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Abstract

The purpose of a screening experiment is to accurately and cost-efficiently identify

the few most influential factors, from among the many studied. Two types of screening

experiments are Supersaturated Designs (SSDs), a bold strategy wherein the number

of factors (k) exceeds the number of experimental runs (n), and Orthogonal Arrays

(OAs), which requires n to be a multiple of 4 and greater than k. In this study, we

compare the performance of SSDs with OAs, using both simulation as well as a new

method (Stallrich et al. 2024) based on the probability of perfect sign recovery under

the Lasso. Our findings indicate that under conditions of high sparsity, SSDs and OAs

detect effects with similar reliability, if the SSD effects are about 1.5 times the size of

the OA effects.

Keywords: Screening experiments; Sign recovery; Regularization; the Lasso

1 Introduction

An important aspect of screening experimental design and analysis is the selection of active

experimental factors, and the dismissal of factors with no meaningful effect on the response
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variable. A particularly bold screening strategy is supersaturated experiments, where the

number of runs n is less than the number of factors k. Though these experiments have been

well-studied, practitioners have been hesitant to use them. Orthogonal arrays, on the other

hand, have a long history of implementation. The aim of this paper is to compare these

two screening strategies, in order to better understand the tradeoffs between run size and

screening quality.

In a screening experiment, it is customary to adopt the linear main effect model repre-

sented as:

Y = β01+Dβ + ϵ (1)

where ϵ ∼ N (0, σ2In), D is the design matrix of size n × k with entries ±1, β is a vector

of model parameters of size k × 1, and Y and ϵ are each n × 1 vectors. The objective

of screening experiments is to cost-effectively determine which elements of β are non-zero.

The use of Orthogonal Arrays (OAs) is prevalent in screening experiments (e.g. Hedayat

et al. 1999), where n, being a multiple of 4, should always exceed k. On the other hand,

Supersaturated Designs (SSDs) can have n considerably smaller than k+1. Currently, there

is a notable degree of skepticism regarding the adoption of SSDs. According to an informal

survey conducted by Weese et al. (2021), only 13 out of 63 respondents reported having

used them in the past with only a handful using them regularly. Some respondents were

concerned that SSDs don’t have sufficient power to detect effects of interest. On the other

hand, orthogonal designs, such as fractional factorials and Plackett-Burman designs, were

used much more regularly, among the respondents.

Given this prevailing sentiment, our objective in this work is to quantify the difference in

screening ability of OAs vs. SSDs, across various effect sizes and levels of sparsity. Specifi-

cally, we seek to evaluate the amount of information lost when using SSDs instead of OAs,

as well as to determine conditions under which the performances of the designs are similar.
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We analyze the designs using the Lasso to compare them based upon simulated true pos-

itive rate (proportion of true active factors that are identified as active) and false positive

rate (proportion of inactive factors that are identified as active), as well as with a measure

based on the probability of perfect sign recovery under the Lasso (Stallrich et al. 2024). Our

goal is to increase understanding of the performance of SSDs relative to their more accepted

counterparts. Then, experimenters will be better equipped to weigh the benefits of SSDs

along with their drawbacks.

The outline of this paper is as follows: Section 2 offers a review of the relevant technical

material regarding SSDs and OAs. Section 3 provides a description of our simulation protocol

as well as the criteria proposed by Stallrich et al. (2024), both used to assess the quality of

the designs. We provide the results of our study in Section 4, and a discussion in Section 5.

2 Background

Screening experiments have been used widely in the physical sciences and manufacturing

(Hedayat et al. 1999; Mee 2009), as well as computer experiments (Owen 1992). Of particular

interest to this work are orthogonal arrays (Plackett and Burman 1946; Rao 1947; Bush

1952; Bose and Bush 1952; Hedayat et al. 1999; Xu et al. 2009) and supersaturated designs

(Satterthwaite 1959; Lin 1993; Wu 1993; Georgiou 2014; Weese et al. 2021). With regard to

the latter, there have been only a limited number of applications in the literature (Carpinteiro

et al. 2004; Dejaegher and Vander Heyden 2008; Jridi et al. 2015; Zarkadas and Besseris

2023), while the former are widely accepted by practitioners.

