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Abstract

Optimal experimental design procedures, utilizing criteria such as D-optimality, are

useful for producing designs for quantitative responses, often under nonstandard con-

ditions such as constrained design spaces. However, these methods require a priori

knowledge of the exact form of the response function, an often unrealistic assumption.

Model-robust designs are those which, from our perspective, are efficient with respect to

a set of possible models. In this paper, we develop a model-robust technique motivated
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by a connection to multiresponse D-optimal design. This link spawns a generalization

of the modified Fedorov exchange algorithm, which is then used to construct exact

model-robust designs. We also study the effectiveness of designs robust for a small set

of models compared to designs which account for much larger sets. We give several

examples and compare our designs with two model-robust procedures in the literature.

Keywords: D-optimality, multiresponse design, robust design, model space

Introduction and Motivation

Since Kiefer (1959) debuted the idea of optimal design of experiments, a vast literature has

grown up around the notion of choosing a design based upon some numerical criterion. The

most common is D-optimality, which chooses the design minimizing the generalized variance

of the regression parameter estimates. Though standard designs can be used in most design

situations, optimal procedures are useful when, for instance, there are constraints on the

design space or some factors are categorical. However, optimal design procedures have been

criticized (Box and Draper 1959) because they require complete knowledge of the form of

the regression function, though this knowledge is rarely at hand. Subsequently, techniques

have been developed which produce designs that are in some way robust to departures from

the assumed model.

For instance, optimal designs are often used in mixture experiments because of the con-

strained nature of the design region. Heinsman and Montgomery (1995) describe an exper-

iment involving four surfactant mixture factors, for the purpose of optimizing a household

product. There were further factor restrictions beyond the mixture constraint, which made

optimal design a natural choice. However, such a design would require the complete spec-

ification of the form of the mixture regression model. For instance, a special cubic Sheffé

polynomial model might be assumed, though it is unknown before the experiment whether

this is the correct model. We provide a procedure which allows the experimenter to obtain

a design which does not assume a single model form, but rather accounts for a class of

user-specified models. We revisit this example later.
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Model-robustness has enjoyed significant development over the years, primarily in the

hands of theoreticians whose work has provided insights into specific problems and the

tradeoff between bias and variance in the assessment of optimal designs; see, for instance

Montepiedra and Fedorov (1997), Dette and Franke (2001), Fang and Wiens (2003), Zhou

(2008). On a practical level, much of this work lacks an intuitive framework within which

an experimenter might work. In fact, as Chang and Notz (1996) point out in a review of

similar—though earlier—work, these model-robust methods have more value for warning

of the dangers of ignoring the issue than for providing designs that can be adopted by

practitioners.

Even further, nearly all of this research employs Kiefer’s continuous design theory which,

while mathematically elegant and tractable, produces designs optimal for asymptotically

large run sizes. In contrast, most applications in the physical sciences and engineering re-

quire optimal designs for n runs, where n is a relatively small number. These designs are

called discrete, or exact, and are denoted by ξn (in the next section, we refer briefly to

asymptotic designs, and denote them by ξ). Consequently, commercial software implemen-

tations employ exchange algorithms for fixed sample sizes, including the Fedorov exchange

algorithm (Fedorov 1972), DETMAX (Mitchell 1974), and the k-exchange algorithm (John-

son and Nachtsheim 1983).

There is remarkably little work done in accessible methods for exact (small-sample)

model-robust designs. A mean squared error criterion reminiscent of Box and Draper (1959)

was proposed by Welch (1983), along with a DETMAX-like exchange algorithm, and Fang

and Wiens (2000) give a similar approach, using a minimax average mean squared error

criterion utilizing simulated annealing. DuMouchel and Jones (1994) use a Bayesian ap-

proach to provide some protection against specified terms not in the assumed model, but

their method requires specification of a prior precision parameter and does not explicitly

guard against more than two models; i.e. the assumed model and one that includes the

potential terms. Still, this approach formalizes the ad hoc practice of adding center points

to test for lack of fit and has spawned significant follow-up work, such as Neff (1996), Goos
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et al. (2005), and Jones et al. (2008). Heredia-Langner et al. (2004) allow protection against

multiple models by utilizing a desirability function to incorporate information about each

possible model. The necessary optimization is performed using a genetic algorithm, which

introduces additional complexity in implementation.

We propose a new method which produces exact designs robust for a set of user-defined

possible models. These ideas are motivated by a connection between multiresponse re-

gression (Zellner 1962), multiresponse optimal design (Fedorov 1972), and a continuous

model-robust optimal design technique due to Läuter (1974). To implement these ideas, we

develop a model-robust exchange algorithm which generalizes existing univariate methods.

The paper is organized as follows. In the next section we give the technical background

and describe the basic approach taken to find model-robust designs. We then review some

basic univariate exchange algorithms and give a generalization which is used to find model-

robust designs. We next give several examples illustrating our method and compare our

designs to those of DuMouchel and Jones (1994) and Heredia-Langner et al. (2004). Follow-

ing this, we study the effect of designing with respect to just a small fraction of all possible

models, and conclude with discussion of the procedure and its results.

Setting and Proposed Approach

Suppose one is interested in performing an experiment with a single quantitative response

variable, y, and a factors (quantitative or categorical), x = (x1, . . . , xa). We assume that the

classical univariate linear regression model will be fit, where yi = f ′(xi)β + εi, i = 1, . . . , n

with β a p-vector of parameters and f(x) the p-vector valued model function, though p

and the precise form of f(x) are unknown (for convenience, we often write f , suppressing

the argument). In matrix notation, we have y = Xβ + ε, where y is an n-vector, X is an

n×p expanded design matrix, and ε is also an n-vector with E(ε) = 0 and V ar(ε) = σ2In.

