
The Pennsylvania State University

The Graduate School

BY DESIGN: EXCHANGE ALGORITHMS TO CONSTRUCT

EXACT MODEL-ROBUST AND MULTIRESPONSE

EXPERIMENTAL DESIGNS

A Dissertation in

Statistics and Operations Research

by

Byran J. Smucker

c© 2010 Byran J. Smucker

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

August 2010

The dissertation of Byran J. Smucker was reviewed and approved∗ by the following:

Enrique del Castillo

Distinguished Professor of Industrial and Manufacturing Engineering

Dissertation Advisor and Co-Chair of Committee

James L. Rosenberger

Professor of Statistics

Co-Chair of Committee

Steven F. Arnold

Professor of Statistics

Bing Li

Professor of Statistics

Susan H. Xu

Professor of Management Science and Supply Chain Management

Bruce G. Lindsay

Willaman Professor of Statistics

Statistics Department Head

∗Signatures are on file in the Graduate School.

Abstract

Optimal experimental design procedures, utilizing criteria such as D-optimality,
are often used under nonstandard experimental conditions such as constrained de-
sign spaces, and produce designs with desirable variance properties. However, to
implement these methods the form of the regression function must be known a pri-
ori, an often unrealistic assumption. Model-robust designs are those which, from
our perspective, are robust for a set of specified possible models. In this disser-
tation, we present new model-robust exchange algorithms for exact experimental
designs which improve upon current, practical model-robust methodology. We also
extend these ideas to experiments with multiple responses and split-plot structures,
settings for which few or no flexible, practicable model-robust procedures exist.

We first develop a model-robust technique which, when the possible models
are nested, is D-optimal with respect to an associated multiresponse model. In
addition to providing a justification for the procedure, this motivates a generaliza-
tion of the modified Fedorov exchange algorithm which is used to construct exact
model-robust designs. We give several examples and compare our designs with two
model-robust procedures in the literature.

For a given set of models, the aforementioned algorithm tends to produce de-
signs which have higher D-efficiencies for some models and lower D-efficiencies
for others. To mitigate this unbalancedness, we develop a model-robust maximin
exchange algorithm which maximizes the lowest efficiency over the set of models
and consequently produces designs for which there is worst-case protection. Fur-
thermore, we present a generalization of this technique which allows the user to
express varying levels of interest in each model, often resulting in a design sugges-
tive of these differences. Some asymptotic properties of this criterion are explored,
including a condition which guarantees complete balance in terms of (generalized)
efficiencies. We also show that even if this condition is not satisfied, this balance
will be achieved in some subset of at least two models for nontrivial cases. We give

iii

several examples illustrating the procedure.
Since many, if not most, experiments have multiple responses, we extend our

methodology to such designs. In addition to the problem of unknown model forms,
which in this case is exacerbated by the fact that there are multiple such forms to
specify, the response covariance matrix is generally unknown at the design stage as
well. We present an exchange algorithm for multiresponse D-optimal designs, using
generalizations of matrix-updating formulae to serve as its computational engine.
However, this procedure requires knowledge of the model forms, so we develop an
expanded multiresponse model which allows each response to accommodate a set of
possible models. The optimal design with respect to this larger model constitutes a
design robust to these sets. We find, as has been noted before, that the covariance
matrix is generally of little import, and it is much less consequential than the
unknown model forms. We use several examples to compare the model-robust
designs to designs optimal for the largest assumed model (i.e. usual practice).

Finally, we consider model-robust split-plot designs using the maximin ap-
proach. Split-plot experiments are appropriate when some factors are difficult or
expensive to change relative to other factors. They require two levels of randomiza-
tion which induces an error structure that renders ordinary least squares analysis
incorrect in general. The design of such experiments has garnered much attention
over the last twenty years, and has spawned work in split-plot D-optimal designs.
However, as in the case of completely randomized experiments, these procedures
rely on the assumption that the form of the model relating the factors to the re-
sponse is correctly specified. We relax that assumption, again by allowing the
experimenter to specify a set of model forms, and use the maximin criterion to
produce designs that have high D-efficiencies for each of the models in the set.
Furthermore, a generalization allows the experimenter to exert some control over
the efficiencies by specifying a level of interest in each model. We demonstrate the
procedure with two examples.

iv

Table of Contents

List of Figures ix

List of Tables x

List of Symbols xv

Acknowledgments xviii

Chapter 1 Introduction and Setting 1
1.1 Introduction . 1
1.2 Setting . 3
1.3 Dissertation Topics . 6

1.3.1 A Multiresponse Approach to Model-Robustness 7
1.3.2 A Maximin Approach to Model-Robustness 7
1.3.3 Multiresponse Model-Robustness 8
1.3.4 Model-Robustness for Split-Plot Experiments 9

1.4 Dissertation Research Objectives 9
1.5 Dissertation Outline . 10

Chapter 2 Literature Review 11
2.1 Optimal Design . 11
2.2 Model-Robust Design . 13

2.2.1 Theoretical Approaches . 13
2.2.2 Practical Approaches . 16

2.3 Multiresponse Regression . 18
2.3.1 Seemingly Unrelated Regression Model 18
2.3.2 Box and Draper Estimation Method 20
2.3.3 Multivariate Regression Model 21

v

2.4 Multiresponse Experimental Design 21
2.5 Split-Plot Experimental Design . 25

Chapter 3 Multiresponse Exchange Algorithms for Constructing
Single Response Model-Robust Experimental Designs 27

3.1 Introduction . 27
3.2 Setting and Proposed Approach . 28
3.3 Multiresponse and Model-Robust Exchange Algorithms 31

3.3.1 Univariate Exchange Algorithms 31
3.3.2 Model-Robust Exchange Algorithm 33

3.3.2.1 Model-Robust Updating Formula 34
3.3.2.2 Model-Robust Modified Fedorov Exchange Algo-

rithm . 34
3.4 Examples . 36

3.4.1 Constrained Response Surface Experiment 37
3.4.2 Hypothetical Constrained 3-factor Experiment 39
3.4.3 Constrained Mixture Experiment 42
3.4.4 Mixture Experiment with Disparate Models 44

3.5 Discussion . 47

Chapter 4 A Maximin Model-Robust Exchange Algorithm and
its Generalization to Include Model Preferences 50

4.1 Introduction . 50
4.2 A Generalized Maximin Model-Robust Exchange Algorithm 52
4.3 Asymptotic Properties of Generalized Maximin Criterion 55
4.4 Examples . 58

4.4.1 Constrained Two-Factor Experiment 59
4.4.2 Constrained Mixture Experiment 61
4.4.3 Mixture Experiment With Disparate Models 63

4.5 Discussion . 66

Chapter 5 Multiresponse, Model-Robust Experimental Design 69
5.1 Introduction . 69
5.2 Background . 70
5.3 Model-Robust Design for the SUR Model 72

