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ABSTRACT
The design and analysis of experiments (DOE) has historically been an important part of an education in
statistics, and with the increasing complexity of modern production processes and the advent of large-scale
online experiments, it continues to be highly relevant. In this article, we provide an extensive review of the
literature on DOE pedagogy, and provide five perspectives on the subject: one from each of the authors
as well as a composite profile derived from a survey of DOE instructors. Our work provides a snapshot of
current DOE pedagogy that showcases both the similarities and variety in how the subject is taught, as
well as a look ahead at how its instruction may evolve. Supplementary materials for this article are available
online.
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1. Introduction

At the heart of statistical design of experiments (DOE) is the
systematic, efficient construction of a set of combinations of
controlled levels of input variables (factors) and an assignment
of these combinations to the experimental units, which together
enable a straightforward, predetermined analysis of how the
factors affect output variables (responses). DOE can be seen as
the experimental approach to establishing causal inferences, by
identifying and quantifying effects through controlled experi-
ments.1 Designed experiments have been widely used in the
physical sciences (e.g., Deming and Morgan 1993; Gunter and
Matey 1993; Hanrahan and Lu 2006; Kreutz and Timmer 2009;
Leardi 2009), agriculture (e.g., Fisher 1971, Mead, Curnow,
and Hasted 2017), engineering (Lazic 2006; Ilzarbe et al. 2008;
Antony 2014), industry (Davies 1954; Goh 2001; Tanco et al.
2009), and in social sciences such as psychology and educa-
tion (e.g., Lindquist 1953; Campbell and Stanley 2015). More
recently, there has been a renewed and broadened interest in the
field since it has found wide-spread application by technology
companies who can experimentally generate enormous quan-
tities of online data (Luca and Bazerman 2021; Thomke 2020;
Kohavi, Tang, and Xu 2020). Anderson-Cook and Lu (2023)
discuss several other modern applications of DOE and empha-
size its sustained importance in the era of big data. As such,
DOE is typically a core topic taught in both undergraduate and
graduate statistics programs (American Statistical Association
2014; Chance and Peck 2014; Blades, Schaalje, and Christensen
2015; Horton 2015; Woodard 2023). In this article, we examine
how DOE is currently taught in academia, as well as where

CONTACT Byran J. Smucker smuckebj@miamioh.edu Department of Statistics, Miami University, Oxford, OH.
1This is to be contrasted with observational causal inference methods that also seek to identify and quantify causal effects, but without a controlled experiment. While

such methods (because they lack an experiment) are not the focus of this paper, we address them briefly in Section 5.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/ujse.

its pedagogy may be moving in the future. More specifically,
we investigate who is teaching and being taught DOE, what
topics are being included in the courses, how software is being
used, and what teaching methods are being employed, as well
as the potential evolution of DOE instruction in the future. We
accomplish this by describing five profiles of DOE instruction:
the first taken from a survey of 50 DOE instructors, while the
last four are contributed individually by the authors. Together,
this provides readers with a sense of the core ideas common to
many DOE courses as well as the variety of methods, topics, and
paradigms that are used.

To limit the scope of our work, we focus largely on main-
stream experimental design instruction within statistics depart-
ments in the United States and Canada, though we do present
an international perspective as well, given the affiliations of the
authors of this article. For the same reason, and because of
our own training and background in industrial and engineering
design applications, we do not consider experimental design
courses emphasizing experiments within the social sciences or
clinical trials. The body of material that we focus on is that
which has evolved from R.A. Fisher’s early work in agricultural
experimentation (e.g., Fisher 1971), and the contributions of
George Box and associates (e.g., Box and Draper 1987; Box,
Hunter, and Hunter 2005). We refer later to Fisherian versus
Boxian DOE paradigms. For the former, we assume an emphasis
on replicated experiments with few factors, blocking structures,
and ANOVA. For the latter, the focus is on unreplicated, multi-
factor experiments, often either two-level screening designs or
designs in the service of response optimization, with regression
as the basic analysis procedure.

© 2023 The Author(s). Published with license by Taylor and Francis Group, LLC.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the
posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
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Table 1. Categorized list of literature on DOE pedagogy.

Category References

General DOE Pedagogy Hunter (1977); Easterling (2004); Goos and Leemans (2004)
DOE Projects and Case Studies Hunter (1977); Kenett and Steinberg (1987); Box (1992); Mackisack (1994); Anderson-Cook (1998); Nolan and Speed (1999);

Anderson-Cook and Dorai-Raj (2001); Howley (2003); Binnie (2004); Steiner et al. (2007); Lawson et al. (2011); Dunn (2013);
Kuiper (2016); Kuhnt and Coleman (2020, 2021); Pyott (2021); Woodard (2023)

DOE Simulators Bulmer (2003, 2012); Schrevens et al. (2004); Darius, Portier, and Schrevens (2007); Muske and Myers (2007); Steiner and MacKay
(2009); Bulmer and Haladyn (2011); De Ketelaere et al. (2014); Kuiper (2016); Reis and Kenett (2017); Gramacy (2020)

Teaching DOE to non-Statistics Students Pollock, Ross-Parker, and Mead (1979); Deming and Morgan (1983); Fillebrown (1994); Antony and Capon (1998); Zolman
(1999); Lin Ho, Lyn Nge, and Hong Chua (2004); Lye (2005); Hiebert (2007); Hane (2007); Stafford, Goodenough, and Davies
(2010)

Note that our work is descriptive. We do not attempt to
formally study or empirically compare any of the teaching meth-
ods or approaches described in this article. Rather, we provide
an account of the current “state of the DOE course” in North
America and beyond, based on both the survey as well as our
own courses. Future research could expand on this in many
ways, including using designed experiments to understand how
effective various approaches to DOE instruction are at increas-
ing student understanding.

The remainder of the article is organized as follows. In the
next section we provide an extensive review of the DOE ped-
agogy literature. To our knowledge, it has not been previously
catalogued and synthesized to this extent. Section 3 contains
the composite profile derived from our survey. Section 4 follows
with the four individual DOE teaching profiles. Together, Sec-
tions 3 and 4 illustrate the commonalities but also the variation
in DOE pedagogy with respect to topics and teaching methods.
The article concludes with a summary of our findings and a
discussion of the future of the DOE classroom.

2. Literature Review

To set the stage for our work, we review the literature on exper-
imental design education. Table 1 provides a summary of the
work we reviewed, while the Supplementary Material (SMA)
gives a more extensive narrative regarding this literature.