We assume also that the least squares criterion is used to estimate β, in which case the

estimator is β̂ = (X′X)−1X′Y with Cov(β̂) = σ2(X′X)−1.
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To fit such a model, the design must be chosen and yi observed at each of the design

points, xi. Let χ be the design space, Ξ be the set of all possible designs and ξn ∈ Ξ be a

discrete, n-point design:

ξn =

(
x1 x2 . . . xn

)
. (1)

We define the information matrix in this case as M(ξn) = σ−2
∑n

i=1 f(xi)f
′(xi) = (X′X)/σ2 =

[Cov(β̂)]−1.

An optimal design approach would attempt to find the n points, xi ∈ χ, i = 1, . . . , n,

such that some criterion, φ(M(ξn)), is optimized. Many criteria have been proposed, but

perhaps the most popular and mathematically tractable is the D-optimality, for which

φ(M(ξn)) = |M(ξn)|. Such an optimal design minimizes the volume of the confidence

ellipsoid of the parameters.

Since the precise form of f(x) is generally not known, we make the weaker assump-

tion that there exists a set of r possible models F that might be fit. Läuter (1974) pre-

sented this idea for asymptotic designs ξ, and introduced a model-robust criterion similar to

φ (MF (ξ)) =
∏

f∈F |Mf (ξ)|, where MF (ξ) = (Mf1(ξ), . . . ,Mfr(ξ)) and Mf (ξ) is the infor-

mation matrix for model f . Thus, the design which maximizes φ(MF (ξ)) over all possible

designs can be considered robust to the models in F . Cook and Nachtsheim (1982) utilized

this idea to develop linear-optimal designs focusing on prediction. Later, Dette (1990) used

the theory of canonical moments to give more explicit solutions for this product criterion.

These papers, however, are limited to continuous designs and unconstrained cuboidal design

regions. Other authors have used this idea for exact designs, including Li and Nachtsheim

(2000) who concentrated on factorial designs for which a prespecified number of two-factor

interactions were of interest, utilizing work by Sun (1993). Jones et al. (2009) also extended

the same basic idea to supersaturated designs.

Our discrete approach springs from Laüter’s idea, since allowing the experimenter to de-

fine a class of possible models is practically compelling. When model-robustness is viewed

in this way, it is closely related to multiresponse optimal design; see Fedorov (1972), Khuri
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and Cornell (1996), Chang (1997), and Atashgah and Seifi (2009). These methods are based

upon a multiresponse regression model due to Zellner (1962) which allows the functional

form of the factors to be different for each response and can produce more precise estimates

of the regression parameters by considering the covariance structure of the responses. Thus,

a multiresponse optimal design is one which is optimal for all the responses together, which

is essentially the goal of the univariate model-robust criterion of Läuter (1974), when “re-

sponses” are replaced by “models”. After we had begun this work, we discovered a technical

report (Emmett et al. 2007) which makes the same connection, though the basis of our work

is independent of theirs.

Consequently, one interpretation of the model-robust designs using Laüter’s criterion

with r possible models is that they are also D-optimal for the multiresponse model with

r uncorrelated responses, provided that each of the r responses has a functional form that

corresponds one-to-one with the r possible models. This is because the multiresponse D-

optimal criterion simplifies to the Laüter’s model-robust product criterion. Furthermore,

there are multiresponse results (Bischoff 1993, Kurotschka and Schwabe 1996) which prove

that when the response models are nested (where nested implies that when the response

models are ordered by their number of parameters, from smallest to largest, each successive

model includes the previous model as a subset), the multiresponse D-optimal designs are

invariant to the covariance structure of the responses. This suggests that when the set of

models are nested, the model-robust design is the same as the associated multiresponse

D-optimal design, even if the responses are correlated.

A Model-Robust Exchange Algorithm

In this section we first review the basic univariate exchange algorithms upon which our

methods are based, and then present a generalization to the matrix-updating formulas used

in the univariate procedures. Finally, we introduce our model-robust exchange algorithm,

which utilizes this generalization to avoid calculating determinants when evaluating poten-
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tial exchanges.

Univariate Exchange Algorithms

The first univariate exchange algorithm (Fedorov 1972) considered exchanges between each

design point and points in a candidate list, a discretized version of the design space. At

each iteration, the exchange was made which most increases the determinant of the infor-

mation matrix. He exploited a determinant-updating formula to alleviate the considerable

computational burden this problem imposed. Specifically, given design ξn and model f , he

showed that if xj ∈ ξn is exchanged for x ∈ χ resulting in the new design ξ̃n,

|Mf (ξ̃n)| = |Mf (ξn)| (1 + ∆f (xj ,x, ξn)) (2)

where

∆f (xj ,x, ξn) = Vf (x, ξn)−Vf (x, ξn)Vf (xi, ξn) + V2
f (x,xj , ξn)−Vf (xj , ξn) (3)

under the assumption that σ2 = 1, with Vf (x, ξn) = f ′(x)M−1
f (ξn)f(x) and Vf (x,xj , ξn) =

f ′(x)M−1
f (ξn)f(xj). We can also update the inverse of the information matrix using Lemma

3.3.1 in Fedorov (1972), using notation from Meyer and Nachtsheim (1995):

M−1
f (ξ̃n) = M−1

f (ξn)−M−1
f (ξn)F1(I2 + F

′
2M
−1
f (ξn)F1)

−1F
′
2M
−1
f (ξn) (4)

with F1 = [f(x),−f(xj)] and F2 = [f(x), f(xj)]. The Fedorov algorithm is as follows:

1. Initialize algorithm: Begin with a nonsingular design ξn; construct grid, G ⊂ χ

2. Let j = 1.

3. For design point xj , calculate ∆f (xj ,x, ξn) as in (3) for all x ∈ G. Choose x∗j =

arg maxx∈χ ∆f (xj ,x, ξn).