5.3.1 Choosing a Set of Models 75
5.4 Design Algorithms . 76

5.4.1 Basic Multiresponse Exchange Algorithm 76
5.4.1.1 Updating Formulae 77

vi

5.4.1.2 Multiresponse Exchange Algorithm for D-Optimal
Designs . 81

5.4.2 Model-robust, Multiresponse Exchange Algorithm 83
5.5 Examples . 83

5.5.1 3-factor, 2-response Experiment 84
5.5.1.1 When ρ(x) is Known 84
5.5.1.2 When ρ(x) is Unknown 85

5.5.2 Two-factor, Two-response Experiment 87
5.5.3 Mullet Meat Experiment . 88

5.6 Discussion . 90

Chapter 6 Maximin Model-Robust Designs for Split Plot Exper-
iments 92

6.1 Introduction . 92
6.2 The Split-Plot Model and Design 93
6.3 Model-Robust, Maximin Split-Plot Design Algorithm 96

6.3.1 D-Optimal Split-Plot Exchange Algorithm 96
6.3.2 Maximin Split-Plot Exchange Algorithm 97

6.4 Examples . 102
6.4.1 Strength of Ceramic Pipe Experiment 102
6.4.2 Vinyl-Thickness Experiment 106

6.5 Discussion . 111

Chapter 7 Contributions and Future Work 113
7.1 Contributions . 113

7.1.1 Single Response Model-Robust Experimental Design 113
7.1.2 Multiresponse Model-Robust Experimental Design 114
7.1.3 Split-Plot Model-Robust Experimental Design 115

7.2 Future Work . 116

Appendix A Designs for Chapter 3 118
A.1 Designs for Example in §3.4.1 . 118
A.2 Designs for Example in §3.4.2 . 120
A.3 Designs for Example in §3.4.3 . 123
A.4 Designs for Example in §3.4.4 . 127

Appendix B Proof of Results in Chapter 4 129
B.1 Preliminaries . 129
B.2 Proof of Theorem 1 . 132
B.3 Proof of Theorem 2 . 132

vii

B.4 Proof of Corollary 1 . 133

Appendix C Designs for Chapter 4 134
C.1 Designs for Example in §4.4.1 . 134
C.2 Designs for Example in §4.4.2 . 135
C.3 Designs for Example in §4.4.3 . 141

Appendix D Matrix Algebra Results for Chapter 5 142

Appendix E Designs for Chapter 5 145
E.1 Designs for Example in §5.5.1 . 145
E.2 Designs for Example in §5.5.2 . 148
E.3 Designs for Example in §5.5.3 . 149

Appendix F Updating Formulae for Split-Plot Exchange Algo-
rithms 151

F.1 Derivation of Convenient Form of the Split-Plot Information Matrix 151
F.2 Matrix Results Used in Split-Plot Exchange Algorithms 153

F.2.1 Updating Formulae for Changes in Easy-to-Change Factors . 154
F.2.2 Swapping Two Points From Different Whole Plots 154
F.2.3 Updating Formulae for Changes in Hard-to-Change Factors . 155

Appendix G D-optimal Split-Plot Algorithm of Goos and Vande-
broek [50] 156

Appendix H Designs for Chapter 6 160
H.1 Designs for Example in §6.4.1 . 160
H.2 Designs for Example in §6.4.2 . 174

Bibliography 194

viii

List of Figures

1.1 Example of continuous design with discrete design space in which
there are two factors. 4

1.2 Diagram of several optimality criteria ([9] via [7]). 6

3.1 Model-robust designs for example in §3.4.1 38

4.1 Model-robust designs for example in §4.4.1 61
4.2 Some 11-run designs for example in §4.4.3, with repeated points noted 67

5.1 Histogram of D-efficiencies with respect to the 49 models and Σ1,
for the model-robust design. 89

5.2 Histogram of D-efficiencies with respect to the 49 models and Σ1,
for the design optimal for the quadratic model alone 90

ix

List of Tables

3.1 Determinants, with D-efficiencies, for example in §3.4.1 with n = 6,
protecting against three models. 39

3.2 Determinants, with D-efficiencies, for example in §3.4.2 with n =
20, protecting against five models. 41

3.3 Determinants, with D-efficiencies, for example in §3.4.3 with n =
20, protecting against four models. 43

3.4 Determinants, with D-efficiencies, for example in §3.4.4, with n =
11, protecting against five models. 46

4.1 Determinants, with D-efficiencies, for example in §4.4.1 with n = 6,
protecting against three models. 60

4.2 Determinants, with D-efficiencies, for example in §4.4.2 with n =
25, protecting against three models. 63

4.3 Determinants, with D-efficiencies, for example in §4.4.3 with n =
11, protecting against five models. 65

5.1 Determinants, with D-efficiencies, for example in §5.5.1 with ρ(x)
known. 85

5.2 Comparison of model-robust designs for example in §5.5.1, in terms
of D-efficiencies with respect to all 3969 possible true models. . . . 87

5.3 Comparison of model-robust design and design optimal for full
quadratic model, for each of three assumed true covariance ma-
trices, as measured by the mean D-efficiency, standard deviation of
the D-efficiency, and the minimum D-efficiency. 88

6.1 For example in §6.4.1, D-efficiencies for various designs with respect
to models (6.9)-(6.12). We give efficiencies assuming η = 1 as well
as η = 5.65. 105

6.2 For example in §6.4.2, designs focused on smaller models, with D-
efficiencies for models (6.14)-(6.25), assuming η = 1 110

x

6.3 For example §6.4.2, designs focusing on both small and large models,
with D-efficiencies for models (6.14)-(6.25), assuming η = 1 110

A.1 Model-robust design using MRMF algorithm, for the example in
§3.4.1. This is also the Bayesian model-robust design. 118

A.2 Model-robust design using Genetic Algorithm [54], for the example
in §3.4.1. 118

A.3 Optimal design for model (3.10), for the example in §3.4.1. 119
A.4 Optimal design for model (3.8), for the example in §3.4.1. 119
A.5 Optimal design for model (3.9), for the example in §3.4.1. 119
A.6 Model-robust design constructed using MRMF algorithm, for the

example in §3.4.2. 120
A.7 Model-robust design constructed using the Bayesian method of [37]

with 1
κ

= 1, for the example in §3.4.2. 120
A.8 Model-robust design constructed using the Bayesian method of [37]

with 1
κ

= 16, for the example in §3.4.2. 121
A.9 Design optimal for model (3.15), for the example in §3.4.2. 121
A.10 Design optimal for model (3.11), for the example in §3.4.2. 121
A.11 Design optimal for model (3.12), for the example in §3.4.2. 122
A.12 Design optimal for model (3.13), for the example in §3.4.2. 122
A.13 Design optimal for model (3.14), for the example in §3.4.2. 122
A.14 Model-robust design using the MRMF algorithm, for the example

in §3.4.3. 123
A.15 Model-robust design using the Genetic Algorithm of [54], for the ex-

ample in §3.4.3. Note: numbers have been rounded to four decimal
places if necessary. 123