As shown in Table 1, quite a bit has been written regard-
ing specific projects and case studies that could be used in a
DOE class, and the consensus is that student-performed real
experiments are beneficial. Overall, the part of the DOE edu-
cation literature focusing on projects aligns with the Guidelines
for Assessment and Instruction in Statistics Education College
Report (GAISE, Carver et al. 2016), which encourage educators
to foster active learning, and to use and contextualize real data.
Somewhat different from projects are case studies, which are
examples and applications that include both a story and data.
They are widely used to teach statistics in general and DOE in
particular, though they may not be recognizable as “case studies”
to those who use them more formally (Garvin 2003; Andrews
2021). Nolan and Speed (1999) are an exception, though their
context is undergraduate mathematical statistics courses. A
related category is the use of simulators to teach DOE, and again
in Table 1 we see that a number of authors have reported on
their use. (We note that the term “simulator” is commonly used
in this context to denote an active learning tool that includes
an underlying simulation engine as well as a story/theme.) An
additional important class of papers in the literature is DOE
instruction to non-statistics students. The relevance of this is

witnessed by our survey results and by the fact that two of the
authors of this article regularly teach DOE to students who are
not majoring in statistics.

The literature thus contains many useful ideas about project-
or class-based assignments that can be used effectively in the
teaching of DOE, but, apart from Hunter (1977), Table 1 sug-
gests that literature describing the teaching of experimental
design more broadly is scarce. With this article, we provide
a picture of the current status of DOE pedagogy, and answer
questions such as “What are people teaching in their DOE
classes?” and “How are they going about it?”

3. Teaching Experimental Design and Analysis: A
Composite Profile

To gain an overview of DOE pedagogy as it is currently prac-
ticed, we conducted an anonymous survey2 of DOE instructors
at American and Canadian universities, which serves as a com-
posite perspective on the teaching of DOE. The survey was sent
to the chairs of the 219 departments identified by the American
Statistical Association and the Statistical Society of Canada as
ones that offer statistics programs. A list of these departments
is included in the Supplementary Material (see SMB). Each
chair was asked to share the survey with the instructor(s) that
teach the DOE course(s) in their department. From this target
population, 50 instructors responded to the survey, providing
information about the DOE courses they teach and the manner
in which they teach them. The full set of survey questions,
and a summary of the responses to them, can also be found
in the Supplementary Material (see SMC), though because of
privacy concerns the full data are not available. It should be
acknowledged that our sample is not random and there may
exist a self-selection bias whereby those who chose to respond
to the survey are those who care strongly about DOE pedagogy.
We therefore emphasize that our findings do not necessarily
generalize to the broader population of DOE instructors and
courses, but merely represent a glimpse into DOE classrooms in
Canada and the United States. What follows is a brief overview
of the results of this survey.

3.1. Course and Instructor Demographics

We find that many of the DOE classes are reasonably small (75%
have 50 or fewer students and only 10% have more than 100 stu-
dents) and most of these courses (68%) are offered at most once

2This study was reviewed and received ethics clearance through the Univer-
sity of Waterloo Research Ethics Board (ORE#42536). Due to this protocol,
we are unable to share the data.
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per year. Although the audience is primarily statistics students,
these courses also include students from business, engineering,
computer science, data science, the life sciences, and social sci-
ences, with most students taking the course because it is a degree
requirement. We find that 42% of the classes are exclusively
undergraduate, 24% are exclusively graduate, and 34% have a
mixture of graduate and undergraduate students.

In terms of instructor demographics, almost all respondents
(94%) have Ph.D.s, and among those who disclosed the field of
their Ph.D., almost all (95%) received their Ph.D. in statistics or
a closely related discipline. All respondents with Ph.D.s reported
being engaged in research, and 51% of these research-active
faculty publish about DOE in academic journals. We found no
evidence from our survey that the topics or other elements of the
courses differed according to instructor research status, though
we include the standard caveat acknowledging that this was
not a random sample. We also found that 68% of respondents
engage in consulting and/or collaborative DOE work outside
of the classroom, and 16% teach DOE in industry as well as in
academia. This speaks to the applied nature of the topic.

3.2. Topics

We find that 84% of respondents use learning outcomes to guide
their teaching. The survey presented four particular learning

Table 2. Learning outcome ranking frequencies (n = 45)a.

Importance

1st 2nd 3rd 4th

Understand basic design and analysis principles 39 3 2 1
Be able to use software to design and analyze

experiments
1 29 13 2

Be able to perform experiments by actually
collecting data

4 6 17 18

Understand the theoretical underpinnings of
DOE

1 7 13 24

aNote that 45 of the 50 survey participants responded to this question.

outcomes, and each respondent was asked to rank them from
most important (first) to least important (fourth). The learning
outcomes and their respective ranking frequencies are shown in
Table 2. Interestingly, each outcome received each rank, indi-
cating heterogeneity in the instructors’ perceptions of impor-
tance. However, we do find some consensus in the rankings; the
learning outcome most often ranked first is Understand basic
design and analysis principles; the learning outcome most often
ranked second is Be able to use software to design and analyze
experiments; the learning outcome most often ranked third is
Be able to perform experiments by actually collecting data; and
the learning outcome most often ranked fourth is Understand
the theoretical underpinnings of DOE. The course for which
Understand the theoretical underpinnings of DOE is the most
important learning outcome is a Ph.D.-level course.

In terms of content, most courses (82%) focus solely on
DOE, though some (18%) teach DOE in combination with other
topics such as linear models, sampling design, statistical pro-
cess control, and introductory applied statistics. The motivating
paradigm for most of these instructors (56%) is a combination
of Box and Fisher, though 5% adhere exclusively to the Boxian
paradigm and 36% exclusively to the Fisherian.3 The specific
DOE topics covered in these courses are summarized in Fig-
ure 1, and a tabulation of the number of classes that include
each topic is provided in the Supplementary Material (see SMC).
Some results are not surprising; for instance, we see that nearly
all classes cover factorial experiments and blocking designs, but
very few cover definitive screening designs or robust parameter
designs. Topics such as fractional factorial designs and response
surface methodology are more common in Boxian classrooms
(classes 1–5 in Figure 1) than Fisherian ones (classes 6–23).
However, some results are surprising; for instance, useful topics

3See our definition of Boxian vs. Fisherian paradigms given in the Introduc-
tion. We must acknowledge, however, that the survey respondents self-
identified as Boxian, Fisherian, or a combination of both, without being
given clear definitions of these paradigms, and so they may not have been
consistently interpreted.

Figure 1. Topics by course. Visualization of which topics covered (dark gray) versus not covered (light gray) in each course. Respondents indicated that courses 1–5 are
Boxian, 6–23 are Fisherian, and 24–50 are Boxian/Fisherian. Rows are sorted from most to least prevalent.
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such as mixture experiments and optimal design appear much
less frequently than we would have anticipated. “Other” top-
ics include generalized linear mixed models and model selec-
tion, power analysis and sample size calculation, permutation
tests, unbalanced designs and multiple imputation, REML, and
Bayesian methods. Adjacent areas prevalent in the social and
medical sciences, such as observational causal inference and
clinical trials did not appear here. We emphasize again that our
survey may be biased; though we aimed to distribute the survey
broadly, it is possible that the respondents were disproportion-
ately similar to the authors, as our focus is on industrial- and
engineering-related experiments.

