
Supplementary Material for “A Multi-Objective Capacity-Constrained
Optimization of Corn Planting Scheduling”

1. Long Short-Term Memory Model Details

There are special “cells” in LSTM, called LSTM units, in each hidden layer of the neural network,

and these cells are connected sequentially. LSTM apply both hidden state and cell state in its interval5

architecture, where hidden state represents the current ”memory” of the network based on the input and the

information of the previous cell, and cell state is the memory component of LSTM for storing information

over long-time period. As comparison, traditional RNN only utilizes hidden state in its architecture. The

modification of LSTM over traditional RNN makes it able to establish a mechanism so that each cell has

an input gate, a forget gate, and an output gate, and these gates will together determine the utilization of10

information from the previous cell, the memorization of information in current cell, the output of the current

cell, and the information that should be passed to the next cell. This sequence of output is either passed

into the next hidden layer for further processing, or processed by a regular deep learning output layer (called

the Dense layer) to produce a final prediction. Compared to the traditional RNN, LSTM models remember

a larger number of steps in the sequence via the memory gates (Goodfellow et al., 2016).15

There are several hyperparameters that need to be specified for the LSTM model, including the number

of epochs, batch size and number of hidden layers. An epoch is a complete pass through the entire training

dataset, the batch size is the number of training samples randomly drawn from the training dataset and fed

into the neural network model at one time (Siami-Namini et al., 2018), and the number of hidden layers

is the number of layers in the network which neither directly receive data input nor output the final result20

Goodfellow et al. (2016). As a neural network model, LSTM uses gradient descent to optimize its internal

parameters across epochs. Based on informal testing, we chose the batch size to be 5 with 80 epochs. Tables

?? and ?? suggest that, compared with 3 hidden layers, 2 hidden layers result in a model that predicts

well. Thus, the process of training the model would be as follows. Randomly select 5 sequences, and use

them to train the model. Repeat this process until all of the sequences in the training set are exhausted.25

This constitutes one epoch. Repeat this process for a total of 80 epochs. Our LSTM framework, then, is

composed of one Input Layer, followed by two LSTM hidden layers, in which the first LSTM hidden layer

has K1 LSTM units (“cells” in our informal description above), the second LSTM hidden layer has K2

LSTM units, and a Dense layer to produce predicted GDU from the output of the second LSTM hidden

layer. As shown in Figure 1, the Input Layer takes the sequence gy−l,md, . . . , gy−2,md, gy−1,md as input and30

feeds the input into the first LSTM hidden layer. Using the notation of James et al. (2021), the first LSTM
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hidden layer takes the input to generate the intermediate output of the first LSTM hidden layer, A(1) which

is a two-dimensional matrix composed of l rows and K1 columns. The second LSTM hidden layer uses the

two-dimensional matrix A(1) as input to generate a vector A(2) which has K2 elements. The Dense Layer

uses the vector A(2) to compute the predicted ĝymd = β0 +
∑K2

k=1 βkA
(2)
k , k = 1, . . . ,K2. Based in part on35

informal testing, for our implementation of the model with 2 hidden layers, we chose K1 = 64 and K2 = 16.

(For the model implementation with 3 hidden layers, we used K1 = 200, K2 = 64 and K3 = 16.)

Figure 1: Compared to traditional RNN, LSTM units are composed of hidden state, cell state and different types of gates:

input gates, forget gates and output gates. These states and gates cooperatively determine the flow of information within the

sequentially connected LSTM units (Altché & de La Fortelle, 2017, Figure 4). The input layer takes the GDU sequence as

input and passes the input into the first LSTM hidden layer. Then the first LSTM hidden layer produces a two-dimensional

matrix as intermediate output and the second LSTM hidden layer uses the two-dimensional matrix to produce an intermediate

vector. Finally, the Dense layer uses the intermediate vector to produce the final GDU prediction. More details regarding the

LSTM units can be obtained in Altché & de La Fortelle (2017) and Gers et al. (1999)

2. Details for Scenario 1, Site 0 Results

Here we provide details, cross-referenced with the steps outlined in Section 3.2.1, to demonstrate the

results for Scenario 1, Site 0. As in Step 3, PF1 has 4,144 solutions in the constructed Pareto front, while40

PF2 has 821 and PF3 has 1,152. Combining them together results in a meta-population, PPF , which yields

a 6117×4 matrix. In order to compute the hypervolume (Step 4), we found that Fmin
1 = (6, 1027, 49, 12788)

and Fmax
1 = (1316, 8957, 54, 48764), which are used to scale each solution in PFk, k = 1, 2, 3. As in Step 5,

the hypervolume vk is computed for each of the scaled Pareto fronts, PFk, such that v1 = 11.5, v2 = 15.6, and

v3 = 13.4. This suggests that when evaluated on the Model 1 objectives, the Model 2 Pareto front produces45
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Table 1: Criterion values for solutions p∗ (final single optimal solution), pchallenge (solution submitted to the Challenge),

pinitial (initial solution given by the Challenge), under Scenario 1, site 1

p∗ pchallenge pinitial

Median Absolute Difference (f11) 8 365 2,196

Max Absolute Difference (f12) 827 1,816 6,725

# of Non-zero Harvest Week (f13) 51 53 52

Total Amount of Wasted Product (f14) 4,809 12,290 59,549

the best set of solutions, as measured by the hypervolume. Thus, we will choose our final solution from PF2,

using TOPSIS (Step 6). That is, after the scaling and the weighting, we compute PF2’s positive ideal solution

as A+ = (0.0002, 0.0023, 0.0085, 0.0053) and its negative ideal solution A− = (0.0259, 0.0182, 0.0090, 0.0142).