4. Increment j and if j < n return to Step 3. Else choose j∗ = arg maxj∈{1,··· ,n}∆f (xj ,x
∗
j , ξn)
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and exchange xj∗ and x∗j∗ , resulting in a new design ξ̃n. Update the determinant via

(2).

5. Update the inverse of the information matrix via (4).

6. If ∆f (xj∗ ,x
∗
j∗ , ξn) < ε, STOP. Else set ξn = ξ̃n and return to Step 2.

This algorithm generates a convergent nondecreasing sequence of determinants, but will

not in general converge to the global optimum. Therefore, it is necessary to run many

instances of the algorithm each with a randomly generated initial design. Despite the cheap

determinant updates, the primary drawback to Fedorov’s algorithm is its computational

demands since n optimizations are required during each iteration.

Cook and Nachtsheim (1980) proposed a modified Fedorov exchange algorithm, which

mimics Fedorov’s original procedure but exchanges each xj and x∗j in Step 3. This capitalizes

on each of the n optimizations that are performed during each iteration, and seems to be as

effective as its archetype. It is actually a special case of the k-exchange algorithm (Johnson

and Nachtsheim 1983), which considers only the k least critical design points (those with

the smallest prediction variance) for exchange.

In the remainder of this paper, we develop a multiresponse generalization of the modified

Fedorov exchange algorithm and use it to construct single response model-robust designs.

We focus on this algorithm since we found it to be faster than the original Fedorov algorithm

while producing better designs than the k-exchange. Similar extensions to other existing

univariate algorithms, such as DETMAX (Mitchell 1974), BLKL (Atkinson et al. 2007), and

coordinate-exchange (Meyer and Nachtsheim 1995), could be developed. The latter does

not require a candidate list and is computationally attractive, but it does not accommodate

constraints on the design space. A more recent algorithm (Piepel et al. 2005) suggests this

limitation might be overcome, but personal communication with the first and last authors

of this paper indicates that for experiments with a mixture constraint, in particular, further

improvements are necessary before its general use can be recommended.
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Model-Robust Modified Fedorov Exchange Algorithm

As in Läuter (1974) we consider, instead of a single model, a finite set of r models F from

which the experimenter believes the true model form can be chosen. More specifically, let

ξn be an n-point design and Mfi(ξn) be the information matrix for model i where fi ∈ F ,

i = 1, · · · , r. Suppose that we exchange a design point xj for an arbitrary point x in the

design region, resulting in a new design ξ̃n. Then the model-robust optimization criteria

can be written as:

φ(MF (ξ̃n)) =

r∏
i=1

∣∣∣Mfi(ξ̃n)
∣∣∣ (5)

=

r∏
i=1

|Mfi(ξn)| (1 + ∆fi(xj ,x, ξn))

= φ(MF (ξn))

r∏
i=1

(1 + ∆fi(xj ,x, ξn))

so that for each iteration of the algorithm, we need to just calculate and maximize
∏r
i=1(1+

∆fi(xj ,x, ξn)) where ∆fi(xj ,x, ξn) is calculated as in (3) for model fi. We make a slight

adjustment to this criterion so our algorithm will not choose to exchange a point that is

so bad that (1 + ∆fi(xj ,x, ξn)) < 0 for an even number of models, which would result in

a positive value of our criterion even though the exchange is undesirable. Thus, we choose

the exchange which maximizes

r∏
i=1

(1 + ∆fi(xj ,x, ξn))I(1 + ∆fi(xj ,x, ξn) > 0) (6)

where I is the indicator function.

Based on the above development, the algorithm is as follows:

1. Initialize algorithm: Begin with a nonsingular design ξn; construct grid, G ⊂ χ.

2. Let j = 1.

3. For design point xj , calculate (6) for all x ∈ G. Choose x∗j = arg maxx∈χ
∏r
i=1(1 +
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∆fi(xj ,x, ξn))I(1 + ∆fi(xj ,x, ξn) > 0).

4. Perform exchange x∗j for xj , and call the updated design ξ̃n. Calculate
∣∣∣Mfi(ξ̃n)

∣∣∣ and

M−1
fi

(ξ̃n) for each model via (2) and (4), respectively.

5. Increment j and if j < N return to Step 3. Else, if maxj
∏r
i=1(1 + ∆fi(xj ,x

∗
j , ξn)) <

1 + ε, STOP. Else set ξn = ξ̃n and return to Step 2.

As in the standard exchange algorithms, to find a global optimum for larger problems it

is necessary to perform many runs of the algorithm using different initial designs.

Examples

In this section we present several examples illustrating the proposed model-robust modified

Fedorov (MRMF) exchange algorithm, and compare it with two other exact model-robust

design methods in the literature. Before giving the examples, we will briefly describe these

methods and discuss how the designs will be evaluated.

DuMouchel and Jones (1994) use a Bayesian approach to provide protection against

higher-order terms. They set s1 terms as primary and s2 terms as potential and after

scaling the two groups to make them nearly orthogonal, they assume an informative prior for

the potential terms and calculate a posterior distribution for the parameters with variance

A = [X
′
X + K/τ2]−1, where X = (Xpri|Xpot) and K is a (s1 + s2) × (s1 + s2) diagonal

matrix with 0 on the first s1 diagonals and 1 on the last s2. The prior variance parameter,

τ , is to be chosen by the user. Once they have this posterior variance, they simply choose

the design that minimizes |A| using slightly adjusted exchange algorithms.

A distinct advantage of this method is that it can provide protection against models

with more parameters than observations. On the other hand, it is not designed to produce

model-robust designs with respect to more than two models. Since it is a prominent and

rare model-robust technique for exact designs, we compare its results to ours. Difficulties

associated with this method are the choice of the prior precision value, 1
τ , and how to
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designate the primary and potential terms. We use 1
τ = 1, as recommended by DuMouchel

and Jones, but also include designs based upon 1
τ = 16. Because of the structure of A, larger

prior precision values will result in less consideration of the potential terms as manifested by

lower efficiencies for models involving those terms. We also generally assume more primary

terms as opposed to less. The results are based upon the implementation of this method in

the SASr software’s PROC OPTEX (SAS 2004).