The median time-split between design and analysis is 40% of
the course devoted to design, and 60% to analysis. The analysis
method of choice is ANOVA, with 68% of courses featuring this
more prominently than regression, 30% featuring it and regres-
sion equally, and only a single respondent featuring regression
more prominently than ANOVA.

We find that 90% of courses incorporate a textbook (52%
require, 38% recommend), while 10% do not. Among those
that do, 29% incorporate multiple books. The five books most
often used (in descending order of popularity) are (a) Design
and Analysis of Experiments by Montgomery (2019); (b) A First
Course in Design and Analysis of Experiments by Oehlert (2010);
(c) Design and Analysis of Experiments by Dean, Voss, and
Draguljić (2017); (d) Design of Experiments: Statistical Principles
of Research Design and Analysis by Kuehl (2000); (e) Experi-
ments: Planning, Analysis, and Optimization by Wu and Hamada
(2011). The complete list of books used by respondents is pro-
vided in the Supplementary Material (see SMC).

3.3. Role of Software

Unsurprisingly, we find that 100% of respondents use soft-
ware to some degree in their courses. Moreover, all respon-
dents indicated that software is used by both the students for
homework assignments and projects, as well as by themselves
for instruction, with the median amount of instruction time
devoted to software being 30%. The particular programs used
(in descending order of frequency) are R (in 70% of classes),
SAS (in 50% of classes), JMP (in 18% of classes), Minitab (three
classes), and Matlab (a single class). Note that roughly a third of
the respondents report using a combination of these software
options in their courses, and that none of the respondents

reported using any other software (such as, for instance, Design-
Expert or Python). In the Supplementary Material (see SMC),
we include a list of the R packages and SAS procedures the
respondents reported commonly using. We remark that 44%
of respondents also report using self-programmed functionality
beyond available “off the shelf ” software.

3.4. Teaching Methods

We find that respondents use a variety of teaching methods
in DOE classes ranging from more traditional ones such as
lectures and case studies to more modern ones such as flipped,
blended or hybrid classrooms. However, traditional methods
appear to be employed more often than modern ones. Figure 2
visualizes the distribution of teaching methods throughout the
respondents’ classrooms. Note that “Other” teaching methods
included field trips to real-life ongoing experiments.

One relatively common component of the courses is the use
of a simulator; 28% of respondents report featuring a simulator
for instruction and/or assessment. The three simulators most
often used (in descending order of popularity) are (a) home-
made simulators; (b) The Garden Sprinkler (De Ketelaere et al.
2014); and (c) The Islands (Bulmer and Haladyn 2011).

Other assessment methods include exams, in-class and take-
home assignments, labs, projects, and case studies. The dis-
tribution of assessment methods throughout the respondents’
classrooms is visualized in Figure 3. Although we saw a mixture
of traditional and modern methods of instruction, we see that
the methods of assessment used are predominantly traditional:
take-home assignments, a project, and one or more exams.
Note that “Other” assessment methods included quizzes and
reviewing published papers.

3.5. Future Evolution: Recent and Planned Changes to
Courses

The survey posed an additional six open-ended questions prob-
ing the participants about the changes they have made to their
courses in the last two years and the ones they plan to make
in the following two years. These questions addressed three
aspects of teaching methods separately: the use of software,
topics, and course content. These questions were labeled as
optional, and 20 of the 50 respondents did not reply to any of
them. We observe wide variation in these free-form responses,

Figure 2. Teaching methods by course. Visualization of which teaching methods are used (dark gray) versus not used (light gray) in each course. Respondent 21’s
nonresponse is indicated by white squares. Respondents indicated that courses 1–5 are Boxian, 6–23 are Fisherian, and 24–50 are Boxian/Fisherian. Rows are sorted from
most to least prevalent.
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Figure 3. Assessment method by course. Visualization of which assessment methods are used (dark gray) versus not used (light gray) in each course. Respondents indicated
that courses 1–5 are Boxian, 6–23 are Fisherian, and 24–50 are Boxian/Fisherian. Rows are sorted from most to least prevalent.

Table 3. Basic comparison of the four courses described by the authors.

Category Smucker Stevens Asscher Goos

Theme “Designed so that Statistics
Students Will Not be a Part
of the Replication Crisis”

“Designed using Online
Experimentation as a
Source for Examples,
Assignment Problems, and
Project”

“Designed so that
Engineering Students can
use DOE in Industry and
Research”

“Designed so Students are
Equipped to Design
Experiments in Both
Standard and Unusual
Settings”

Institution and Department Miami University,
Department of Statistics

University of Waterloo,
Department of Statistics
and Actuarial Science

Kinneret College on the Sea
of Galilee, Quality and
Reliability Engineering;
also Technion - Israel
Institute of Technology

KU Leuven, Faculty of
Bioscience Engineering &
Leuven Statistics Research
Center

Audience Advanced statistics
undergraduates; first-year
statistics master’s students

Advanced undergraduates,
masters and PhD;
statistics, data/ computer/
actuarial science,
engineering

Quality and reliability
engineering
undergraduates;
undergraduate and
graduate engineering
students

Bioscience engineering
undergraduates; M.Sc.
students in statistics and
data science

Assumed Prerequisites Calculus, Probability; Linear
Regression with matrix
algebra

Calculus, Linear Algebra,
Statistics and Probability,
Linear Regression

Introductory Probability and
Statistics, Linear
Regression and ANOVA

Linear Regression with
matrix algebra

Course frequency 1–2 sections per year 2 sections per year 1 section per year 1 section per year
Typical class size 30 150 20 120
Software SAS; JMP R JMP JMP
Textbook Montgomery; Oehlert; Dean,

Voss, and Draguljić (all
optional)

Montgomery; Wu and
Hamada (both optional)

Montgomery (optional) Goos & Jones (compulsory)

but one overall conclusion is that there is a tendency to tweak
rather than overhaul DOE courses. We note, however, that while
the DOE courses themselves may be evolving slowly and in
many different directions, the way that they are deployed by the
institutions, and the decisions regarding which students take the
DOE courses, are not captured by these responses.

After informally summarizing/categorizing the free-form
responses, we note the following. Regarding teaching meth-
ods, though active learning and project-based pedagogical
approaches have become more common, there doesn’t appear to
be a wholesale move toward such methods among the respon-
dents in our survey. Five respondents reported a move to
online teaching, three specifically noting the pandemic as the
reason, and an additional two noted other changes made due
to the pandemic. It is likely that additional participants made
similar pandemic-related changes but did not report them, as
the survey introductions specifically asked instructors to con-
sider pre-pandemic versions of their courses. Regarding the
use of software, we see in our survey that the DOE courses at
universities are retaining and strengthening their focus on R
and SAS. We also observe that newer DOE topics from aca-
demic DOE research (e.g., definitive screening designs, Jones
and Nachtsheim 2011) are not yet finding their way into these

courses. Also, while industry interest in online experimentation
is expanding, we see minimal movement to include the issues
specific to this context in DOE courses.