2.1 Screening Designs

Plackett and Burman (1946) were the first to introduce something like orthogonal arrays,

and this led to the development of a considerable theory (e.g., Rao 1947; Bush 1952; Bose

and Bush 1952; Hedayat et al. 1999). An orthogonal array is an n× k matrix which can be
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described with (n, k, s, d), where k is number of factors each at one of s levels, and n is the

number of experimental runs and a subset of all possible sk treatment combinations. This

array is said to be of strength d if all sd treatment combinations corresponding to any d

factors chosen out of k occur an equal number of times. An extensive review of orthogonal

arrays can be found in Xu et al. (2009) and Mee et al. (2017). Because these designs have

orthogonal columns, they estimate the main effects with minimum variance and no bias,

under the assumptions of model (1). In this paper, we consider OA’s with s = 2.

Supersaturated designs are a bolder type of screening design, for which n < k, so that

orthogonal designs are not possible. These experiments were first suggested by Satterthwaite

(1959) who described the construction of random balance designs, in which factor levels were

chosen randomly according to some distribution. After the statistical properties of these

random supersaturated designs were criticised, Booth and Cox (1962) proposed a systematic

way of constructing SSDs. Their approach was based upon the intuition that design columns

be as nearly orthogonal as possible. In particular, they suggested a criterion, called E(s2),

based on the average of the squared off-diagonal elements of DTD, requiring that each

column of D have the same number of +1 and −1 entries. Let X = [1|D], where 1 is a n×1

vector representing the intercept, and let sij be the ijth off-diagonal value of XTX. Then

we have that E(s2) = 2
k(k−1)

∑
2≤i<j≤k s

2
ij. Later, several authors (Marley and Woods 2010;

Jones and Majumdar 2014; Weese et al. 2015) relaxed the balance constraint, leading to the

so-called unconditional E(s2) criterion, UE(s2) = 2
k(k+1)

∑
1≤i<j≤k s

2
ij.

Though many other criteria have been proposed (e.g., Jones et al. 2008, 2009), none have

been found to be clearly superior, in general, to E(s2)-optimal designs (Marley and Woods

2010; Weese et al. 2015). However, Weese et al. (2017) developed the constrained V ar(s+)

criterion, which was shown via simulation to be superior to E(s2)-type designs when effect

directions are known, while similar in performance to UE(s2) when the effect directions were

misspecified. Recently, some theoretical results have corroborated the advantage of V ar(s+)-

type designs under a known sign vector (Stallrich et al. 2024). Constrained V ar(s+) designs
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minimize

V ar(s) = UE(s2)− UE(s)2 (2)

s.t.
UE∗(s2)

UE(s2)
> c and UE(s) > 0, (3)

where UE∗(s2) is the UE(s2) value for the UE(s2)-optimal design. Generally, c = 0.8 has

been found to work well.

In this paper, we compare Orthogonal Arrays with SSDs constructed using the con-

strained V ar(s+) criterion. The OAs are constructed using DoE.base, an R package due

to Grömping (2018), while the constrained V ar(s+) designs are constructed using the algo-

rithm described in Weese et al. (2017). In Figure 1, we show a comparison of an OA with a

constrained V ar(s+) design. While the OA evidently has no correlation between columns,

for the SSD there are many nonzero off-diagonals, and more often than not those nonzero

entries are greater than 0 as required in the V ar(s+) criterion.

(a) (b)

Figure 1: Correlation color plot for two 12-factor designs. (a) An OA with n = 16; (b) A
constrained V ar(s+) design with n = 10.
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2.2 Analysis of Screening Designs

Because n < k, a unique least squares solution for [β0|β] does not exist in the case of

SSDs. In the literature, various analysis methods have been studied, including forward

selection, Bayesian methods, model averaging, and regularization (e.g., Marley and Woods

2010; Draguljić et al. 2014; Weese et al. 2015). Phoa et al. (2009) proposed to use the Dantzig

selector and ensuing studies (e.g., Marley and Woods 2010; Weese et al. 2015) showed that

it performed well compared to other methods. In this work, we use a related approach,

the Lasso (Tibshirani 1996), which seems to perform similarly (Draguljić et al. 2014) and is

more mathematically tractable. To estimate the main effect model in (1), the Lasso chooses

[β0,β] which minimizes

1

2n
∥Y − β01−Dβ∥22 + λ∥[β0,β]∥1, (4)

for a given regularization parameter λ. This parameter controls how much the parameters

are shrunk toward 0. Equation (4) produces an OLS solution if λ = 0, while as λ → ∞,

[β0,β] → 0. We will discuss our λ selection strategy in the next section. In our work, we

actually solve a slightly different version of the Lasso, with centered Y , call it Yc, and centered

and scaled D, Dcs. This eliminates the need to model the intercept, and also ensures that

each design column has zero mean and equal length. The result of this centered and scaled

Lasso we denote β̂cs.