3. Results for Scenario 1 (Site 1)

We first provide the real and predicted GDU values for Site 1 (Figure 2), analogous to Figure 1 in the50

main document.

Figure 2: For Site 1, real GDU values between 2009 and 2019, and predicted GDU values for 2020 and 2021, using the

LSTM(2,80) model.

Omitting most details, we focus here on the results themselves. For Site 1, Scenario 1, there is a designated

storage capacity of 6,000 ears per week. Using the methodology outlined in Section 4.2 of the main document,

we find again that the Pareto front constructed using Model 2 yields the best hypervolume, leading to a final

solution given in Table 1 and Figure 3.55
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(a) Comparison between optimized and original planting schedule, where the original was provided as an initial solution

for the Challenge.

(b) Comparison between the solution submitted to the Challenge and the solution optimized using the methods described

in this paper.

Figure 3: Scenario 1, Site 1
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4. Scenario 2 Methodology

For Scenario 2 we have decision variables pi, i = 1, 2, . . . , n0, representing the planting day for seed

population si, as well as Ĉ, a decision variable representing the location capacity. As in Section 3.2, the

problem requires L(si) ≤ pi ≤ U(si), but we introduce a new set of constraints having to do with the

capacity. Specifically, we require L(C) ≤ Ĉ ≤ U(C), where L(C) and U(C) are a lower bound and upper60

bound that is user-specified based upon the particular setting. In addition to adding Ĉ as a decision variable,

we also include it as its own objective function, in order that we might select a capacity as small as possible,

while simultaneously balancing the number of harvest weeks, the deviation from capacity, and the amount

of wasted corn. More specifically, for Models 1, 2, and 3 in Section 3.2, we augment the existing objective

functions with a new one: fk5(p) = Ĉ, for k = 1, 2, 3. Hence, we are trying to simultaneously minimize65

fk(p) = (fk1(p), fk2(p), fk3(p), fk4(p), fk5(p)), k = 1, 2, 3, with decision variables p and Ĉ.

Beyond these generalizations of the decision variables and objective functions, our methodology remains

largely unchanged. The Pareto dominance description (Section 4.2.1) is the same, except it now accounts

for the extra decision variable and objective function. The hypervolume computation simply incorporates

the new objective and extends the reference point to [2, 2, 2, 2, 2]. As before, though we have defined f2(p)70

(Model 2) and f3(p) (Model 3), they only serve to aid in the construction of potentially improved Pareto

fronts with respect to f1(p) (Model 1). Our strategy to explore the tuning parameter space for Scenario 2

is also the same as for Scenario 1. Based on this structure, we use the same six-step solution strategy as

outlined in Section 4.2.1, except that we account for the fifth objective and the additional decision variable.

We note that due to the curse of dimensionality, adding a fifth criterion makes the computation much75

more difficult. We also note that for the selection of the final single solution p∗ from the best Pareto

front PFk∗, using TOPSIS, instead of using equal weights for all five objective functions, we use weights

{w1 = 0.225, w2 = 0.225, w3 = 0.225, w4 = 0.225, w5 = 0.1}. The slightly lower weight for the new objective

reflects our belief that the other objectives should be prioritized. Once p∗ is chosen, the corresponding

f15(p
∗) = Ĉ is our recommended location capacity.80

4.1. Results for Scenario 2 (Site 0)

As described in Section 4.3, Scenario 2 is like Scenario 1 except a capacity is not specified. Instead, as

part of the solution, we need to provide a recommended capacity. Here we provide results for site 0; results

for site 1 could be obtained similarly, but are omitted because the hypervolume computation cost for the

resulting large Pareto front is high.85

Based on Figure 1 we observe that, on average, the population harvest quantity under Scenario 2 is larger

than Scenario 1 which suggests that we need a relatively larger location capacity under Scenario 2. Thus, we

specify L(C) = 8,000 and U(C) = 20,000, where the latter is chosen to be larger than we anticipate being

necessary. Using the methodology described in Section 4.3, Table 2 shows our chosen p∗. Since the initial

Syngenta solution for Scenario 2 did not have a corresponding estimated location capacity, here we only90
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Table 2: Criterion values for solutions p∗ (final single optimal solution) and pchallenge

(solution submitted to the Challenge), under Scenario 2, site 0

p∗ pchallenge

Median Absolute Difference (f11) 409.599 1,836

Max Absolute Difference (f12) 4,286.599 3,402

# of Non-zero Harvest Week (f13) 51 53

Total Amount of Wasted Product (f14) 11,639.210 37,421

Estimated Location Capacity (f15) 10,312.6 9,864

compare the single optimal solution p∗ with the solution we originally submitted to the Syngenta challenge.

Compared to pchallenge, we suggest a capacity of about 450 more ears of corn. This slight concession results

in a much smaller median absolute difference and amount of wasted product, though our proposed solution

has a larger maximum absolute difference. Our solution p∗ also uses two fewer harvest weeks. The solutions

can be compared in Figure 4.95
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(a) Comparison between optimized and original planting schedule, where the original was provided as an initial solution

for the Challenge.

(b) Comparison between the solution submitted to the Challenge and the solution optimized using the methods described

in this paper.

Figure 4: Scenario 2, Site 0
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