4. Teaching Experimental Design and Analysis:
Individual Profiles

We now turn to more personal reflections regarding DOE peda-
gogy, in the form of course profiles from each of the authors. We
subdivide each essay into descriptions of demographics, topics,
teaching methods, the use of software, and future changes. In
order to emphasize the unique points of view of each author,
we break with convention and use the first person in these four
individual pieces. Note that it is not our intention to present any
of the personal profiles as exemplary or better than the rest. As
such, we do not make specific recommendations about topics
or teaching and assessment methods. Rather, we include the
profiles to highlight certain commonalities but also to illustrate
the rich variety in perspectives and approaches. We hope these
profiles serve to seed ideas and inspire DOE educators.

We first provide a comparison of the logistical information
from each of the classes (Table 3), and then each author gives
additional narrative detail about their course.
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4.1. The Traditional DOE Course, Designed so That
Statistics Students Will Not Be a Part of the
Replication Crisis (Smucker)

I (Smucker) inherited a course that was quite traditional, with
a focus on designs with categorical factors, analyzed using
ANOVA. Though my course is still rather conventional, it has
developed in at least three important respects: (a) I’ve added
discussion of designs for regression analyses; (b) I require the
students to perform and analyze real experiments; and (c) I
emphasize that without careful control and prespecification, p-
values will be unreliable. I cover elements of both the Fisherian
and Boxian paradigms in my course. Overall, my course devel-
opment has been strongly influenced by its status as a required
course for our statistics majors and M.S. students, my belief in
the benefit of students performing experiments on their own,
and my observation of contemporary discussions regarding best
practices in exploratory and confirmatory experiments.

4.1.1. Topics
Classically, experimental design classes have emphasized cat-
egorical designs such as one-way and two-way full facto-
rial designs and blocking designs such as randomized com-
plete block and balanced incomplete block designs. My course
includes these designs, along with categorical designs that
include random effects, whether full factorial designs, split-
plot designs, or designs with nested structures. Even though
it may not be prioritized in some design classes, the random
effects modeling has been retained because it is important for
the student audience to be introduced to these models. For the
categorical designs, I use traditional ANOVA as the paradigm
of analysis. However, due to my interest in industrial and engi-
neering statistics, I also emphasize experiments with continuous
factors, including two-level factorial, fractional factorial, and
response surface designs. I want my students to understand
that ANOVA and regression are the same model, a point that
I failed to appreciate as I was learning these methods. Since my
students are typically statistics majors, the course not only intro-
duces how to design and analyze experiments, but also includes
modeling techniques that are more generally applicable. The
most important example of this is the introduction of random
and mixed effects models, estimated using restricted maximum
likelihood. The basic topics I cover follow Montgomery’s text.
The other recommended textbooks offer additional perspective
and examples regarding this material.

Stimulated by the controversy regarding the reproducibility
of experimental results in the social and biomedical sciences
(e.g., Ioannidis 2005; Open Science Collaboration 2015) and the
role that p-values have played in the problem (Wasserstein and
Lazar 2016; Wasserstein, Schirm, and Lazar 2019), I have begun
to strongly emphasize the difference between confirmatory and
exploratory experiments (Jaeger and Halliday 1998; Wagenmak-
ers et al. 2012). Roughly speaking, confirmatory experiments
have been analyzed according to a prespecified plan using a pre-
specified model, while exploratory analyses are unencumbered
by such preplanning. Confirmatory analyses severely restrict
the analyst in what they can learn from the experiment, but
reduce the chance that they will make spurious conclusions
based on unreliable p-values obtained from some version of the

forking paths fallacy (Gelman and Loken 2013). An exploratory
experiment allows much more freedom to explore the data and
generate hypotheses for future experiments, but formal infer-
ence cannot reasonably be performed in such cases. I believe
it is critical for students to consider these issues so they will
not perpetuate bad statistical practice to which even statisticians
may fall prey.

4.1.2. Role of Software
In our statistics program, students learn both R and SAS. In
my experimental design class, we focus on SAS/PROC MIXED
to handle both basic ANOVA and more complicated random
effects models. This is mostly an artifact of the course I inher-
ited, but reflects a desire for students to see a variety of software
tools during their training. We use JMP for experiments such
as fractional factorial designs and response surface designs,
because it has been created to easily design, randomize, and
analyze these sorts of experiments.

4.1.3. Teaching Methods
The class is delivered in a fairly traditional manner, with two lec-
ture sessions and one lab session each week. During the lectures,
students take guided notes using a provided skeleton outline.
Active learning is promoted via periodic in-class assignments
during the lecture periods which require the students to think
through material recently introduced, as well as the weekly labs
in which the students perform activities, most often using SAS
or JMP, under the guidance of the instructor. The class also
typically includes a midterm and final exam as well as two
projects.

Along with my desire that my students not contribute to
the ongoing replication crisis, I also want them to have expe-
rience conducting real experiments. That this is a good idea
is well-established in the literature (see the literature review in
Section 2). I have found that important aspects of perform-
ing experiments are not easily appreciated in a classroom set-
ting. For example, randomization can be expounded and even
demonstrated in lecture examples, but this is quite different
from recognizing experimental units in a real experiment and
randomly applying the treatments to those units as specified by
your design. Another example is the determination of factor
levels in two-level experiments. In class, these levels simply
appear and we discuss how to code them into a [−1,+1] interval,
but in a real experiment these levels require careful thought
and perhaps some initial experimentation. Also, teaching the
steepest ascent method, a commonly used early step in response
surface methodology, invariably results in student confusion,
though students may not even realize that they don’t understand
the difference between the predicted and true response along the
path of steepest ascent until they have to implement this during
a real experiment.

This belief in the necessity of real experimentation is influ-
enced by my curious experience of completing (a) an under-
graduate degree in industrial engineering, (b) a master’s degree
in statistics and operations research, (c) a Ph.D. in statistics
and operations research, and (d) a dissertation on experimental
design, all without ever having conducted a real experiment that
I had designed. In order that this not be true of my own students,
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they perform at least two real experiments in the class. Most
recently, I have asked students to design and execute a multi-
factor exploratory experiment and follow it up at the end of
the semester with a simple, one-factor confirmatory experiment.
This combines two of the most important things I wish for the
students to take from the class: the experience of doing real
experiments and an understanding of reproducibility.

4.1.4. Future Evolution
There is a growing understanding that experimental design
remains important in the data science era (e.g., Settles 2009;
Jones-Farmer 2019; Stevens 2020). I would like to incorpo-
rate data science applications within the course, and possi-
bly a module that addresses some of the particular challenges
associated with online experiments. Second, pedagogically I
would like to redesign and streamline the course into a modular
structure that would include fundamental modules (one-factor
and multi-factor completely randomized designs; block designs;
two-level factorial designs; designs with random effects), but
with some additional modules (examples: fractional factorial
designs; response surface designs; designs for data science; opti-
mal design; screening designs) that are optional and could be
swapped in and out depending on the semester. Third, it is worth
considering whether R would be a more useful software to use,
given its ubiquity in industry and data science.