For the analysis of orthogonal arrays, ordinary least squares are available since n > k.

However, for consistency of comparisons, we used the Lasso to analyze the OAs as well.

3 Methodology

The primary objective of this paper is to quantify the difference between the screening

effectiveness of orthogonal arrays and supersaturated designs. To do this, we will investigate
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a suite of designs, ranging from designs with a relatively small number to a fairly large number

of factors, across a number of effect sparsity assumptions. Each comparison is between an OA

and SSD with the same number of factors, and so we investigate the difference in effectiveness

when the effect sizes are the same but also when the effect sizes for the SSD are larger than

those of the OA. Though this is somewhat unconventional, one could imagine a more or less

aggressive [-1,1] coding scheme in which numerical factors are transformed to result in larger

or smaller effect sizes. Our purpose is to learn about the relative size of effects that each

type of design can reliably detect. We use both traditional simulation and a new criterion

for screening design quality (Stallrich et al. 2024) based on the probability of perfect sign

recovery for the Lasso.

3.1 Simulation

From model (1), we have that D is either an OA or SSD with entries ±1, where each column

represents a factor and each row a treatment. Without loss of generality, we assume σ = 1,

making β the signal-to-noise ratio. Let A(β) denote the set of active columns in D, so

that A(β) = {βj|βj ̸= 0, j = 1, 2, . . . , k}, while I(β) represents the inactive columns, and is

I(β) = {βj|βj = 0, j = 1, 2, . . . , k}. A screening design paired with an analysis method that

provides an accurate estimate of A(β) and I(β), call them Â(β) and Î(β), is considered to

be an effective design. (Note that we suppress full notation below and refer to these sets as

A and I.) For the simulation study, we consider two metrics: true positive rate (TPR) and

false positive rate (FPR). TPR is defined as the proportion of truly active factors correctly

estimated as active, that is n(A ∩ Â)/n(A), where n(A) denotes the number of elements

in set A. A large TPR indicates that the design is consistently identifying the truly active

factors. On the other hand, FPR represents the proportion of truly inactive factors that

are mistakenly estimated as active, n(I ∩ Â)/n(I). An elevated FPR indicates a screening

approach that isn’t careful enough in its assignment of factors as active.

An important aspect of using the Lasso to estimate A and I is the choice of λ. For the
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analysis of a single experiment, a holistic analysis would include consideration of a profile

plot as in Figure 5. But in a simulation, we must clearly and automatically specify Â and Î in

each iteration, which means we need a strategy to determine λ. Cross validation is a general

approach, but it may not work well in a small, highly structured experiment. Instead, we use

the Akaike Information Criterion (AIC) to determine λ as follows: We consider a large grid

of λ values uniformly placed from 0.0111 to λ0, where λ0 = max
∣∣Dt

csYc

∣∣ (see Weese et al.

2021). For each λ, then, we obtain the Lasso estimate and set β̂j = 0 for all
∣∣β̂j

∣∣ < γ, where

γ is chosen as discussed below. Then, use OLS to refit the models using the columns of D

corresponding to the nonzero β̂j and calculate the AIC of each. The Â and Î corresponding

to the λ with minimum AIC is the screen of choice.

Note that γ is an additional tuning parameter. Weese et al. (2017) followed an idealistic

approach by setting γ equal to σ. Conversely, Phoa et al. (2009) adopted a data-driven

approach, by setting γ = rmax(
∣∣β̂j

∣∣) where r = 10%. Weese et al. (2021) suggested using

r values of either 10%, 25% or 50%. The value of r value involves a trade-off. If r is large,

more factors from A(β) will be classified as Î(β), while smaller r means that fewer factors

will be zeroed out and thus included in Î. In the present study, the focus is on the relative

values of TPR and FPR for the two types of designs, so the specific value chosen for γ is of

less importance. In this work, we opt for r = 0.5 based on informal testing.