Heredia-Langner et al. (2004) used a genetic algorithm to calculate exact model-robust

designs. They consider r possible models and use a genetic algorithm to optimize a desir-

ability function which incorporates the determinants of the information matrices of each of

the models. Their procedure does not require a candidate list, though implementation of a

tuned genetic algorithm is not trivial. Examples 1 and 3 are taken from their paper, which

allows comparisons to be made.

We compare designs on the basis of efficiencies with respect to each model f ∈ F . The

D-efficiency for model f is Ef (ξn) =
(
|Mf (ξn)|
|Mf (ξ

∗
n,f )|

)1/p
where ξ∗n,f is the design optimal for f

alone, and p is the number of parameters for model f . Note that we express the D-efficiency

as Ef in the tables below, since the appropriate design is evident. Since determinants can

roughly be viewed as measures of volume, this quantity takes the ratio of the volumes and

scales the comparison to a per-parameter basis.

For the individual model optimal designs in all examples of this section save the last,

Fedorov’s algorithm via PROC OPTEX was run 50 times from randomly chosen initial

designs and the best final design was chosen. For the final example, the MRMF algorithm

was used to find the best designs for the models individually. Furthermore, the model-

robust designs produced in this section, as well as those based upon DuMouchel and Jones

(1994), were also generated based on 50 separate algorithm instances.

Example 1: Constrained Response Surface Experiment

A constrained two-factor example, taken from Heredia-Langner et al. (2004), will serve

as an initial example illustrating our method. The design region, shown in Figure 1, is
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χ = {x = (x1, x2) : −1 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1,−0.5 ≤ x1 + x2}, n = 6 and the

experimenter would like a design robust for a first-order, a first-order with interaction, or

full quadratic polynomial; i.e. F = {f ′i (x), 1 ≤ i ≤ 3,x ∈ χ} where

f
′
1(x) = (1, x1, x2) (7)

f
′
2(x) = (1, x1, x2, x1x2) (8)

f
′
3(x) = (1, x1, x2, x1x2, x

2
1, x

2
2) (9)

The candidate list for this example consisted of 266 points constituting a grid of resolution

0.1 placed over the design space. We give two designs using the method of DuMouchel

and Jones, Bayes 1 with f
′
pri = (1, x1, x2, x1x2) and f

′
pot = (x21, x

2
2), and Bayes 2 with

f
′
pri = (1, x1, x2) and f

′
pot = (x1x2, x

2
1, x

2
2). For both, we adopt 1

τ = 1. We also include in our

comparison the model-robust design of Heredia-Langner et al. (2004) as well as the optimal

design for the largest model.

The model-robust designs are shown in Figure 1. Two design points are common to all

five designs, (0, 1) and (1, 0), and the MRMF and Bayes 1 designs are the same. Table 1 also

compares the designs in terms of the determinant and D-efficiency for each of the considered

models, and the last column gives the product. The last row gives the determinant of the

information matrix for the D-optimal design for each of the models individually, and the

efficiencies are calculated using these values.

Even though the Bayes 1 and MRMF designs seem close to the optimal design for

the quadratic model (since their D-efficiency for the quadratic model is nearly 1), the

optimal-for-quadratic produces a poor design with respect to the interaction model. The

Bayes 2 design, using only the linear terms as primary, produces a design with even worse

performance for the interaction model. It is also somewhat surprising that the Bayes 1

design was the same as the MRMF design, given that we are considering three models.

However, in this simple example the MRMF design for the three models is the same as

that obtained when considering only models (8) and (9) and ignoring (7). Therefore, it
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Genetic Algorithm Bayes 1 and MRMF

Bayes 2 Optimal Design for Quadratic

Figure 1: Model-robust Designs for Example 1

appears that the first-order model has no effect on the MRMF algorithm, so that there are

essentially two models under consideration, a situation for which the Bayesian procedure is

natural.

Example 2: Hypothetical Constrained 3-factor Experiment

To further explore our method and how it compares to the Bayesian method in particular,

consider a three-factor example with design region χ = {x = (x1, x2, x3) : −1 ≤ x1, x2, x3 ≤

1,−1 ≤ x1 + x2 + x3 ≤ 1,−1 ≤ x1 + x2 ≤ 1,−1 ≤ x1 + x3 ≤ 1,−1 ≤ x2 + x3 ≤ 1} and five
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Model
Design Measure (7) (8) (9) Product

MRMF Determinant 27.04 33 3.01 2685.88
Ef .810 .907 .995 .731

Genetic Algorithm Determinant 31.14 26.91 2.21 1851.93
Ef .849 .862 .945 .692

Bayes 1 ( 1τ = 1, primary Determinant 27.04 33 3.01 2685.88
terms those in (8)) Ef .810 .907 .995 .731

Bayes 2 ( 1τ = 1, primary Determinant 32.33 13.15 3.08 1309.21
terms those in (7)) Ef .860 .721 .998 .619

Optimal Design for (9) Determinant 31.63 14.35 3.11 1411.60
Ef .853 .737 1 .629

Optimal (for each model) Determinant 50.88 48.77 3.11

Table 1: Determinants, with D-efficiencies, for Example 1 with n = 6, protecting against
three models.

models of interest:

f
′
1(x) = (1, x1, x2, x3) (10)

f
′
2(x) = (f

′
1, x1x2, x1x3, x2x3) (11)

f
′
3(x) = (f

′
2, x

2
1, x

2
2, x

2
3) (12)

f
′
4(x) = (f

′
3, x

2
1x2, x

2
1x3, x1x

2
2, x

2
2x3, x1x

2
3, x2x

2
3, x1x2x3) (13)

f
′
5(x) = (f

′
4, x

3
1, x

3
2, x

3
3) (14)

so that F = {f ′i (x), 1 ≤ i ≤ 5,x ∈ χ}.