A.16 Model-robust design using Bayesian method of [37] with 1
κ

= 1, for
the example in §3.4.3. 124

A.17 Model-robust design using Bayesian method of [37] with 1
κ

= 16,
for the example in §3.4.3. 124

A.18 Optimal design for model (3.19), for the example in §3.4.3. 124
A.19 Optimal design for model (3.16), for the example in §3.4.3. 125
A.20 Optimal design for model (3.17), for the example in §3.4.3. 125
A.21 Optimal design for model (3.18), for the example in §3.4.3. 126
A.22 Design constructed using the MRMF algorithm, for the example in

§3.4.4. 127
A.23 Design used by Frisbee and McGinity [42], for the example in §3.4.4. 127
A.24 Design optimal for model (3.20), for the example in §3.4.4. 127
A.25 Design optimal for model (3.21), for the example in §3.4.4. 128
A.26 Design optimal for model (3.22), for the example in §3.4.4. 128

xi

A.27 Design optimal for model (3.23), for the example in §3.4.4. 128
A.28 Design optimal for model (3.24), for the example in §3.4.4. 128

C.1 Maximin model-robust design, for the example in §4.4.1. 134
C.2 (1, 1, .6)-Maximin model-robust design, for the example in §4.4.1. . 134
C.3 Maximin model-robust design, for the example in §4.4.2. 135
C.4 (.9,1,1)-maximin model-robust design, for the example in §4.4.2. . . 136
C.5 (.9,1,.5)-maximin model-robust design, for the example in §4.4.2. . . 137
C.6 Model-robust design constructed using MRMF algorithm, for the

example in §4.4.2. 138
C.7 Design optimal for model (4.13), for the example in §4.4.2. 139
C.8 Design optimal for model (4.11), for the example in §4.4.2. 139
C.9 Design optimal for model (4.12), for the example in §4.4.2. 140
C.10 Maximin model-robust design, for the example in §4.4.3. 141
C.11 (.9,1,1,1,.9)-maximin model-robust design, for the example in §4.4.3. 141

E.1 D-optimal design constructed via MX algorithm, for example in
§5.5.1, when Σ and ρ(x) are known 145

E.2 D-optimal design constructed using semi-definite programming [9],
for example in §5.5.1, when Σ and ρ(x) are known 146

E.3 D-optimal design for example in §5.5.1 with ρ(x) known and Σ = I. 146
E.4 Model-robust design for the example in §5.5.1, constructed using

the SSPS set of possible models for each response. 146
E.5 Model-robust design for the example in §5.5.1, constructed using

the SPS set of possible models for each response, assuming Σ is
known (in this case, the design is the same if we use Σ = I). 147

E.6 D-optimal design for the example in §5.5.1, constructed assuming
the full quadratic model only. 147

E.7 Model-robust design for example in §5.5.2, constructed using the
SSPS model set (the design constructed using the SPS model set is
the same). 148

E.8 D-optimal design for the example in §5.5.2, constructed assuming
the full quadratic model only. 148

E.9 D-optimal design for example in §5.5.3, with ρ(x) and Σ assumed
known. 149

E.10 Model-robust design for example in §5.5.3, constructed using the
SSPS model set. 149

E.11 Model-robust design for example in §5.5.3, constructed using the
SPS model set. 150

E.12 D-optimal design for example in §5.5.3, for quadratic model only. . 150

xii

H.1 F1-maximin model-robust split-plot design, for the example in §6.4.1. 161
H.2 (.9, .9, 1)-F1-maximin model-robust split-plot design, for the exam-

ple in §6.4.1. 162
H.3 F2-maximin model-robust split-plot design, for the example in §6.4.1. 163
H.4 (.8, .8, 1, .5)-F2-maximin model-robust split-plot design, for the ex-

ample in §6.4.1. 164
H.5 Design used by Vining et al. [103], for the example in §6.4.1. 165
H.6 Optimal split-plot design for model (6.9) assuming η = 1, for the

example in §6.4.1. 166
H.7 Optimal split-plot design for model (6.10) assuming η = 1, for the

example in §6.4.1. 167
H.8 Optimal split-plot design for model (6.11) assuming η = 1, for the

example in §6.4.1. 168
H.9 Optimal split-plot design for model (6.12) assuming η = 1, for the

example in §6.4.1. 169
H.10 Optimal split-plot design for model (6.9) assuming η = 5.65, for the

example in §6.4.1. 170
H.11 Optimal split-plot design for model (6.10) assuming η = 5.65, for

the example in §6.4.1. 171
H.12 Optimal split-plot design for model (6.11) assuming η = 5.65, for

the example in §6.4.1. 172
H.13 Optimal split-plot design for model (6.12) assuming η = 5.65, for

the example in §6.4.1. 173
H.14 F1-maximin model-robust design, for the example in §6.4.2. 174
H.15 (.7, .9, 1, 1, 1, 1)-F1-maximin model-robust design, for the example

in §6.4.2. 175
H.16 (1, 1, 1, 1, 1, 1, .5, .5, .5, .5, .5, .5)-F2-maximin design, for the example

in §6.4.2. 176
H.17 Design from Kowalski et al. [68], for the example in §6.4.2. 177
H.18 F2-maximin model-robust design, for the example in §6.4.2. 178
H.19 (1, 1, 1, 1, 1, 1, .9, .9, .9, .9, .9, .9)-F2-maximin design, for the example

in §6.4.2. 179
H.20 F3-maximin model-robust design, for the example in §6.4.2. 180
H.21 (.7, 1, .9)-F3-maximin model-robust design, for the example in §6.4.2. 181
H.22 Design optimal for model (6.14), for the example in §6.4.2. 182
H.23 Design optimal for model (6.15), for the example in §6.4.2. 183
H.24 Design optimal for model (6.16), for the example in §6.4.2. 184
H.25 Design optimal for model (6.17), for the example in §6.4.2. 185
H.26 Design optimal for model (6.18), for the example in §6.4.2. 186
H.27 Design optimal for model (6.19), for the example in §6.4.2. 187

xiii

H.28 Design optimal for model (6.20), for the example in §6.4.2. 188
H.29 Design optimal for model (6.21), for the example in §6.4.2. 189
H.30 Design optimal for model (6.22), for the example in §6.4.2. 190
H.31 Design optimal for model (6.23), for the example in §6.4.2. 191
H.32 Design optimal for model (6.24), for the example in §6.4.2. 192
H.33 Design optimal for model (6.25), for the example in §6.4.2. 193

xiv

List of Symbols

β The p× 1 vector of regression parameters for basic re-
gression model; or the q×1 vector of regression param-
eters for the multiresponse regression model.

κ The prior precision parameter for the model-robust
procedure of DuMouchel and Jones [37].

φ(M(ξ)) Optimal design criterion function.

ρ(x) Model forms, for the multiresponse regression model.

τ The p× 1 vector of regression parameters for split-plot
regression model.

ξ Asymptotic design.

ξn Exact, n-point design for completely randomized and
multiresponse experiments.

ξnb Exact, n-point design with b whole plots for split-plot
experiments.

Ξ Set of all possible designs.

B The set of whole plots in a split-plot design.

b The number of whole plots in a split-plot design.

c The number of candidate points in exchange algorithm
candidate list.