4.2. The Data Science DOE Course, Designed Using Online
Experimentation as a Source for Examples,
Assignment Problems, and Final Project (Stevens)

Prior to my current appointment, I (Stevens) taught in the
M.S. in Data Science (MSDS) program at the University of
San Francisco. While in that environment I became aware of
the prevalence of designed experiments in the realm of data
science, and the utility of DOE in a data scientist’s tool belt.
For that program, I developed a DOE course aimed at preparing
data scientists for online controlled experiments (OCEs). Such
a course necessarily contains a host of topics beyond the scope
of a traditional DOE course, but I was nonetheless inspired to
incorporate some of those ideas in the more traditional course
that I now teach at the University of Waterloo and that I discuss
below. My course development has been strongly motivated by
the need to teach a core, rather traditional, set of experimental
design topics to a wide spectrum of students (see Table 3), mixed
with my desire to pique their interest and expose them to the
interesting and modern application area of OCEs.

4.2.1. Topics
All of the experimental designs and analyses in the course
are scaffolded by the QPDAC (Question, Plan, Data, Analyze,
Conclusion) framework for statistical investigations (MacKay
and Oldford 2000; Steiner and MacKay 2005). I review hypoth-
esis testing and two-group comparisons, multi-group compar-
isons and the multiple comparison problem. We cover random-
ized complete block designs, Latin square designs, full facto-
rial designs, 2k factorial and 2k−p fractional factorial designs,
central composite designs, and response surface methodology.

Throughout all of this content I augment treatment of continu-
ous responses with discussion of binary responses, and I teach
these topics primarily from a regression standpoint, empha-
sizing linear and logistic regression equally. We also discuss
computational approaches to inference, such as the randomiza-
tion test. Montgomery (2019) serves as a broad, approachable
text for the course material, particularly for the undergraduates.
However, for the sake of the graduate students in the course, I
supplement this with Wu and Hamada (2011) for an alternative
perspective and added statistical rigor.

The applications considered in this course, whether in the
form of lecture examples, assignment questions, or final project
problems, are drawn from the world of online controlled exper-
iments (Kohavi, Tang, and Xu 2020). Although DOE has tra-
ditionally been applied in the realms of agriculture, manu-
facturing, pharmaceutical development, and the physical and
social sciences, in recent years, designed experiments have
become commonplace within internet and technology compa-
nies for product development/improvement, customer acquisi-
tion/retention, and just about anything that impacts a business’s
bottom line. In fact, it has been reported that companies such as
Google, Amazon, Facebook, and Microsoft each run in excess of
10,000 experiments per year (Kohavi and Thomke 2017). And
these experiments can be quite lucrative. For instance, Google’s
infamous 41 shades of blue experiment reportedly increased
annual revenue by $200 M;4 Bing generated an additional $100
M in annual revenue by changing the way the search engine
displayed ad headlines (Kohavi and Thomke 2017); and Barack
Obama raised $60 M in donations during his 2008 U.S. pres-
idential campaign by optimizing the campaign website with a
factorial experiment (Siroker 2010; Siroker and Koomen 2013).
Anecdotally, I have found that weaving this tangible, relat-
able, and exciting application area through the more traditional
content increases student interest, stimulates their motivation,
increases engagement, and improves retention and understand-
ing. It also serves as a modern source of open research problems
that may be of interest to the graduate students in the course.

4.2.2. Role of Software
I exclusively use R in my course, and I heavily emphasize its
use for the automation of analyses. The students engage with
R passively during lecture and tutorial examples in-class, and
actively when working on assignments and the final project
outside of class.

4.2.3. Teaching Methods
The course is delivered by lectures (160 min per week) and
tutorials (50 min per week), and the students are assessed using
assignments, quizzes, a project, and a final exam. The lectures
and tutorials are the same for both undergraduate and graduate
students, but their assessments differ, typically with graduate
students receiving additional or alternative problems with an
increased level of difficulty. These assessments tend to be atypi-
cal relative to a traditional course. To emphasize the real-world
relevance of the material, I manufacture new assessments each
term using inspiration from recent tech blogs (e.g., posts about

4https://www.theguardian.com/technology/2014/feb/05/why-google-
engineers-designers

https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
https://www.theguardian.com/technology/2014/feb/05/why-google-engineers-designers
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A/B testing from Netflix,5 Airbnb,6 Spotify7, or Lyft8) and cur-
rent data science job ads for roles that explicitly require expertise
in the design and analysis of experiments. I then embed hyper-
links to the blog posts and job ads in the assessment for students
to browse. These contexts provide the motivation for definition
questions, analysis questions, interview-style communication
questions, and even derivation questions. This tactic has been
met with very positive feedback, with some students going so
far as to call the assessments fun. Several examples are included
in the Supplementary Material (see SMD).

The culmination of course material and this pedagogical
approach is the final project in which the students embark on a
Netflix-inspired experimental investigation with a hypothetical
problem and a web-based response surface simulator. The prob-
lem is motivated by a job ad9 from 2016 for a Senior Data Sci-
entist in Streaming Experimentation and Modeling who would
“design, run, and analyze A/B and multivariate tests,” “analyze
experimental data with statistical rigor,” and “adapt existing
methods such as Response Surface Methodology (RSM) to
online A/B testing.” In particular, the students seek to determine
which factors and which factor levels minimize, on average, the
length of time it takes a user to decide what to watch. Unlike
my assignment problems, in which the students analyze experi-
mental data I provide, a key feature of the project is the need for
the students to design their own experiments and collect their
own data. They do so using a simulator I have constructed10

that is akin to the garden sprinkler simulator (De Ketelaere
et al. 2014), Watfactory (Steiner and MacKay 2009) or Gramacy’s
Experiment Game (Gramacy 2020). The simulator requires stu-
dents to consider the practical problem of balancing accuracy,
precision, and efficiency (by way of budget) when exploring an
unknown response surface. The students document the design,
analysis, and decisions associated with their experiments in a
final report. They are evaluated on their communication, the
sensibility of the choices they make, the efficiency of their
investigation, and the accuracy of their predicted optimum.
Students tell me the realistic and comprehensive nature of the
project provides a rich talking point in interviews for full-
time employment after graduation. The project description for
a recent offering of the course is available on the simulator
homepage.

4.2.4. Future Evolution
As noted above, I currently teach this course using R. While R
is the software of choice for statisticians, and although it has
some representation in the world of data science, Python is
widely used by the data scientists typically running OCEs (Luna
2022, Anaconda 2021). Because this course is offered to fulfill
a statistics requirement for many of the students that take it,
I’m unlikely to replace R with Python entirely, but I do hope

5https://netflixtechblog.com/decision-making-at-netflix-33065fa06481
6https://medium.com/airbnb-engineering/experiments-at-airbnb-

e2db3abf39e7
7https://engineering.atspotify.com/2020/10/29/spotifys-new-

experimentation-platform-part-1/
8https://eng.lyft.com/a-b-tests-for-lyft-hardware-570330b488d4
9https://www.linkedin.com/jobs/view/senior-data-scientist-streaming-

experimentation-and-modeling-at-netflix-139384997/
10https://nathaniel-t-stevens.shinyapps.io/Netflix_Simulator_v2/

to develop a repository that contains all of the course’s worked
computational examples in Python.