In particular, assume that the experimenter would like to use n = 20 runs and would like

a design that can fit each of these models well. To specify the Bayesian procedure, we take

as primary all terms in (12) and designate the rest as potential. We give the MRMF design

in Table 2, as well as Bayesian designs with 1
τ = 1 and 1

τ = 16 and the optimal design for

the largest model, all using a candidate list consisting of a grid of points with resolution 0.1

placed over the design space.

The Bayesian designs are competitive, based on the D-criterion, for most of the models

but lack efficiency for model (13) when compared to the MRMF design. This might be
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expected since it is in between the primary and full model and as such not explicitly con-

sidered. None of the designs perform very well for model (11), though the MRMF design is

marginally better. As we expect, when a larger prior precision value is used in the Bayesian

procedure, the efficiency of models containing primary terms is reduced, and in this case

significantly degrades the design in terms of the product criterion. The optimal design for

the largest model is competitive with the Bayesian designs in terms of model-robustness,

though the MRMF design would likely be preferred because of its higher efficiencies in

models (11), (12), and (13).

Model
Design Measure (10) (11) (12) (13) (14) Product
MRMF Determinant 6.58e3 5.57e4 1.10e5 3.21e0 5.24e-3 6.78e11

Ef .864 .756 .870 .955 .979 .531
Bayes ( 1

τ = 1) Determinant 6.63e3 5.21e4 9.74e4 9.92e-1 7.94e-3 2.65e11
Ef .867 .749 .860 .892 .999 .498

Bayes ( 1
τ = 16) Determinant 5.93e3 4.39e4 1.12e5 4.61e-1 4.41e-3 5.93e10

Ef .843 .731 .872 .852 .970 .444
Optimal for (14) Determinant 6.44e3 4.94e4 9.62e4 7.63e-1 8.07e-3 1.88e11

Ef .860 .744 .859 .878 1 .483
Optimal (for each model) Determinant 1.18e4 3.93e5 4.42e5 6.97e0 8.07e-3

Table 2: Determinants, with D-efficiencies, for Example 2 with n = 20, protecting against
five models.

Example 3: Constrained Mixture Experiment

We now revisit the example (Heinsman and Montgomery 1995) briefly described at the

outset. This is a four-factor constrained mixture experiment regarding the formulation of

a household product in which 20 runs are available. The design region can be defined as:

χ =

{
x = (x1, x2, x3, x4) :

4∑
i=1

xi = 1, 0.5 ≤ x1 ≤ 1, 0 ≤ x2, x3 ≤ 0.5, 0 ≤ x4 ≤ 0.05

}
(15)

where x1 is a nonionic surfactant, x2 is an anionic surfactant, x3 is a second nonionic

surfactant, and x4 is a zwitterionic surfactant. Because of the dependency induced by the

mixture constraint, standard mixture design models are considered which do not include
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an intercept:

f
′
1(x) = ({xi, i = 1, . . . , 4}) (16)

f
′
2(x) = (f

′
1, {xixj , i < j ≤ 4}) (17)

f
′
3(x) = (f

′
2, {xixjxk, i < j < k ≤ 4}) (18)

f
′
4(x) = (f

′
3, {xixj(xi − xj), i < j ≤ 4}) (19)

so that F = {f ′i (x), 1 ≤ i ≤ 4,x ∈ χ}. Heredia-Langner et al. (2004) also used this example,

and so we compare our method to their Genetic Algorithm as well as to the Bayesian method

of DuMouchel and Jones (1994). For the latter, we present designs using both a standard

value for the prior precision ( 1τ = 1) and a larger precision value ( 1τ = 16), and primary

terms those in (16) as well as (18). The potential terms depend upon the assignment of the

primary terms and in each case are those unique to (19).

Since this is a large mixture design, we supplemented a regular grid (resolution 0.01) with

extreme vertices and approximate centroids of the design region using code as described in

Piepel (1988).

Model
Design Measure (16) (17) (18) (19) Product
MRMF Determinant 5.31e-2 7.22e-22 2.65e-43 8.36e-78 8.49e-143

Ef .728 .897 .931 .996 .606
Genetic Algorithm Determinant 5.23e-2 7.46e-22 2.90e-43 7.80e-78 8.83e-143

Ef .725 .900 .937 .992 .607
Bayes 1 ( 1

τ = 1, primary Determinant 5.46e-2 6.74e-22 2.24e-43 9.08e-78 7.48e-143
terms those in (16)1) Ef .733 .890 .919 1 .600

Bayes 2 ( 1
τ = 16, primary Determinant 5.64e-2 6.12e-22 3.01e-43 3.08e-78 3.20e-143

terms those in (18)) Ef .739 .882 .939 .947 .580
Bayes 3 ( 1

τ = 16, primary Determinant 6.01e-2 6.07e-22 1.94e-43 3.87e-78 2.74e-143
terms those in (16)) Ef .751 .881 .910 .958 .577

Optimal Design for (19) Determinant 5.46e-2 6.74e-22 2.24e-43 9.08e-78 7.48e-143
Ef .733 .890 .919 1 .600

Optimal (for each model) Determinant 1.89e-1 2.15e-21 7.26e-43 9.08e-78

Table 3: Determinant function values, with D-efficiencies, for Example 3 with n = 20,
protecting against four models.