C The candidate list for the various exchange algorithms
developed in this dissertation.

xv

Ci The set of candidate points with the same factor level
settings as whole plot i.

Df D-efficiency with respect to model f .

f(x) Model form, for the univariate regression model.

F Set of models for which procedures are model-robust.

gi(MF(ξn)) Model-robust criterion function.

Gf The generalized D-efficiency with respect to model f .

Hi The set of ki design points in the ith whole plot.

k The number of factors in basic and/or multiresponse
regression model.

ki The number of design points in the ith whole plot.

M(ξ) Information matrix for design ξ, for univariate, com-
pletely randomized design.

Mm(ξ) Information matrix for design ξ, for multiresponse de-
sign.

Msp(ξ) Information matrix for design ξ, for split-plot design.

MF = (M1,M2, . . . ,Mr) The set of information matrices with respect to the
model forms in F .

p The number of parameters in basic regression model.

P The set of possible whole plot factor level combina-
tions.

qi The number of parameters for response i in the mul-
tiresponse regression model.

q The total number of parameters in the multiresponse
regression model.

r The number of models in F and/or the number of re-
sponses in the multiresponse regression model.

xvi

v = (v1, v2, . . . , vr) The model-interest vector for each of the r models in
F .

V(x, ξ) Prediction variance for point x and design ξ, for uni-
variate, completely randomized design.

Vm(x, ξ) Prediction variance matrix for point x and design ξ,
for multiresponse design.

Vsp(x, ξ) Prediction variance for point x and design ξ, for split-
plot design.

X Design space.

zi The ith whole plot factor level combination.

xvii

Acknowledgments

I thank my Aunt Rosie for demonstrating that going to college was normal, even
in a setting in which it was rare.

I thank my father and mother, Steve and Bonnie, for their implicit, explicit, and
unwavering support of a son whose formal education, I’m sure, seemed like it was
never to end.

I thank my classmates for their help. Grad school would have been significantly
more difficult without them.

I thank James Rosenberger for his confidence in me, and for making it seem that
he was never too busy to talk, even when he probably was.

I thank my advisor, Enrique del Castillo, for making our regular meetings uplifting.
So often I left these exchanges feeling better about my progress.

I thank the U.S. Census Bureau for the Dissertation Fellowship that has allowed
my academic energies to converge on this project.

I thank my son, Xavier, for infusing my life with a mixture of joy and more joy.

I thank my wife, Amy, for patiently waiting for the commencement of our “real”
life, and for loving me in the meantime.

I thank God, the Great Designer Himself, for giving me all these things to enjoy.

xviii

Dedication

To Amy, who agreed to embark on a different sort of life by marrying me.

xix

Chapter 1
Introduction and Setting

1.1 Introduction

Consider a manufacturing setting in which an engineer is examining the effect of

five mixture factors on the hardness of a plastic product [96]. In addition to the

mixture constraint (each factor, in each experimental run, comprises between 0%

and 100% of the mixture, and the sum of these factors must be 100%), other con-

straints on the factors further restrict the design region. With only 25 experimental

runs available, the experimenter would like to fit an appropriate polynomial-type

regression model, the form of which is unknown. How might one choose the lev-

els of the factors for these experimental runs? In other words, how should the

experiment be designed?

Alternatively, perhaps food scientists are studying the effects of washing minced

mullet flesh on several measures of quality, including texture, color, and how well

the meat was preserved [101]. This is a multiresponse design problem and it

suggests the question of whether a design can be constructed to take advantage

of this multivariate structure? If yes, how? If not, does it reduce to a univariate

design problem?

Or, suppose that one is producing vinyl to cover automobile seats and the

measurement of interest is its thickness ([29], pp. 377-383). This material is com-

prised of many mixture components, including three plasticizers, which may affect

its thickness. But two nonmixture factors, extrusion rate and drying temperature,

are potentially important as well. Furthermore, it is inconvenient to independently

2

reset the levels of each factor for each run, as complete randomization would re-

quire. Both the design and analysis of this experiment is thus complicated by these

considerations. How might one design an effective experiment in this case?

In this dissertation, we develop flexible and practical design methods to address

these sorts of problems. We seek to construct efficient designs even when the

experimenter lacks knowledge of the type of relationship between the response

and factors. Our methods aim to accommodate not just univariate, completely

randomized experiments, but multiresponse and split-plot experiments as well.

Standard designs, such as fractional factorial or central composite designs and

their split-plot analogs, exist to address many experimental design situations.

Sometimes, however, because of constraints on the design region, categorial factors,

or nonstandard sample size requirements, these traditional designs are inadequate.

Furthermore, they can be inefficient in their use of experimental resources.

A popular alternative to standard designs are optimal designs, which are chosen

for their good variance properties. There are many optimality criteria that have

been proposed, but they generally fall into one of two categories: 1) parameter

variance minimizers; or 2) prediction variance minimizers. In contrast to standard

designs which are model-independent (although this is not precisely true; they are

generally chosen with a particular maximal model in mind), optimal designs de-

pend strongly upon the assumed a priori knowledge of the form of the relationship

between the response(s) and the factors.

This assumption is often unmet in practice, since experimenters generally do

not know the true form of the model. Thus, the central and unifying theme of this

thesis is model-robust experimental design. That is, we develop useful methods

for practitioners which retain the optimal design paradigm, but allow robustness

with respect to departures from the assumed model form(s).

This is a well-studied problem in the univariate case, but the new practical

procedures developed herein are intuitive for users and constitute generalizations

of current optimal design techniques for experiments with finite run sizes. Further-

more, little or no work has been done regarding model-robustness for multiresponse

and split-plot experiments, so the univariate, completely randomized procedures

are extended to these more complicated model-robust design problems.

3

1.2 Setting

To clarify some of the aforementioned ideas, we review and set notation for the

basic linear regression model as well as completely randomized, univariate exper-

imental design, concepts which are fundamental to the work in this dissertation.

The linear regression model is written as

y = Xβ + ε, (1.1)

where y is an n-vector of observations, X is an n × p matrix, β is a p-vector of

model parameters, and ε is an n-vector of errors with mean 0 and variance σ2. A

common way to estimate β is to use the least squares criterion, which minimizes

the squared deviation between the data and the estimates. These are given by

β̂ = (X
′
X)−1X

′
y with V ar(β̂) = σ2(X

′
X)−1.

Let X be the design space and x ∈ X be the set of all design points in this

space. Further, let a design be a discrete probability measure ξ defined over X .

This implies that ξ(x) ≥ 0 ∀x ∈ X , ξ(χ) = 1, and that there exist a countable

number of design points upon which there is positive measure. Then, a design

can be thought of as the proportion of the available experimental runs assigned to

any particular design point in X . This allows any design to be represented as its

associated design measure: ξ(x) = λ(x). A more enlightening representation is

ξ =

(
x1 . . . xd

λ1 . . . λd

)
(1.2)

where xi, i = 1, . . . , d are the d design points in X which have positive measure,

and λi, i = 1, . . . , d is the measure placed (or the fraction of the experiments

performed) on the associated design points. In general, for a set of n experiments,

such a design does not restrict the number of experiments performed at each of the

d design points to be integer-valued (equivalent to assuming an infinite number of

runs) and thus it is called an approximate (asymptotic) design. However, an exact

experiment (one with a finite number of runs) can be represented as

ξn =

(
x1 . . . xd

n1 . . . nd

)
(1.3)

4

where n is the total number of experiments, and ni, i = 1, . . . , d is the number

of experiments performed at design point, xi. Figure 1.1 gives an example of a

continuous design with a discrete design space for which the measure at each design

point is equal.