4.3. The Case-Based Active Learning DOE Course,
Designed so That Engineering Students Can Use DOE
in Industry and Research (Asscher)

My (Asscher’s) course focuses on the principles and application
of DOE. I use a wide variety of case-based active learning teach-
ing methods, and rely heavily on the DOE tools available in JMP.
All of my choices are motivated by the need to bridge the gap
between theory and practice, and are strongly influenced by my
experience working as a consultant in industry and academia
and teaching DOE courses in industry.

4.3.1. Topics
My DOE course covers a fairly standard menu of experimental
designs popular in industry: two-level full and fractional facto-
rial designs with and without center points, blocking, response
surface designs, random and fixed effects, nesting, split plot
designs, robust parameter design and Gage Repeatability and
Reproducibility (GRR) studies.

The topics of Definitive Screening Designs (Jones and Nacht-
sheim 2011) and Optimal Design (Goos and Jones 2011) are
covered briefly. The focus is first on the choice of design based on
the problem at hand, followed by the choices made in construct-
ing a particular design, for example which factors to include,
their levels and the number of replicates. Theory is kept to a
minimum. Analysis is also taught, with an emphasis on how
properties of the analysis are determined by the design: how do
the standard errors of the effects depend on the number of runs
and the variation in the response; or, how does the full initial
model that can be fitted depend on the choice of design. In the
analysis, attention is also devoted to communicating results in
addition to reaching conclusions.

The scope of the issues considered in my course regarding the
application of statistical DOE in real situations is ambitious. For
example, when we run a sequence of experiments on an exper-
imental system that is simpler than the true, full scale process
(e.g., a pilot plant or a reduced scale process with small batches),
we must both check the stability of the experimental system over
time and compare it to the true process. Additional application
topics include: the collection and precursory analysis of existing
data; documentation; addition of reference runs (e.g., runs at
conditions either known from an existing process, or included
in previous experimentation, or currently conjectured to be
optimal); sequential designs; choice of measurement; dealing
with variation in raw materials; choice of strategy (e.g., explore
good but expensive conditions to show process feasibility vs.
minimizing cost and maximizing production); identification
of covariates; identification and examination of assumptions;
extension of standard GRR experiments to more realistic mea-
surement systems. These types of application topics have been
discussed in Box, Hunter and Hunter (2005) and Goos and Jones
(2011), the latter of which integrates application and theory
using a case study format. An aspect of DOE that gets special
attention in my course is its lexicon, since I have identified this as
a major source of confusion for students. For example, a simple

https://netflixtechblog.com/decision-making-at-netflix-33065fa06481
https://medium.com/airbnb-engineering/experiments-at-airbnb-e2db3abf39e7
https://medium.com/airbnb-engineering/experiments-at-airbnb-e2db3abf39e7
https://engineering.atspotify.com/2020/10/29/spotifys-new-experimentation-platform-part-1/
https://engineering.atspotify.com/2020/10/29/spotifys-new-experimentation-platform-part-1/
https://eng.lyft.com/a-b-tests-for-lyft-hardware-570330b488d4
https://www.linkedin.com/jobs/view/senior-data-scientist-streaming-experimentation-and-modeling-at-netflix-139384997/
https://www.linkedin.com/jobs/view/senior-data-scientist-streaming-experimentation-and-modeling-at-netflix-139384997/
https://nathaniel-t-stevens.shinyapps.io/Netflix_Simulator_v2/
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exercise early in the course where students describe designs
to each other using terms such as runs, replicates, treatments,
effects, and confounding helps them to follow lectures. The
menu of designs in my course and the list of application issues
are relevant to a wide variety of industries, including pharma-
ceutical, semiconductor, testing, plastic, medical devices, agri-
culture, food and defence. A focus on a particular industry
would dictate additional topics, for example DOE for irriga-
tion systems requires topographical covariates; DOE for paint
requires mixture designs. I recommend Montgomery’s text but
do not follow it closely or rely on it, as English is a second or
third language for my students.

4.3.2. Role of Software
I rely on JMP in my DOE course, using it in three different ways
as illustrated by the following example regarding teaching split
plot designs. The first approach is to teach the topic of split plot
designs without any use of software, then show how to build
them using JMP. This separation approach is software neutral.
The second approach is to open JMP’s split plot design tool, and
then teach the meaning of the inputs in the order required by
the software, for example, which factors are “hard to change”
and which are “easy to change”? Should we add interactions
to the default model? Here JMP provides the motivation for
learning each element of the topic. The third is more innova-
tive: the students use the JMP tools for designing, evaluating
and comparing experiments to explore alternative strategies for
choosing a split plot design. Here the topic and the JMP tools
are learned simultaneously. As an example, all three approaches
were described for the topic of split plot designs; in practice I
use only one for each topic.

Beyond my use of JMP in the classroom for demonstration
and simulation, I teach JMP by providing the students with short
video clips. The teaching material on the JMP site11 is also used.
Note that the transcripts available for this material are useful for
students for whom English is a second language.

4.3.3. Teaching Methods
The key features of my teaching are variety and active learning.
Variety is essential: it adds interest and enables different aspects
of the course to be taught using different teaching methods. The
teaching methods I use include real projects, simulators, and
in-class case-based active learning workshops, in addition to
lectures and tutorials with student participation. I have invested
considerable time and energy into learning new teaching meth-
ods, participating in local and international conferences on
active learning in engineering and problem- and project-based
methods. When I developed my own in-class case-based active
learning workshops, I invited teaching experts to visit my classes
and provide feedback. These workshops are given in stages,
with students working in pairs or small groups. Each workshop
focuses on a particular aspect of experimental design. Some
include the use of JMP.

One of the principles I use in preparing these workshops is
to show parallel scenarios (i.e., alternative possible versions of
the problem and of the results). This addresses a problem that I

11https://www.jmp.com/en_us/online-statistics-course/design-of-
experiments.html

have experienced when teaching with both simulators and reg-
ular case studies: when students discover that one experimental
design is superior in a particular situation, they often infer that it
is always superior. One example of an in-class case-based active
learning workshop is included in the Supplementary Material
(see SME), with notes elaborating the teaching objectives and
how to use the workshop in the classroom.

The first of three real experiments that the students conduct
at home is a small two factor experiment investigating how
freezing candles affects their burn time. This assignment is given
at the beginning of the course, and the problems that arise
due to a lack of randomization, poor choice of materials etc.
provide motivation for topics such as blocking. The second is
a five-factor experiment, with each student choosing their own
process. The third experiment is a GRR experiment.

