less encouraging. Still, it is important to demonstrate both where the metamodeling approach excels381

and where it requires more development.382

For twelve stations, three different sizes of configuration samples were generated using the constrained,383

weighted method. Figure 10a shows the results; note that even with a sample size of 50,000, the cross-384

validated R2 is not even 50%. PSO was then used to optimize the station locations using each metamodel, and385

the complexity of the problem resulted in a majority of the procedures converging to different configurations.386

Increasing the sample size used to train the metamodel did result in lower overall distributions of 90th387

percentiles for the 100 configurations, but in this case nearly all times were still greater than 30 minutes388

and none approached the current average of 18.5 minutes (Figure 10b). Clearly, the metamodels failed to389

adequately capture the complexities of the system. More data is needed to train the metamodels in this390

case.391
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Figure 7: For the two-station setting, (a) metamodel fit by sample size with standard error bars; and (b) average DES simulated

90th percentile response times for proposed locations.
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5. Discussion and Conclusion392

5.1. Discussion393

Interestingly, the best, most reliable metamodel fits were not necessarily needed to find improved lo-394

cations, and many models with poorer fits also proposed configurations with good average 90th percentile395

response times for the one- and two-station scenarios. This suggests an important point: metamodeling may396

not produce a single, globally optimal solution, but is effective at collecting a set of promising solutions that397

can then be more carefully evaluated and analyzed using a simulator and domain knowledge. This collection398

happens naturally when an optimization heuristic such as particle swarm optimization is used and produces399

a number of solutions based on optimization runs from different initializations. This set of solutions can400

then reveal what is in common among improved configurations. For instance, for the one- and two-station401

cases many of the solutions suggested by the optimization heuristic moved the stations closer to the highway402

(see Figures 6a and 9). This makes intuitive sense because the goal is to minimize the 90th percentile of403

the response time distribution; increases in the median response are allowed in order to reduce the right tail404

response by improving highway access (see Figures 5a and 8).405

A simple question then presents itself: can the benefits of a reduced 90th percentile be achieved while406

also retaining a median response that is close to the current level? To briefly investigate this, a simple407

multiobjective optimization approach was used to simultaneously minimize the 90th percentile and median408
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Figure 10: For the twelve-station setting, (a) metamodel fit by sample size, with standard error bars; and (b) boxplot of single

DES validation of 100 proposed configurations produced by optimizing the metamodel-predicted 90th percentile response time.

The red line in (b) is the DES performance of the current configuration, with 95% confidence band.

response times for the one-station case. In this optimization, a new objective function was created, as a409

linear combination of 90th percentile and median, where both objectives were equally weighted. The analysis410

was done for sample sizes of 100, 200, 300, 400, and 500. Due to the increased stability around the median411

quantile, the R2 for these metamodels were typically 5-10 percentages points higher than those modeling412

the 90th percentile. After the optimization and validation steps, most proposed locations decreased the 90th413

percentile by approximately 20 to 60 seconds without drastically affecting the median. Figure 5b shows the414

response time distributions for the current station location in red, proposed locations based on the single415

objective analysis in blue, and the proposed locations based on the multiobjective analysis in green using416

a sample size of 300; the multiple density curves within each analysis type represent the different locations417

suggested by the 100 different optimization procedures. Geographically, many of the proposed locations418

under the multiobjective optimization procedures were on the western edge of the city of Virginia, but not419

as close to the highways as seen in Figure 6a, which balances access to the outlying areas with proximity to420

the high density area. These proposed locations are seen in Figure 6b, color coded by the sample size used421

to build the underlying model.422

We also explored the robustness of our work by performing two types of sensitivity analyses. First, for423

the two-station case, the stations in the configuration which was selected based on the optimization of the424

5,000-point metamodel (shown in pink in Figure 9) were perturbed and reevaluated by both the metamodel425
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and DES in order to assess geographical trends in the 90th percentile of the response times. Details are426

reported in Section 12.1 of the Supplementary Material, but overall the findings were as expected: perturbed427

locations close to the optimized locations had more similar predicted response times than those locations428

that were further away.429

The second sensitivity analysis assessed the robustness of the methods to small changes in the gamma430

and lognormal distributional parameters used in the DES (see Section 3.2). For the work in this paper, the431

parameters in these distributions were estimated from the data and as such include measured uncertainty. For432

this sensitivity analysis, random perturbations of these parameters were generated based on their estimates433

and their estimated uncertainty, and these new parameters were used to create a new version of the DES.434