Figure 1.1. Example of continuous design with discrete design space in which there are
two factors.

We further define the univariate information matrix as

M(ξ) =
1

σ2

∫
χ

f(x)f
′
(x) dξ

where f(x) is a p-vector with entries of the same form as the expanded design

matrix X for design point x. Further, for a particular point x and design ξ, the

5

prediction variance is

V(x, ξ) = f
′
(x)M−1(ξ)f(x) (1.4)

For the exact design defined in (1.3), the information matrix can be simplified

to

M(ξn) =
1

σ2

d∑
i=1

nif(xi)f
′
(xi) (1.5)

=
1

σ2
X
′
X (1.6)

=
[
V ar(β̂)

]−1

(1.7)

In traditional optimal design for completely randomized experiments, the goal

is to optimally allocate experimental resources. A raft of criteria have been pro-

posed (i.e. alphabetic optimality), the most common and popular of which is

D-optimality, largely because of its computational convenience. This criterion is

defined as

φ(M(ξ)) = |M(ξ)| , (1.8)

and minimizes the generalized variance of the parameter estimates. Other param-

eter variance-based criteria include A-optimality, which minimizes the trace of the

information matrix and E-optimality, which minimizes the maximum eigenvalue

of the information matrix. Assuming normality, the D-optimal design minimizes

the volume of the confidence ellipsoid about the parameters, the A-optimal design

minimizes the volume of the enclosing box of this ellipsoid, and the E-optimal

design minimizes its major axis (1.2). Other criteria minimize a function of the

prediction variance, (1.4). G- and IV-optimality are examples, which minimize the

maximum prediction variance and the average prediction variance, respectively.

It is clear from (1.5) that the model form f is implicit in the information

matrix which is a central part of the optimality criteria. Thus, any optimal design

depends strongly on the model form chosen by the experimenter. In this thesis,

we develop procedures which allow designs based upon more than just a single,

assumed model.

Our model-robust methods are based upon D-optimality. It is the most com-

monly used criterion, due to its computational amenability, but also attractive

6

Figure 1.2. Diagram of several optimality criteria ([9] via [7]).

because it generally performs well with respect to other criteria (see, for example,

[45]). With the exception of Chapter 5 on multiresponse model-robust design, the

approach used to address this problem could be used in principle with other design

criterion. However, many of the computational advantages would be lost.

1.3 Dissertation Topics

Classical optimal design assumes a single model form f . Based upon this model

form, a design is expanded to X, from which the information matrix, M, can be

calculated. Then, in the case of D-optimality for an exact design, a design ξn is

chosen to maximize |M|.
In contrast, the model-robust approach taken in this dissertation assumes a set

of models F = (f1, f2, . . . , fr). Based upon each of these user-specified models,

a design can be expanded to Xi, i = 1, . . . , r, and a set of information matrices,

MF = (M1,M2, . . . ,Mr), can be calculated. To construct a model-robust design,

criteria are used which account for each of the information matrices. In this case,

a design ξn is chosen to maximize a real-valued function g(MF).

This device is used throughout, though the criteria (i.e., g) and/or experimental

situation changes. If a design can be chosen which maximizes g(MF), it should

perform well with respect to each model form in F thus providing robustness for

these models.

7

These model-robust criteria for univariate, completely randomized designs are

not themselves new. However, their implementation via exchange algorithms for

exact designs gives practitioners intuitive, useful design construction procedures

and allows their extension to more complex experimental settings.

We focus first on two model-robust methods for univariate, completely random-

ized experiments, and then expand our methodology to include multiple response

and split-plot experiments.

1.3.1 A Multiresponse Approach to Model-Robustness

The first technique, for a univariate, completely randomized experiment, chooses

the design which maximizes the following model-robust criterion:

g1(MF(ξn)) =
∏
f

|Mf (ξn)|.

This criterion is motivated by a connection with multiresponse optimal design.

When the model-robust design problem is framed using F , the goal of multire-

sponse optimal design and model-robust design are very similar. In both cases, a

design is desired that is efficient for a variety of models (because in the multire-

sponse case, the different responses can have different model forms). In fact, when

the models chosen for F are nested (that is, if they are ordered from smallest to

largest in terms of the number of parameters, each succeeding model includes the

previous), the model-robust design is D-optimal for the associated multiresponse

model.

Thus, we can use multiresponse optimal design algorithms to construct model-

robust designs for the single response case. This observation results in a multire-

sponse generalization of the modified Fedorov exchange algorithm, a simplification

of which we use to find model-robust designs.

1.3.2 A Maximin Approach to Model-Robustness

Though the preceding procedure has a compelling interpretation, it affords the

experimenter little flexibility in reflecting varying interest in each model and for

model sets with relatively few elements tends to bestow much higher D-efficiencies

8

for some models than others. To mitigate this lack of balance, another model-

robust criterion is presented:

g2(MF(ξn)) = min
f∈F

(|Mf (ξn)|/|M∗
f |)1/pf = min

f∈F
Ef ,

where M∗
f is the information matrix for the design optimal for model f , pf is

the number of parameters for model f , and Ef is the D-efficiency with respect to

model f . We seek the design which maximizes g2.

We again develop a generalization of a standard exchange algorithm to imple-

ment this model-robust criterion. This maximin approach produces designs for

which there is worst-case protection for all f ∈ F , and the D-efficiencies with

respect to the models tend to be more balanced. We can generalize g2 to allow

varying emphases on particular models, if some are deemed more important or

likely than others. This generalized criterion is

g2(MF(ξn)) = min
f∈F

(Ef/vf) = min
f∈F

(Gf),

where vf ∈ (0, 1] is the level of interest in model f and Gf is the generalized

D-efficiency. Resulting designs are often suggestive of the differences in interest.

We explore asymptotic properties of this criterion, including a condition which

guarantees complete balance of the generalizedD-efficiencies. Even if this condition

is not satisfied, we show that balance will be achieved for some subset of at least

two models in nontrivial cases.

1.3.3 Multiresponse Model-Robustness

There are multiple barriers facing the practitioner whose experiment has multiple

responses. The covariance matrix relating the responses to one another is usu-

ally unknown at the design stage, and the model forms relating each response to

the factors are generally unknown as well. An approach reminiscent of §1.3.1 is

adopted to provide a framework within which designs can be found that reflect the

multiresponse nature of the problem as well as the lack of precise knowledge of the

model form for each response.