4.3.4. Recent and Future Evolution
In the last two years, I have changed the way I use JMP to
teach, exploring different approaches as discussed above. This
change is in response to both improvements in the software
and a change in the skills of the students. Students now quickly
embrace new software and are motivated to learn how to use it.

Future changes are a challenge. I frequently identify an
important topic that I would like to add to my DOE course,
but I never identify a topic to remove. I would like to devote
more time to definitive screening designs, and to include online
experimentation. A major change that I have considered making
is limiting the topic of full and fractional two-level factorial
designs while extending the use of optimal design, allowing
treatment of design space constraints, and sequential designs.
The problem with this plan is that an understanding of princi-
ples such as confounding and power is needed to use optimal
design, and these principles are easier to teach using classical
two-level designs.

4.4. The Optimal Experimental Design Course, Designed
so Students Are Equipped to Design Experiments in
Both Standard and Unusual Settings (Goos)

When I (Goos) took over the regression class as well as the
experimental design class, I made two major changes to their
content: First, I moved ANOVA from the experimental design
class (a third year undergraduate course) to the regression class
(a second year undergraduate course), since it can be viewed
as a special case of regression and since regression with one
or more categorical explanatory variables is included in that
class. In the regression class, students use matrix algebra and
learn about quantifying the uncertainty concerning parameter
estimates and predictions, and about the importance of avoiding
multicollinearity (referred to as aliasing and confounding in
DOE classes). Second, I decided to use the theory and philos-
ophy of optimal experimental design as the foundation of the
experimental design class. All of my choices were motivated by
the fact that the course is a compulsory one for engineering
students, who need flexible tools to tailor experimental designs
to engineering problems in their professional lives, rather than a
limited set of standard experimental designs (which may inspire
them to redefine their future problems to fit the standard designs
they happened to encounter during their DOE course).

https://www.jmp.com/en_us/online-statistics-course/design-of-experiments.html
https://www.jmp.com/en_us/online-statistics-course/design-of-experiments.html
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4.4.1. Topics
The course starts with examples of successful multi-factor
experiments from various industries, illustrating the usefulness
of experimental design for product and process optimization
and for tackling engineering problems, refreshing the main
concepts from regression analysis, and highlighting the fact that
experimental factors interact and may have nonlinear effects
on the response(s). There is substantial emphasis on interactive
graphical representations of regression models (e.g., contour
plots and prediction profilers).

The attention then shifts to full and fractional factorial
designs, orthogonality and aliasing, the weaknesses of one-
factor-at-a-time experimentation, and a discussion of practical
constraints that often prevent us from using standard experi-
mental designs. At this point, I introduce the flexible optimal
experimental design approach, and demonstrate its usefulness
by performing a virtual experiment in class, where the students
define the active effects, and I use the optimal experimental
design to detect their specified effects.

Starting from the fifth lecture, I follow the textbook Optimal
Design of Experiments: A Case Study Approach (Goos and Jones
2011). It turns out that engineering students like the book a
lot because it uses case studies from various industries (food
industry, metal industry, chemical industry, etc.) and because
the case studies are introduced through a dialog between two
consultants and a consultee.

Roughly speaking, the remaining lectures of the course each
deal with one chapter from the textbook. Topics covered include
D- and I-optimal experimental designs for completely random-
ized experiments, follow-up experiments, mixture experiments,
blocked experiments, split-plot and strip-plot experiments.

When discussing the analysis of data from blocked exper-
iments, both random block effects and fixed block effects are
treated. For my students, this is their first acquaintance with
random effects and generalized least squares. Once familiar with
the concept of random block effects, the analysis of data from
split-plot and strip-plot experiments is logical. Due to the fact
that I teach students in bio-science engineering, I also discuss
the agricultural origin of split-plot and strip-plot designs as well
as traditional designs for field trials. I show that these designs
fall under the umbrella of optimal experimental designs and can
be generated with standard software for optimal experimental
design.

4.4.2. Role of Software
In consultation with the program director and representatives
from all fields of study involved, we decided to use JMP for
all statistics courses in the B.Sc. in Bioscience Engineering.
The use of JMP offers the advantage that it is easy to discuss
all of the topics in the DOE textbook and to use interactive
tools for analysis and product and process optimization. This
is extremely appealing to engineering students.

In the M.Sc. program in statistics, I teach roughly the same
course on DOE as in the B.Sc. program in bioscience engineer-
ing and I also use JMP, while the vast majority of teachers in the
program use R and a few use SAS. Quite a few M.Sc. students
in statistics are hostile to my use of JMP, and ask me why I
do not use R. My reply is that advanced DOE is implemented

in a better and more user-friendly way in JMP than it is in R;
and that future statisticians should be aware of the existence
of a broad range of statistical software packages, each of which
has strengths and weaknesses. I then also explain that, in the
event they become statistical consultants/trainers, they will be
confronted with consultees/trainees who have their own favorite
statistical packages.

4.4.3. Teaching Methods
My course consists of ordinary 2-hr lectures (16 in total) and
2-hr exercise sessions in PC labs, where JMP is available (10
in total). Students are also required to download JMP on their
personal laptops because there is one major assignment during
the semester.

Each lecture generally starts with the motivating case study
from the textbook, explanations of any new concepts and/or
theory needed to tackle the case study, and a demonstration of
how to generate alternative designs for the problem at hand,
how to evaluate the quality of the designs, how to analyze the
data resulting from the experiment, and how to translate the
results of this analysis into optimal settings for the product or
process under investigation. During each lecture, students thus
see how a practical problem is tackled and solved using DOE
and regression analysis.

The exercise sessions involve DOE problems, statistical anal-
yses and interpretations. For the exercises, the students are
partitioned into groups of 30–40 students, and expected to
work out the exercises themselves, but they can ask tips and
tricks from the teaching assistant present. Some of the exer-
cises involve modern experimental designs such as definitive
screening designs (Jones and Nachtsheim 2011) and orthogonal
minimally aliased response surface designs (Núñez Ares and
Goos 2020), as soon as the students have sufficient technical
knowledge to judge the pros and cons of these designs.

An important part of the assessment in the course is the
project assignment. In the assignment, the students have to
conduct a (virtual) screening experiment to study the impact
of eight factors on the performance of a garden sprinkler (De
Ketelaere et al. 2014). After identifying the active factors, the
students have to conduct a follow-up, response surface exper-
iment, to study these active factors in more detail. Finally, the
students have to identify the settings of the factors that optimize
three different responses, while taking into account the cost of
the solution chosen. I opt for a virtual experiment for logistic
and efficiency reasons.

My course is concluded with a written open book exam,
which tests whether students know how to tackle a new case
study, whether they are able to interpret JMP output concern-
ing designs and the corresponding data analyses correctly, and
whether they are able to perform certain technical calculations
by hand.