In our simulations, we compared the designs across a range of scenarios, defined by the

combination of the following variables:

• Number of factors. Details are provided in Table 1, but we considered k as small as

7 and as large as 60. For each k, we compared an SSD where n < k to an OA where

n > k.

• Sparsity. Assuming ceil() rounds up to the nearest integer, we varied the number of

active factors a such that a = {ceil(0.2k), ceil(0.25k), ceil(0.3k)}.

• Relative effect size. We considered four effect size scenarios:
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– For the a active effects, both the OA and SSD had effect sizes of 0.5.

– For the a active effects, both the OA and SSD had effect sizes of 1.

– For the a active effects, the OA had an effect sizes of 1 while the SSD had effect

sizes of 1.5.

– For the a active effects, the OA had an effect sizes of 0.5 while the SSD had effect

sizes of 1.

Table 1: Designs for simulation

Small Medium Large
k n (SSD) n (OA) k n (SSD) n (OA) k n (SSD) n (OA)
7 6 12 12 10 16 40 37 44
8 6 12 23 18 24 45 43 48
9 7 12 24 20 28 50 46 52
10 8 16 34 27 36 60 50 64

As an example, consider the following simulation setting: 12 factors with SSD n = 10

and OA n = 16; a = ceil(0.2k) = 3; and SSD effect size of 1 and OA effect size of 0.5. In

this case we are comparing the effectiveness of the SSD when it has six fewer runs than the

OA but its effect sizes are twice as large.

In the detailed simulation protocol that follows, note that we simulate from model (1)

with β0 = 0. Each simulation scenario provides: an OA and an SSD, with design matrices

DOA and DSSD, respectively; a; and values fOA and fSSD for βj’s corresponding to active

factors. Given a particular simulation scenario, in each of niter iterations,

1. Randomly select a columns from DOA and DSSD and assign fOA and fSSD to all

βj ∈ A(β) and 0 to all βj ∈ I(β).

2. Assign each nonzero βj a +1 or −1, with equal probability.

3. Simulate YOA from model (1) and XOA; simulate YSSD from model (1) and XSSD.

4. Center YOA and center and scale the XOA; center YSSD and center and scale the XSSD.
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5. For both OA and SSD, using the grid of λ described above, fit the Lasso and obtain

β̂λ for each λ.

6. For both OA and SSD, for each β̂λ, check if
∣∣β̂j

∣∣ < γ, where γ = 0.5 ∗ (max(
∣∣β̂λ

∣∣)); if∣∣β̂j

∣∣ < γ set β̂j = 0.

7. For both OA and SSD, for each λ, use the columns of D associated with the non-zero

β̂ to fit an OLS model to Y . Calculate the AIC for each model and select the one with

minimum AIC value. The β’s associated with the non-zero β’s from the chosen model

are included in Â, while the rest are assigned to Î.

Based on Â and Î, along with A and I, we compute TPR and FPR as 1
niter

∑niter

i=1 n(A ∩

Â)i/n(A)i and
1

niter

∑niter

i=1 n(I ∩ Â)i/n(I)i respectively. In our work, we take niter = 1000.

3.2 Probability of perfect sign recovery method

An important downside of using simulation to compare designs is the need to specify the

γ threshold. Its choice is somewhat arbitrary if the error variance is not available, though

it affects TPR and FPR. To address this, Stallrich et al. (2024) introduced a method to

compute the probability of perfect sign recovery for a screening design under the Lasso and

the normal-theory statistical model given in (1), and Young et al. (2023) illustrate its use

by showing its capability to improve reproducibility in the comparison of screening designs.

Given the true signs z = sign(β) and the estimated signs, ẑ = sign(β̂cs), the criterion ranks

designs based on ϕλ(D|β) = P (ẑ = z). The criterion is based on the joint probability of two

independent events, both a function of normal random vectors. These events are derived

from the Lasso’s Karush-Kuhn-Tucker conditions; details can be found in Stallrich et al.

(2024).