1Same design results if primary terms are those in (18)
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In Table 3, our method can be seen to be competitive with the Genetic Algorithm,

though their design is slightly superior by our product optimality criterion. This is likely a

function of the discretization in our candidate list. Note that the optimal design for model

(19) has a significantly higher objective function value than that given in Heredia-Langner

et al. (2004) (9.08e-78 vs. 7.83e-78), though theirs was asserted to have been obtained from

PROC OPTEX in SAS as well.

It is the case again in this example that the best design found by the MRMF method is

relatively close to that of the optimal design for the largest model. The Bayesian procedure,

when the precision is 1, produces a design optimal for the largest model (Bayes 1 in Table

3) which is competitive using the product of the determinants as a criterion. The design

is the same whether the primary terms are those in (16) or (18). When the precision is

increased to 16, the Bayesian designs are different for different sets of primary terms (Bayes

2 and Bayes 3 in Table 3), but we see the same behavior as was noted before: The Bayesian

designs become less efficient for the model that involves potential terms. The designs have

slightly less variable D-efficiencies, but suffer against the product optimality criterion.

Example 4: Mixture Experiment with Disparate Models

For our final example we use an unconstrained mixture experiment by Frisbee and McGinity

(1994) with n = 11. The response is the glass transition temperature of a certain film with

three nonionic surfactant factors. The goal was to minimize this transition temperature, and

Frisbee and McGinity fit a traditional polynomial model. However, another class of models,

the so-called Becker models (Cornell 1990, Sec. 6.5), were shown by Rajagopal and del

Castillo (2005) to also fit the data well and lead to a significantly different optimal solution.

These models, originally considered to address certain shortcomings in the Sheffé polynomial

models, model second-order mixture blending of factors using min(·). For instance, for

factors i and j, min(xi, xj) is used instead of xixj .
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In this case,

χ =

{
x = (x1, x2, x3) :

3∑
i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, 2, 3

}
(20)

and we take five possible models:

f
′
1(x) = ({xi, i = 1, 2, 3}) (21)

f
′
2(x) = (f

′
1, {xixj , i < j ≤ 3}) (22)

f
′
3(x) = (f

′
2, {x1x2x3}) (23)

f
′
4(x) = (f

′
1, {min(xi, xj), i < j ≤ 3}) (24)

f
′
5(x) = (f

′
4, {min(x1, x2, x3)}) (25)

so that F = {f ′i (x), 1 ≤ i ≤ 5,x ∈ χ}.

In addition to the five models we are guarding against, we also examine effectiveness

of our design with respect to the model fit by Frisbee and McGinity, as well as the most

probable model found a posteriori by Rajagopal and Castillo:

f
′
fm(x) = (x1, x2, x3, x1x3, x2x3) (26)

f
′
rc(x) = (x1, x2, x3,min(x1, x3),min(x2, x3)) (27)

For a candidate list, we used a regular grid with resolution 1/12, which because of the

regular design region, contained the vertices and centroids of the region.

With the disparate model types, the Bayes procedure, with its primary and potential

factors, cannot be easily applied. Instead, we examine the results of the MRMF design and

compare it in Table 4 to the design that was actually used. In terms of efficiency, the design

used by Frisbee and McGinity is much inferior for all models considered because it includes,

in addition to two centroid points, three other points on the interior of the simplex design

region.
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As seen in Table 4, the MRMF design is optimal for models (23), (24), and (25). This

is because the optimal designs for these models individually are interchangeable; i.e. the

optimal design for one is also optimal for another. Note that since the models are not nested

we do not have the multiresponse D-optimality interpretation.

Model
Design Measure (21) (22) (23) (24) (25) (26) (27)

MRMF Determinant 19.81 5.91e-3 5.36e-6 0.569 2.78e-2 6.61e-2 1.46
Ef .745 .954 1 1 1 .812 .866

Frisbee and McGinity Determinant 8.25 1.22e-3 1.51e-6 .146 8.82e-3 2.30e-2 .588
Ef .556 .733 .835 .797 .849 .658 .722

Optimal (for each model) Determinant 48 7.8e-3 5.36e-6 .569 2.73e-2 .188 3

Table 4: Objective Function Values and D-efficiencies for Example 4, n = 11, protecting
against 5 Models.

Model Spaces

The model spaces considered so far contain maximal models within certain classes. For

instance, in Example 1, the model set we utilized included a model with all main effects

(i.e. maximal main effects model), a model with all main effects and all two-factor interac-

tions (i.e. maximal two-factor interaction model), and a model with all terms up through

quadratic (i.e. maximal second-order polynomial model). In many standard experimental

situations, a certain class of model is envisioned and designed for (i.e. a fractional factorial

design when an interaction model is assumed), and in such cases a departure from this class

might be hedged against by implementing a model-robust design as described in this paper.

However, the experimenter might wish to account for a much larger set of possible models.

For instance, Li and Nachtsheim (2000) consider models composed of all main effects and

up to g two-way interactions. In our setting we have assumed that higher-order terms are

of interest as well, and this suggests an enormous model space even for moderately sized

problems, if all possible models are contemplated. As the size of the problem increases, the

space of all possible polynomial models grows exponentially in the number of terms in the

largest model considered. As such, an explicit accounting for each one is infeasible, at least

19



using the present methodology. On the other hand, many of these models do not obey effect

hierarchy (defined below), and limiting the possible models to those which do will make the

model space much smaller, though still unmanageable for large problems.

The model sets used in this paper may be viewed as an approximation to these larger

model spaces. But how good is this approximation? One might intuit that unless there is

a high degree of certainty about the model, even our crude approximation is better than

using a single model to specify the D-optimal design. But how much better? And how

much are we giving up by not explicitly considering all possible models?