4.4.4. Future Evolution
Because I teach optimal experimental design and this frame-
work is flexible enough to cope with the complex nature of
21st century products and processes in industry, I do not plan
major changes in the way I teach DOE to bioscience engineering
students. For the M.Sc. students in statistics, who generally are



JOURNAL OF STATISTICS AND DATA SCIENCE EDUCATION 11

interested in applications outside industry, it would be good to
include some of the less traditional application areas of DOE,
such as online controlled experiments, marketing experiments
and discrete choice experiments.

5. Discussion and Conclusions

The design and analysis of experiments is practically useful
in a wide variety of fields. DOE courses are therefore com-
pulsory in many undergraduate and graduate-level statistics
degree programs. In this article, we explored and showcased
the details of these courses: who takes them, who teaches them,
how they are taught, how they are assessed, and how they are
evolving. Through the composite profile based on 50 survey
respondents, as well as essays from the four authors, we have
seen considerable similarities among DOE courses, but also
notable differences.

One common aspect of DOE courses is that they are pop-
ulated by students from a variety of backgrounds, including
statistics, business, engineering, computer science, data science,
the life sciences, and social sciences. We find that roughly half of
DOE instructors are not DOE researchers. This does not appear
to lead to a material difference in topics covered, teaching and
assessment methods, or plans for future evolution of the course.

With respect to topics covered, we find that nearly all
surveyed DOE courses cover randomization, replication, and
blocking design principles, as well as single-factor experiments
and multifactor experiments, with blocking designs and facto-
rial designs. We also find that the majority of these courses cover
fractional factorial designs, split-plot designs, repeated mea-
sures designs and analyses based on fixed, random, and mixed
effect models. Aside from these core topics, extensive variation
exists in the additional topics covered. We note that optimal
design, robust parameter design, definitive screening designs,
and mixture experiments are taught very rarely. Figure 1
provides further insights regarding these general statements.
Despite widespread interest in observational causal inference
(e.g., Holland 1986; Pearl and Mackenzie 2018, Gelman and
Vehtari 2021), and the conceptual overlap with DOE insofar as
identifying and quantifying causal relationships are concerned,
we found such methods absent from the surveyed DOE courses.
Though these causal inference approaches are strongly related
to missing data, most of the work in missing data for traditional,
small-sample DOE (e.g., Akhtar and Prescott 1986; Imhof, Song,
and Wong 2002; Ahmad and Gilmour 2010; Wongoutong 2022)
has not used the causal inference framework. Notable excep-
tions include the consideration of causal inference methods in
the context of two-level factorial designs (e.g., Dasgupta, Pillai,
and Rubin 2015; Espinosa, Dasgupta, and Rubin 2016; Pashley
and Bind 2022). To date, it appears that observational causal
inference tends to be taught in dedicated courses, often within
biostatistics or econometrics curricula, rather than as part of a
traditional experimental design class.

With respect to teaching and evaluation methods, the tra-
ditional lecture—assignment—test—exam framework appears
still to be quite common; relatively few DOE classrooms incor-
porate more recent instruction and assessment methods, such
as flipped, blended, or hybrid learning. See Figures 2 and 3 for
deeper insights beyond these general remarks. We do find that

in many DOE courses, the students conduct their own exper-
iments, either physically or virtually; there is consensus that
such exercises are helpful, if not necessary, to provide students
with exposure to the more practical aspects of experimentation,
such as choosing factors and levels, measurement procedures,
implementing randomization, doing data collection, etc.

We find that the use of software for both instruction and
assessment is ubiquitous. Although there is some variation in
the statistical software of choice in DOE classes, DOE practi-
tioners in business and industry use a much broader range of
specialized DOE packages. Nearly all classrooms incorporate
a textbook in some manner, though there is no standard text-
book that is uniformly adopted, and there is disagreement as to
whether there exists a single textbook that adequately treats all
of the material one may wish to cover in a DOE course. The
number of courses that adopt multiple textbooks suggests that
such a text does not exist. Several survey respondents lamented
the lack of modern motivations and examples in existing DOE
texts, but they did not indicate why they use some books over
others, so we cannot provide guidance on textbook selection
beyond the justification of our own choices.

With respect to our own approaches to DOE pedagogy,
like the survey respondents, we find both commonalities and
differences. We all agree that real or virtual experiments are a
necessary component of a DOE course; these force students to
grapple with the application and not just the theory of DOE.
They also require that students be able to communicate about
both the design and analysis of experiments. We each use active
learning methods in our teaching as well. What we do specif-
ically differs depending on our students, the context of our
course, our experiences, and the broader theme we have set for
the course, so we do not aim to make specific recommendations
about what to include in a DOE course and how to teach it. As
we have seen, there are many effective approaches. That said,
we do make the following general recommendations to a reader
who wants to either design a new DOE course or overhaul or
tweak an existing one: (i) consider the needs of the population
of students taking the course, (ii) experiment with multiple
teaching methods, and (iii) get students designing, running, and
analyzing experiments themselves. As demonstrated by the four
essays, there is room for the unique interests and influences that
each instructor brings to the classroom.

Where is the pedagogy of DOE going in the future? We
do not have a clear answer to that question. There is little
indication from the survey that, at the time of responding,
instructors were consciously moving to more active learning,
hybrid, or flipped models of teaching. However, the survey
was administered at the beginning of the pandemic, so we
expect many DOE instructors have successfully adopted these
modes of teaching since then. The applied nature of DOE
makes these courses well-suited for these instruction methods.
We certainly expect the connections between data science and
experimentation to continue to develop, and as more resources
become available, we would expect more instructors to dedicate
examples and even parts of their courses to online applications.
If this is the case, we may not see a large-scale adoption of
newer design methods, such as optimal designs or definitive
screening designs, in mainstream DOE instruction. Instead,
we could see these more specialized methods being taught
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to audiences—for example, engineering students—who are
more likely to use them, while more general DOE courses
would include additional topics related to data science. Another
possibility is that in the future, online experimentation will be
taught mainly by non-statisticians, in courses separate from
the traditional DOE courses. This seems to be what happened,
for instance, to DOE instruction in the social sciences, which
in our observation is largely conducted by non-statisticians in
separate programs. Finally, we note that only two of the survey
respondents taught courses specifically for doctoral students
in statistics. We conjecture that this reflects an impression
among statisticians outside of DOE that this area is not ripe for
innovative research. However, this ignores the active, though
small, community of researchers who are working in areas
such as computer experiments, screening experiments, optimal
design, etc, along with the emerging and impactful research
opportunities in the realm of online controlled experiments
(Larsen et al. 2022). We hope that this article and these exciting
research avenues will help to rejuvenate interest in DOE training
at all levels of instruction, including the Ph.D. level.

Supplementary Materials

Supplementary Material A (SMA) is a narrative version of the literature
review. Supplementary Material B (SMB) is comprised of the list of the
departments to which our survey was sent. Supplementary Material C
(SMC) gives the survey questions and a summary of responses to them.
Supplementary Material D (SMD) provides examples of assessments related
to Online Controlled Experiments. Supplementary Material E is an example
of a case-based active learning assignment.
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