Computing ϕλ requires knowledge of the entire model, including β along with the Lasso

parameter λ. Thus, on its own it can’t be used to evaluate designs. Stallrich et al. (2024)

proposed a series of relaxed criteria that are more practically useful. For instance, they
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present a criterion ϕΛ(D|β) which integrates ϕλ over log(λ), thus allowing the computation

of the criterion without knowledge of λ. Ultimately, they provide ΦΛ(D|a, β), which is the

log(λ)-integrated measure averaged over all supports of size a (that is, all sets of a factors

chosen from k) and assuming that, for all active factors, β =
|βj |
σ

≥ 1 so that it is at least as

large as the noise. Thus, as long as we can assume an effect size β and a number of active

effects of interest, along with sign vector z, ΦΛ can be used to evaluate a design without

knowledge of λ, A, or β. For example, this criterion can be used to evaluate a design under

the assumption that effect directions are known, in which case constrained V ar(s+) designs

have been seen to have advantage. On the other hand, if no sign information is available,

another criterion Φ±
Λ(D|a, β) can be computed which averages ΦΛ over all possible sign vec-

tors. Note that these criteria are computationally intensive to compute. One way to reduce

computational burden is to average not over all
(
k
a

)
possible supports but a subset of these

supports. For this and other computationally related discussion, see Section 4 of Stallrich

et al. (2024). Note also that the values of ΦΛ and Φ±
Λ don’t have a clear interpretation on

their own, since they are average probabilities, integrated over log(λ). However, they are

useful to compare designs because larger values of the measures mean the design is more

effective at recovering the true signs of the factors.

Because the probability method is more stringent (perfect sign recovery, instead of TPR

and FPR), the effect sizes necessary to give meaningful results are larger. So instead of the

four effect size scenarios from Section 3.1, we use the following:

• For the a active effects, both the OA and SSD had effect sizes of 2.

• For the a active effects, both the OA and SSD had effect sizes of 3.

• For the a active effects, the OA had an effect sizes of 4 while the SSD had effect sizes

of 6.

• For the a active effects, the OA had an effect sizes of 2 while the SSD had effect sizes

of 4.
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For this probability method, we evaluated the same set of designs (Table 1) across the same

set of sparsity levels.

4 Results

In this section, we present the results of our simulation and probability calculations, for

small, medium, and large-sized screening designs as given in Table 1.

Figure 2 presents the simulation and probability of perfect sign recovery results for small

k. Although the effect magnitudes in the probability of perfect sign method are larger than

those for the simulation, the ratio of the SSD to OA effect sizes are the same. Consider the

first column and the first row of Figure 2a as an example. When a = ceil(0.2k) = 2, the

6-run, 7-factor SSD has a true positive rate of approximately 50%, while the 12-run, 7-factor

OA is at about 70%. The SSD appears to have a slightly larger false positive rate, at about

25% vs. around 20% for the OA. This indicates that out of the 7 − 2 = 5 inactive factors,

about 25% for SSD (20% for OA) were indicated as active. Clearly, if resources were no

object, the OA would be preferred in this scenario. Now consider the last column in the first

row, where the SSD effect sizes are twice that of the OA. Here we see that the true positive

rates are similar between the designs, with the SSD improving slightly over the OA in terms

of false positive rate. Zooming out, we see that for these small designs, effect sizes for the

SSD must be about twice the size of the effect sizes for the OA before the SSD has similar

or better performance. For the probability of perfect sign recovery method (Figure 2b), the

conclusions are much the same. That is, when effect sizes are equal, or even at a ratio of

1.5, the OA’s are preferred. When the effect size ratio is 2, it is clear that the SSD performs

better. We again note that the specific values of the probability method are less meaningful

than the relative values of the criterion in comparing designs.
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(a) Simulation results, comparing designs based on true positive rate and
false positive rate.

(b) Probability of perfect sign recovery results, comparing designs based on
Φ±
Λ(D

∣∣ a, β).
Figure 2: For small screening designs. Both approaches assume unknown sign vector. The
effect sizes are displayed along the top: (SSD β vs. OA β). The designs, denoted in the
(SSD n, OA n, k) format, are shown along the right-hand side.
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For medium (Figure 3) and large (Figure 4) screening designs, the story is slightly dif-

ferent. That is, while it is clear that OAs are preferred for equal effect sizes, when the effect

size for the SSD is 1.5 that of the effect size for the OA, the designs perform fairly similarly,

and when the ratio is 2 it is clear that SSDs are preferred. This is consistent across both the

simulation and probability of perfect sign recovery results.
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(a) Simulation results, comparing designs based on true positive rate and
false positive rate.