This process was repeated 50 times to create 50 different simulators. Each perturbed DES was then used to435

produce a set of training data used to fit a metamodel and optimize the station location using the methods436

described in this paper. Additional details are provided in Section 12.2 of the Supplementary Material.437

Figure 11 displays a map with the current station location in red, the original proposed location in blue,438

with the 50 proposed locations based on the perturbed simulators in green. While the specific locations vary,439

the message is clear and consistent with earlier findings: to minimize the 90th percentile of the response440

times in the one-station setting, the ideal station location is along the highway near the intersection of US441

53 and US 169. The results of this sensitivity analysis suggest that slightly different input parameters to442

the DES, as could be expected from utilizing a different dataset from the same system, still yield consistent443

qualitative suggestions for the EMS system.444
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5.2. Conclusion445

Because detailed discrete event simulators for large rural-urban EMS systems are computationally de-446

manding, it is difficult to optimize using the DES directly, and even more challenging when including ran-447

domness in the simulation. To address this problem, metamodels are used as a surrogate for the DES and448

the present work examined how much data these surrogates required as the complexity of the system in-449

creased. The study found that in order to model the 90th percentile response time of a single station, only450

200 to 400 data points are needed to obtain an accurate random forest metamodel. This metamodel, when451

used to optimized, produced configurations that improved upon the current configuration by over a minute,452

according to the DES. For the two-station setting, around 3,000 data points were required, and resulting453

configurations suggested improvements of at least 30 seconds. For the twelve-station setting, however, even454

50,000 data points was inadequate to train a metamodel which reliably optimized the system. Thus, while455

using a constrained, weighted sampling technique to generate data in intuitively promising regions decreased456

the number of DES runs needed, the metamodeling approach still requires a significant amount of time and457

data for complicated settings. These findings, it is expected, can be generalized to similar rural-uban EMS458

systems, with the quality of the metamodel—as measured, say, by out-of-sample R2—serving as a rough459

indicator of how effective the optimization will be.460

Based on this analysis, the discrete event simulators constructed to model EMS systems in St. Louis461

County, Minnesota appear to be reasonable approximations of the system’s responses to medical calls. The462

use of randomness in each aspect of the simulator, guided by historic call data, strengthens the reliability of463

the DES by ensuring that anomalous calls do not drastically alter a given station configuration’s responses.464

However, these simulators are overly simplified representations of the true system and do not account for465

the many complexities. For instance, all calls are assumed to have the same priority and only medical calls466

were considered, even though resources at these stations are shared between medical and fire emergencies.467

In addition, it is assumed that only one vehicle is needed for each call, and this responding vehicle is an468

ambulance that always starts from the station, not the hospital, a previous call location, or any location469

in between. Thus, while this DES can be used to find improved configurations, a more complex simulator470

could provide more insight.471

There are many areas of future work possible to continue or improve this analysis. To start, developing a472

faster simulator would allow for a fuller understanding of the amount of data required for the more complex473

cases with many stations. Additionally, rather than building a single metamodel on many runs of the474

DES, exploring model averaging techniques for many metamodels built on smaller samples could provide475

valuable insight with fewer runs. Alternatively, since an EMS system is unlikely to have the capacity to476

move all stations in practice, an alternative approach that focuses on either moving a subset of the stations477

or removing certain stations, while keeping the others in place, could be considered. Another approach to478

reduce the amount of data necessary to fit quality metamodels would be to continue exploring alternative479

sampling strategies. Techniques incorporating spatial densities and inverse-distance weights could be further480
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explored, in addition to adaptive sampling, also known as active learning, which has been shown in the481

metamodeling literature to produce small yet informative samples [39, 41]. Also, several aspects regarding482

the optimization could be investigated. Though PSO appears to be a solid metaheuristic choice, it is possible483

that other methods, such as Genetic Algorithms or tabu search, would improve results for a given level484

of metamodel quality. Along with the continuous optimization of station locations, incorporating station485

resources such as vehicles or personnel in the optimization would allow for more thorough solutions; for486

instance, perhaps combining the resources of two stations into a single station could reduce the response487

times while also reducing cost. Finally, performing a full multiobjective optimization analysis with Pareto488

fronts is a promising area of future research, as discussed above. Invariably, EMS departments care about489

more than one measure, and a multiobjective approach will provide decision-makers with a more realistic490

menu of options to improve their systems.491
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