To find multiresponse D-optimal designs, we generalize a univariate exchange

9

algorithm, using matrix-updating formulae that reflect multiple responses. The

basic procedure is not model-robust and assumes that the covariance matrix is

known. However, using an expanded multiresponse model, we specify a set of

models for each response and calculate the optimal design for this larger multire-

sponse model. In certain cases, the covariance matrix can be ignored, and even in

those cases in which it affects the optimal design, its effect seems small particularly

as compared to the effect of ignoring model misspecification.

1.3.4 Model-Robustness for Split-Plot Experiments

If the levels of some factors in an experiment are hard and/or expensive to change,

while others are considerably easier and/or cheaper, a split-plot experiment is

appropriate. Such an experiment involves two levels of randomization and conse-

quently complicates the error structure of the model typically fit.

D-optimal design for split-plot experiments has been used to increase the preci-

sion with which the parameters of the split-plot model can be estimated. However,

such procedures require—just as in the completely randomized case—that the form

of the model be specified. Failure to correctly specify this model form leads to a

suboptimal design.

We develop model-robust split-plot procedures by using the maximin criterion

discussed in §1.3.2 to give worst-case protection with respect to the models spec-

ified in F . The same generalization of the maximin criterion is used to give the

experimenter more control over these efficiencies.

1.4 Dissertation Research Objectives

The overarching objective of this dissertation is to provide usable, intuitive method-

ologies for experimenters whose approach of choice is D-optimal design. The goal

is to maintain the optimal design framework, while reducing the dependence upon

a single, assumed model.

Specifically, for the univariate, completely randomized scenario, the objective

is to develop exchange algorithms which are generalizations of those commonly

implemented to find D-optimal designs. Given a user-specified set of potential

10

models, and a model-robust criterion (either the product of the determinants of the

information matrices, or maximizing the minimum D-efficiency), these algorithms

will produce exact designs which have desirable model-robust properties, including

the ability to test for lack-of-fit.

For multiresponse experiments, the objective is to produce an exchange algo-

rithm that will construct D-optimal designs, given that the covariance matrix and

model forms are known. Beyond that, the goal is that the algorithm has sufficient

flexibility to handle a relaxation of the known model forms assumption.

The final objective is to extend the maximin criterion to the situation in which

a split-plot experiment is to be designed. As in the simpler case, this will allow the

user to relax the model form assumption, dictate to some extent the efficiencies

with respect to each possible model, and be equipped to test for lack-of-fit.

1.5 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we review several streams

of literature, the confluence of which have produced many of the ideas in this work:

optimal and model-robust design, multiresponse regression models, multiresponse

design, and split-plot design.

In Chapter 3 the first model-robust exchange algorithm is developed for uni-

variate, completely randomized experiments, using as a criterion the product of the

determinants of the information matrices with respect to all models in a specified

set. In Chapter 4 another criterion is used—maximize the minimum D-efficiency

with respect to all models in a specified set—and another model-robust exchange

algorithm is developed. Both of these methods are illustrated by examples.

Chapter 5 consists of a generalization to the multiresponse setting of the al-

gorithm in Chapter 3, including the development of a multiresponse exchange

algorithm and an empirical demonstration of its virtues. Chapter 6 extends the

methodology of Chapter 4 to the case of split-plot designs, developing a maximin

exchange algorithm, and demonstrating its use via examples.

Chapter 7 provides a discussion of our contributions, as well as some potential

future work.

Chapter 2
Literature Review

The research in this dissertation pulls together ideas from a range of statistical

topics—experimental design in particular. In this chapter, we review the litera-

tures for optimal design, model-robust design, multiresponse design, multiresponse

regression, and design for split-plot experiments.

2.1 Optimal Design

In §1.2, we reviewed the basic linear regression model, which serves as the setting

for optimal design, and gave an overview of various optimality criteria including

D-optimality. The early leader of the optimal design movement was Jack Kiefer

[64], and he set it upon the firm mathematical foundations which gave it legitimacy

and allowed it to thrive. He used continuous design theory, which assumed asymp-

totically large run sizes and resulted in the famed General Equivalence Theorem

[66] which showed that D- and G-optimality are equivalent. For more on optimal

design continuous theory, see [87, 10].

In this thesis, we concentrate on exact designs; that is, designs for experiments

with a specified, finite number of available runs. This is a more practical situation

because an experimenter invariably wants a design conforming to an experimental

budget.

Unfortunately, when the continuous approach is forsaken, the associated opti-

mization problem becomes much harder, because the space of information matrices

is no longer convex and neither are the criteria functions such as | · | and tr(·).

12

Consequently, heuristic exchange algorithms are generally employed to find optimal

designs.

The basic exchange procedure was pioneered by Fedorov [41], and involved a

simple idea supplemented by updating formulae which ameliorated the inherent

computational difficulties to some extent. This exchange algorithm requires a

candidate list of points which reasonably covers the design space, as well as an

initial design. Then, it considers the effect of exchanges between each design point

and each candidate point. When each has been evaluated, the exchange which

most increases the determinant of the information matrix is executed and this

completes one iteration of the algorithm. Iteration continues until convergence,

which is guaranteed because of the nondecreasing sequence of determinants and

the existence of an upper bound. This algorithm can accommodate irregularly-

shaped design spaces as long as a suitable candidate list can be constructed. But

even with the computational shortcut formulae, this method will sputter for large

problems, because the required candidate list will necessarily be so large and each

iteration searches it n times—once for each design point—but only makes a single

exchange.

Consequently, many other approaches have been proposed to improve upon the

original algorithm. Cook and Nachtsheim [26] increase computational efficiency by

exchanging each design point (if the determinant can be improved) instead of just

one every iteration. Johnson and Nachtsheim [58] only consider exchanging the

k least important design points at each iteration. Though these adjustments are

faster, they still require a candidate list which suffers from the curse of dimension-

ality as the number of factors grow large.

To address this issue, Atkinson et al. [10] limit not just the number of design

points to consider exchanging, but also the size of the candidate list, at each iter-

ation. Meyer and Nachtsheim [77] abolish the candidate list altogether by making

exchanges coordinate-wise. The latter procedure is computationally superior and

performs well compared to the more methodical algorithms. In the original paper,

they indicated that this coordinate-exchange algorithm could not be implemented

for irregular design spaces, but more recent work seems to indicate that it is pos-

sible and has been done [86, 59].

Another approach, developed independently of Fedorov, is the DETMAX al-

13

gorithm of Mitchell [79]. Instead of exchanging, his procedure adds or subtracts

design points sequentially to increase the determinant, allowing excursions which

result temporarily in designs several runs larger or smaller than n, before invariably

returning to the original design size.

2.2 Model-Robust Design

A serious criticism of optimal design theory is that these designs have an undue

reliance upon the assumed model form. They will not be optimal, and may not

even be acceptable, if the true model form is different than what initially supposed.

If the model is overspecified, efficiency is lost by devoting experimental resources to

estimate unnecessary parameters; worse, if it is underspecified, the optimal design

will not even be able to estimate the true model.

Box and Draper [18] first argued that instead of focusing on optimal designs, it

is more important to design experiments that are robust to model misspecification.