We will consider these questions for two examples, necessarily small because of the

computational requirements. This is an exploratory examination, not a comprehensive,

definitive study and we note that other model space approximations might be chosen. For

instance, Bingham and Chipman (2007) select sets of a priori model forms based upon a

prior distribution of possible models using three axiomatic principles: Effect sparsity, effect

hierarchy, and effect heredity. Their approach does not eliminate the problem of exploding

model size (in the end, they only handle a small subset of all possible models—those with

the largest prior probabilities), but it does represent a principled approach to choosing a set

of possible models when the space of all possible models is too large. However, it would not

be a straightforward adaptation to our setting because, unlike them, we consider quadratic

and cubic effects.

In this section we consider two different model spaces: 1) All possible polynomial mod-

els up to quadratic (excluding the intercept-only model); and 2) All possible hierarchical

polynomial models up to quadratic (also excluding the intercept-only model). The first has

many models that would probably not be fit in practice (for instance, in a two-factor exper-

iment, the model f
′
(x) = (1, x1x2, x

2
1)), and so the hierarchical alternative may represent a

more realistic set of possible models. We will evaluate the effectiveness of our approximation

for each.

First, we define a hierarchical effect structure which includes quadratic terms.

Definition 1 A hierarchical effect structure includes, in ascending order: main effects,
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two-factor interactions, and quadratic terms. Before two-factor interactions can appear, the

corresponding main effects must be included. Before a quadratic effect can be considered,

the corresponding main effect as well as at least one two-way interaction involving the

appropriate factor must be present.

Thus, f
′
(x) = (1, x1, x2, x1x2, x

2
1) would be hierarchical, but f

′
(x) = (1, x1, x2, x

2
1) would

not. Higher order terms (for instance, three-way interactions or cubic terms) could also be

included but are not in these examples.

Approximate Model Spaces for Example 1

To study the effectiveness of the sort of model space approximations that are used in this

paper, we will compare the model-robust design for Example 1 found in the previous section

with the model-robust designs using all possible models, the model-robust design using all

possible hierarchical models, and the design optimal for the full quadratic model alone. All

designs are based on 50 algorithm tries and the candidate list described in the previous

section. There are seven hierarchical models and 25 − 1 = 31 possible models (we exclude

the intercept-only model, in both cases).

We first evaluate each of the designs in terms of the average D-efficiencies with respect

to all 31 possible models (Table 5), also noting the standard deviations and minimum of

the D-efficiencies. The model-robust design using just three models (3-MR in the table)

loses about 2.2% on average when compared to the design that is robust for all 31 models,

with a slightly smaller standard deviation and minimum. It is, however, much better than

the design optimal for the quadratic model alone by each measure.

Design Mean StDev Min

3-MR 0.875 0.071 0.697

31-MR 0.896 0.073 0.708

Quadratic Only 0.813 0.102 0.567

Table 5: Comparison of model-robust designs for Example 1, in terms of D-efficiencies with
respect to all 31 possible models.

When evaluated with respect to the seven hierarchical models, Table 6 shows that the
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3-MR design now has an average D-efficiency 0.045 less than the design robust to all 7

hierarchical models, while still 0.035 better than the quadratic only design.

Design Mean StDev Min

3-MR 0.836 0.107 0.697

7-MR 0.881 0.106 0.731

Quadratic Only 0.801 0.109 0.684

Table 6: Comparison of model-robust designs for Example 1, in terms of D-efficiencies with
respect to all 7 possible hierarchical models.

Approximate Model Spaces for a 3-factor Experiment

The second example is a generic unconstrained 3-factor experiment for which χ = {x =

(x1, x2, x3) : −1 ≤ x1, x2, x3 ≤ 1} and again models as large as full quadratic are considered.

Since for the full second-order model there are 9 non-intercept terms, there are 29−1 = 511

possible models. In addition, using Definition 1, there are 63 possible hierarchical models.

In Table 7, we evaluate several designs using the mean, standard deviation, and minimum

D-efficiency with respect to the 511 possible models. In Table 8, we do the same with respect

to the 63 hierarchical models. To calculate D-efficiencies, the individually optimal designs

for each of the 511 possible models were found, each using 50 algorithm tries and a 33

candidate list.

We found three different model-robust designs, one using just three models (3-MR, the

model set being the main effects only model, main effects plus 2-factor interaction model,

and full quadratic), another robust with respect to the 63 hierarchical models, and another

robust with respect to all 511 possible models. We found that the model-robust designs

potentially required a denser grid of candidate points, and consequently used one with a

resolution of 0.1 (213 = 9,261 total points). This, along with the large size of the model

set significantly slowed computations and required us to make evaluations of these three

designs based upon only 2 algorithm tries.

Table 7 shows that when measured against all 511 possible models, the 3-MR design as

well as the design robust for all hierarchical models are slightly inferior to both the 511-MR
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Design Mean StDev Min

3-MR 0.864 0.060 0.576

63-MR 0.865 0.060 0.579

511-MR 0.877 0.069 0.705

Quadratic Only 0.872 0.069 0.690

Table 7: Comparison of model-robust designs for 3-factor experiment, in terms of D-
efficiencies with respect to all 511 possible models. Candidate list for model-robust designs
was the 213 set of points.

and quadratic only designs, in terms of average D-efficiency. The contrast between the

designs is more stark when the minimum D-efficiency is considered, however. The 3-MR

and 63-MR designs often suffer for nonhierarchical models for which quadratic terms are

included with no, or few, lower-order terms. For instance, the 3-MR design is only 57.6%

D-efficient with respect to the model f ′(x) = (1, x21, x
2
2, x

3
3). If the seven models which

include just an intercept and quadratic terms (with no lower order effects) are eliminated,

the minimum D-efficiency becomes 0.67.

Design Mean StDev Min

3-MR 0.907 0.033 0.835

63-MR 0.907 0.034 0.833

Quadratic Only 0.881 0.068 0.740

Table 8: Comparison of model-robust designs for 3-factor experiment, in terms of D-
efficiencies with respect to all 63 possible models. Candidate list for model-robust designs
was the 213 set of points.