(b) Probability of perfect sign recovery results, comparing designs based on
Φ±
Λ(D

∣∣ a, β).
Figure 3: For medium-sized screening designs. Both approaches assume unknown sign vector.
The effect sizes are displayed along the top: (SSD β vs. OA β). The designs, denoted in the
(SSD n, OA n, k) format, are shown along the right-hand side.
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(a) Simulation results, comparing designs based on true positive rate and
false positive rate.

(b) Probability of perfect sign recovery results, comparing designs based on
Φ±
Λ(D

∣∣ a, β).
Figure 4: For large screening designs. Both approaches assume unknown sign vector. The
effect sizes are displayed along the top: (SSD β vs. OA β). The designs, denoted in the
(SSD n, OA n, k) format, are shown along the right-hand side.
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5 Discussion and Conclusion

The purpose of this study was to compare the performance of supersaturated designs (SSDs)

against the better-known Orthogonal Arrays (OAs), in terms of their ability to screen im-

portant factors. We investigated this question using two methods of evaluation: traditional

statistical simulation and a new probability of perfect sign recovery method for the Lasso.

We performed the comparisons for small, medium, and large screening designs, several spar-

sity levels, and three effect size ratios. A key aspect of our scenarios is that in some cases we

compared OAs with smaller effect sizes to SSDs with larger effect sizes, in order to provide

an assessment of conditions under which True Positive Rates were similar. These differential

effect sizes might conceptually correspond to, for instance, situations in which numerical

factors are transformed from different intervals in their natural units to [−1, 1], inducing

different effect sizes.

As expected, we found that the OAs exhibited better screening performance than the

SSDs when the underlying model had the same sized effects. When the data obtained by

the SSD was associated with effect sizes 1.5 times those of the OA, the OAs were still

preferable for small designs, while the performance was comparable between the two designs

for medium and large screening designs. When the effect sizes were twice as large for the

SSDs, for small designs the simulation results suggested that the two types of designs were

similar in performance, while the probability method indicated a preference for the SSDs.

For medium and large designs, when the effect size ratio was 2, both approaches suggest

that the SSDs will perform better than the OAs.

Clearly, in a typical screening experiment, the effect sizes are not known in advance;

thus, our results don’t necessarily provide direct guidance to practitioners. However, our

work sheds light on the relative performance of two different types of screening designs. In

particular, our work gives insight as to how much more effective an orthogonal array will

be compared to a supersaturated design that has roughly 6-10 fewer experimental runs. In

general, you need effect sizes at least 1.5 times larger for the SSD to overcome the fact that
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it has fewer runs. The scope of our work does not include larger OAs or smaller SSDs, but

for the types of designs that we considered, we would suggest that OAs should be preferred

to SSDs for small screening designs, unless effect sizes are expected to be large and sparse.

For medium and large designs, the differences are less pronounced, though still evident.

For certain applications in which effect sizes, in units of σ, can be anticipated, our

simulation/probabilistic framework can provide more direct information about necessary

effect sizes for a successful experiment. In general we see that our simulation results suggest

relatively large True Positive Rates even for effect sizes of 1σ or 1.5σ. In contrast, even for

effect sizes as large as 4σ or 6σ, the probability of perfect sign recovery approach paints a

dimmer picture. There are at least two reasons for this discrepancy. First, the probabilistic

framework’s criterion is perfect sign recovery. Thus, in the presence of several active effects

an analysis could have a fairly large True Positive Rate, with a small False Positive Rate, but

still fail to screen perfectly. Secondly, the simulation approach uses a threshold parameter

γ while the probability approach does not. Using a threshold prevents the parameters with

small estimates being included as important effects.

Finally, we note that the use of a threshold γ is really only necessary to facilitate sim-

ulations. In a one-off analysis of experimental data, a preferred analysis approach would

privilege the subjective evaluation of a Lasso profile plot, as in Figure 5, focusing on the

terms that take longer to shrink to 0. Of course, an analysis using thresholding might also

be used in a secondary manner.
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Figure 5: An example Lasso solution path. λ decreases from ∞ to 0 along the solution path
from left to right.
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