They proposed as a model-robust criterion the mean squared deviation from the

true response, a quantity which can be decomposed into a variance term and a

bias term. Thus, a model-robust design would be one that minimizes this quantity.

However, since this criterion depends upon the parameters in the true model which

are not in the assumed model, it is of limited practical usefulness.

There seems to be two streams of research in this area. One approach is the-

oretical, consisting largely of continuous design theory and/or special cases. The

other is practical, focusing on flexible algorithms for exact designs. Our work falls

into the latter category, developing methods that are intuitive and useful to the

practitioner. However, as a matter of completeness and because ideas from more

theoretical work are useful and important, we review both.

2.2.1 Theoretical Approaches

A sensible approach to the model-robust experimental design problem is one pro-

posed by Läuter [71]. She assumes that the class of potential models, F , is known

though both a finite and infinite class of models is allowed for. In the finite case

her criteria reduce to

14

1. maxξ∈Ξ

∑
f∈F Q

∗(f)p(f) |Mf (ξ)|

2. maxξ∈Ξ

∑
f∈F Q

∗(f)p(f) ln{|Mf (ξ)|}

3. minξ∈Ξ maxx∈χ
∑

f∈F Q
∗(f)p(f)Vf (x, ξ)

where Q∗(f) is a weight given to model f and p(f) is a function which standardizes

the criterion function (i.e. the determinant) so that they are of comparable order

of magnitude. If Q∗(f) = Q∗ ∀f ∈ F and p(f) = p ∀f ∈ F , Criterion 2 is

equivalent to
∏

f∈F |Mf (ξ)|. An equivalence theorem is proven, in the spirit of

[65], which shows the correspondence between Criteria 2 and 3 and a computing

procedure is given which guarantees convergence for Criterion 3. It is also shown

that the design which maximizes a slightly stronger form of Criterion 1 can also

be iteratively computed.

Though conceived for asymptotic designs, this approach is similar in some ways

to the approach we will suggest, since the idea of allowing the experimenter to

define a class of plausible models is compelling in its practicality. Several authors

have adopted this approach as well. Cook and Nachtsheim [28] developed a parallel

to Läuter for the case of linear optimality, an example of which is the integrated

variance criterion. Later, Dette [31] used the theory of canonical moments to

give more explicit solutions for this product criterion. These papers, however, are

limited to continuous designs and unconstrained cuboidal design regions.

Another approach optimizes the determinant of the information matrix of one

model subject to requiring the determinant (or efficiency) of other models to be

above some value (e.g. Stigler [97] and Dette and Franke [32]). Imhof and Wong

[57] give a graphical method to find maximin designs with respect to two criteria

(instead of two model forms) and Dette and Franke [33] explicitly characterize

continuous maximin designs in the specific case of polynomial regression on [−1, 1],

where they maximize the minimum efficiency with respect to possible polynomial

models as well as a goodness-of-fit criterion.

An overview of some of the theoretical side was given by Pukelsheim and Rosen-

berger [88] who compared several design-construction methods and evaluated how

well they met three goals for a single factor study: (1) discriminate between a

second-order and third-order model; (2) make inferences about the second-order

model; (3) make inferences about the third-order model. They used as a baseline

15

the D-optimal designs for each of the goals separately. Then, they compared three

methods: (1) Divide the design into two equal parts, half of which uses an equi-

spaced design and the other half which is D-optimal for the second-order model;

(2) Designs where the geometric mean of the design criteria was optimized; and

(3) D-optimal constraint designs in which one of the goals was optimized while

the others were constrained in some way. The methods of this paper produce

continuous designs and apply to a one-factor polynomial regression model.

Since then, a significant amount of additional work has been done on various

aspects of designing optimal experiments when the degree of polynomial regres-

sion is unknown, utilizing the constrained optimal design idea. Montepiedra and

Fedorov [80] examine a linear model in which the fitted model is

yi = β
′
f1(xi) + ε

but the true response model includes δ
′
f2(xi), an additional contamination func-

tion which is not modeled.

They propose, essentially, constrained D-optimal designs where the determi-

nant of the information matrix is maximized subject to the bias being controlled.

Liu and Wiens [74] and Fang and Wiens [40] study a similar setting except the

contamination function contains an unknown but continuous and bounded func-

tion. They introduce bounded bias and generalized bounded bias designs which

minimize the determinant of the information matrix while constraining a function

of the bias to be less than a specified bound. For more research in this vein, see

[106, 107, 108, 111, 109, 110, 53]. Though most of this sort of work is for con-

tinuous designs, we do note that Fang and Wiens [39] give a simulated annealing

algorithm which allows the construction of exact designs.

Chang and Notz [24] provided an older review of this area of research and

admit that to use methods like those employing contamination functions requires

one to make unsubstantiated assumptions about the true model. They summarize

the value of these models: “The practical value of [the model-robust] results ... is

probably in alerting us to the dangers of ignoring the approximate nature of any

assumed model and in providing some insight concerning what features a design

should have in order to be robust against departures from an assumed model while

16

allowing good fit of the assumed model. This insight may be more valuable in

practical settings than a slavish adoption of any particular mathematical model.”

Indeed, a problem with many of these contamination function approaches is

that they must make assumptions about the contamination function if they are

able to do any analytical work with respect to the bias. For instance, some assume

the contamination function is from a family of random functions with a specified

variance, or that the family of functions are bounded by some known function. At

the very least, they require the experimenter to specify a parameter quantifying the

interest in bias versus variance. This may be difficult and unintuitive in practice.

2.2.2 Practical Approaches

In contrast to the theoretical stream, there has been some development of more

flexible, exact methods as well. Heredia-Langner et al. [54] used genetic algorithms

to generate model-robust optimal designs, using the set of models idea of Läuter.

This was accomplished by introducing a desirability function which utilized MF .

One approach which is in the spirit of the original optimal design critique [18]

is by Welch [105], in which protection is sought from a maximum discrepancy

between the model and the true response. This requires the specification of a

“maximum discrepancy” parameter which is unlikely to be supplied by the ex-

perimenter. Welch provides an algorithm for both continuous and exact designs

and suggests a compromise between all-bias and all-variance designs enables by a

choice of the maximum discrepancy parameter that is robust to both.

A key development in the area of model-robustness is a Bayesian model-robust

method proposed by DuMouchel and Jones [37] in which they assume all possible

terms in the model can be categorized as either potential or primary. For instance,

perhaps a screening experiment is to be designed so that certain main effects

are of particular interest; these would be termed primary terms. However, the

experimenter might want to hedge against higher-order terms; these would be

categorized as potential terms. Suppose there are s1 primary terms and s2 potential

terms. Let X = (Xpri|Xpot) where X has s1 + s2 columns and let β = (βpri|βpot)
be a vector partitioned similarly.