On the other hand, if only hierarchical models are considered, the tables are turned

and the 3-MR and 63-MR designs have a higher average D-efficiency, by 0.026, with much

smaller standard deviations and nearly 0.1 advantage on the minimum. Since the 3-MR

design is based upon hierarchical models, this outcome is not surprising, though belied

somewhat by the previous example.

We stress that these are preliminary, noncomprehensive results and general conclusions

should not be drawn from them. However, they do provide some evidence that, at least in

the hierarchical case, a crude approximation of the model space is superior to the quadratic-

only optimal design.
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Discussion

The Model-robust Modified Fedorov (MRMF) exchange algorithm presented in this paper

provides a natural tool with which to find designs when an optimal design is desired but

the model-form is unknown. The mechanism to achieve this is intuitive and simple: The

experimenter chooses r models for which he/she would like to design. Then, a design is

found which maximizes the product of the determinant of the information matrices of each

of the models.

Furthermore, the MRMF method produces designs that are competitive, with simpler

algorithmic machinery, than the Genetic Algorithm approach of Heredia-Langner et al.

(2004). The strength of the MRMF method with respect to the GA technique is that it

is automatic and a straightforward extension of commonly used exchange algorithms. The

GA requires tuning of several parameters and is nontrivial to implement effectively.

We also compared our procedure to the Bayesian method of DuMouchel and Jones

(1994), a widely available model-robust technique. We initially hypothesized that the

Bayesian method would suffer when confronted with multiple possible models, since it cat-

egorizes terms into just two groups. This is supported by Example 2, though the procedure

performed fairly well in Examples 1 and 3. The choice of 1
τ certainly affects the model-

robustness of the design; indeed for certain values of 1
τ (i.e. 1

τ = 1 in Example 3) the

method seems to produce a design optimal for the highest-order model, while for large

enough values of 1
τ the full model is not even estimable. The choice of terms as primary or

potential also makes an impact. Our procedure does not suffer from these uncertainties, has

a multiresponse D-optimal interpretation (for F nested) and explicitly considers a larger

class of models; it can also handle situations as in Example 4 in which the possible models

are disparate and impossible to nest.

One strategy, if faced with a situation necessitating a D-optimal design, might be to de-

sign for the highest-order model possible. If, as assumed in this paper, there are a sufficient

number of runs to estimate the largest model, one might question whether the efficiency
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gained in model-robust methods is worth the additional methodology. In certain cases, as

in the third example, the gains appear to be limited. But as demonstrated by the first and

second examples, significant gains can be made by utilizing the model-robust approach.

Therefore, a dedicated procedure based upon accepted univariate exchange algorithms will

be useful to produce model-robust designs.

In terms of D-efficiency, the MRMF designs can be seen to favor larger models. In other

words, the efficiencies of the smaller models suffer as compared to the larger ones. To

mitigate this, one might consider the following optimization criterion (Atkinson et al. 2007,

Emmett et al. 2007), instead of (5):

φ(MF (ξ̃n)) =
r∏
i=1

∣∣∣Mfi(ξ̃n)
∣∣∣1/qi (28)

where qi is the number of parameters in the ith model. It is straightforward to derive an

exchange algorithm using this criterion–call it the scaled MRMF–which has the effect of

shrinking values of dissimilar orders of magnitude toward each other, in essence weighting

more heavily those models with fewer parameters. We implemented this procedure using

several examples, and the results were surprisingly similar. For instance, for the constrained

mixture experiment in Example 3, the scaled MRMF design resulted in a design very close

to the MRMF in Table 3. For the hypothetical experiment in Example 2, we observed more

of a difference, with D-efficiencies increasing from 86.4% to about 89% for model (10) and

from 75.6% to about 78% for model (11), while decreasing the efficiencies of model (12)

from 87% to about 85.5% and model (14) from 97.9% to about 96.5%, but still resulting in

a design with an imbalance in the D-efficiencies.

The model-robust criterion used in this paper could easily be extended to include prior

information in terms of model weights, if certain models are preferred over the others.

However, since this work was motivated in part by multiresponse optimal design theory, the

minimal volume of the parameter confidence ellipsoid interpretation of D-optimality is used

and thus we only consider equally weighted models. Furthermore, the relative ineffectiveness
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of the scaled MRMF to provide designs with similar D-efficiencies for all considered models

underscores the difficulty in balancing the D-efficiencies using weights.

We also addressed the issue alluded to by a referee, that the model sets used in our

examples are small compared to the set of all possible models. We examined two small

examples and found that though general conclusions cannot be drawn, for the all possible

hierarchical models at least, the small sets of the type used in this paper offer improvements

over single-model D-optimal designs and are competitive compared to the designs robust

for all possible hierarchical models in certain situations.

Finally, assume that Te is the time it takes to run the univariate Modified Fedorov ex-

change algorithm. The runtime for these model-robust algorithms should be rTe where r

is the number of models considered. Commercial software programs have fast implemen-

tations of this exchange algorithm, so the computational burden imposed by a similarly

implemented model-robust exchange algorithm, for many problems, should not be heavy.

However, a candidate set-free version of our model-robust algorithm would be a significant

computational improvement. The coordinate exchange algorithm (Meyer and Nachtsheim

1995) does not require a candidate set, but fails to easily accommodate mixture constraints.

There is ongoing work to develop an effective candidate set-free algorithm to handle such

constraints (an attempt is given by Piepel et al. 2005), but a satisfactory procedure has yet

to appear in the literature.

Note: All designs referred to in the Examples section, as well as Matlab code to generate

the MRMF designs, are available at http://www.stat.psu.edu/~jlr/pub/Smucker-JQT/. In

addition, the model-robust designs alluded to in the Model Spaces section are included as

well.
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