For the primary terms, DuMouchel and Jones assume a noninformative prior

17

and for the potential terms, since they unlikely to have large effects, they use a

N(0, κ2I) prior distribution, where κ is a prior precision parameter. Then, assum-

ing σ = 1 and data normally distributed as Y |β ∼ N(Xβ, I), they calculate the

posterior distribution of β as

β|Y ∼ N(A−1X
′
Y,A−1) (2.1)

where A = [X
′
X + K/κ2] and K is a (s1 + s2) × (s1 + s2) diagonal matrix with

0 on the first s1 diagonals and 1 on the last s2. They choose the design that

maximizes |A|, which is model-robust in the sense that it accounts for both the

“primary” model as well as the full “potential” model. This method can produce

robust designs even in cases when the total number of parameters considered is

greater than the number of observations.

Neff [83] used this idea in what she called a two-stage Bayesian D-D optimal

model-robust design. In the first stage the design is chosen to maximize |A|. Then,

using information from the first stage, the second stage design is constructed. Later

Ruggoo and Vandebroek [91] improved this by putting a prior on κ and using its

posterior distribution from the first stage to serve as its prior for the second stage.

A non-Bayesian two-stage robust-design procedure due to Montepiedra and Yeh

[81] suggested that in the first stage an optimally discriminating design should be

used and then incorporated into a second stage in which an optimal design should

be chosen according to the most likely model from the first stage.

Li and Nachtsheim [73] focus on factorial designs in which in addition to main

effects, up to b interactions may be present. They use estimation capacity, based

on the work of Sun [98], the ratio of the number of estimable models to the num-

ber of possible models for a given design, and show that a new class of designs,

model-robust factorial designs, outperform competitors with respect to a com-

pound criteria which involves estimation capacity as well as D-optimality. Later,

Agboto and Nachtsheim [1] proposed a Bayesian alternative to the above method,

framing the problem in a decision-theoretic context, defining a utility function

whose expectation is maximized by choosing a particular design. They combined

the approach of Li and Nachtsheim [73] with DuMouchel and Jones [37] to develop

the so-called Bayesian Model Robust Optimal design criterion. A key component

18

to this method is the choice of model priors, which are based on the hierarchical

model priors developed by Chipman et al. [25].

A more recent approach by Tsai and Gilmour [100] uses an approximation to

As optimality to achieve model-robustness for all possible subsets of a specified

largest model. Another interesting model-robust procedure, by Berger and Tan

[11], for the case in which a mixed model is to be fit, utilizes a maximin approach

to guard again potential models as well as possible parameter values.

2.3 Multiresponse Regression

An altogether different area, necessary in the development of Chapters 3 and 5, is

multiresponse regression, which seeks to take advantage of relationships that may

exist among the responses. We can extract more information from the data if we

utilize those relationships and in fact multivariate regression allows for more precise

parameter estimates than fitting each response separately [115]. The classical

multivariate regression model [4] forces each response variable to have the same

design matrix, while the more flexible multiresponse regression model allows the

form of the relationship between each response and the factors to be different.

There are two multiresponse regression models, each with their own estimation

methods, that were proposed at about the same time: The seemingly unrelated

regression (SUR) model [115] and the Box-Draper method [19]. We will review the

SUR model in the following section, give an overview of the Box-Draper model,

and briefly describe the classical multivariate regression model.

2.3.1 Seemingly Unrelated Regression Model

Zellner [115] introduced the seemingly unrelated regression (SUR) model (see also

[117], [116]), a multiresponse regression model which allows the correlation struc-

ture among the responses to be considered explicitly and also allows each response

to have a unique functional relationship with the factors.

To define the model, suppose there are r responses, qi parameters for response

i, q =
∑

i qi total parameters in the multiresponse model, and n observations for

19

each response. Then let

yi = Ziβi + εi, i = 1, 2, . . . , p

be the linear regression for a given response, with yi an n-vector of observations

for this response, Zi the n × qi expanded design matrix, βi the qi × 1 vector

of parameters, and εi the n-vector of errors. This multivariate model can be

completely specified as
y1

y2

...

yr

 =

Z1 0 . . . 0

0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zr

β1

β2

...

βr

+

ε1

ε2

...

εr

 (2.2)

or more concisely as

Y = Zβ + ε (2.3)

where Y and ε are now nr×1 vectors, β is a q×1 vector, and Z is a nr×q matrix

and all of these quantities are shown in (2.2).

We assume that the error vector is distributed as N(0,Ω), where Ω = Σ ⊗
In and ‘⊗’ is the Kronecker product. This model assumes independence across

observations within a particular response and correlation between the responses.

Once the model is in the form (2.3), an estimate for β is given by the generalized

least squares estimator (also known as the Aitken estimator):

β̂∗ = (Z
′
Ω−1Z)−1Z

′
Ω−1Y (2.4)

with

V ar(β̂∗) = (Z
′
Ω−1Z)−1 (2.5)

Under the assumption of normality (i.e. that G is an np-variate normal distri-

bution), β̂∗ is also the maximum likelihood estimator [115]. Since Σ is in most

cases unknown, it must be estimated before (2.4) can be employed. Zellner [115]

proposed

Σ̂ij =
1

n− q
{sij} =

1

n− q
{(yi − Ziβ̂i)

′(yj − Zjβ̂j)} (2.6)

20

where β̂i = (Z
′
iZi)

−1Z
′
iyi are the ordinary least squares estimates for each of the

responses separately. Using (2.6) and letting Ω̂ = Σ̂ ⊗ In, we can calculate an

estimate of β:

β̂ = (Z
′
Ω̂−1Z)−1Z

′
Ω̂−1Y (2.7)

Zellner showed that (2.7) is asymptotically equivalent to (2.4), the “pure”

Aitken estimator.

2.3.2 Box and Draper Estimation Method

Box and Draper [19] developed a more general Bayesian setting to handle multivari-

ate regression, in which the primary goal is to calculate the posterior distribution

of the parameters. Suppose we have n r-variate observations, and each response

can be modeled as

yiu = fi(x
1
iu, x

2
iu, . . . , x

`
iu; θ1, θ2, . . . , θm) + εiu

where i = 1, . . . , r, u = 1, . . . , n, there are ` independent variables, and there

are m common parameters (though it is not required that all of the independent

variables or all of the parameters be explicitly related to each response). Let y
′
u =

(y1u, y2u, . . . , yru) be the response vector for the uth observation, θ
′
= (θ1, . . . , θm),

and Σ = {σij} be the covariance matrix among the responses. Further, define

vij =
n∑
u=1

{yiu − fi(xqiu,θ)}{yju − fj(xqju,θ)}

Then, assuming normal data and a noninformative, Jeffreys priors on θ and

(σij)
−1, they derive the posterior distribution for θ to be

p(θ|y) = C |vij|−
n
2 (2.8)

where y
′
= (y

′
1, . . . ,y

′
n) and C is a constant. To obtain an estimate of θ we would

choose the values of the parameters which would maximize (2.8). If there are

linear dependencies between the responses, this method breaks down, but Khuri

and Cornell [63] reserve a portion of their book to discuss this case and how to

21

deal with it.

2.3.3 Multivariate Regression Model

A special case of the SUR model is when the expanded design matrix is common

to all responses. In that case, the model is

Y = Z β + ε

(N × r) (N × q) (q × r) (N × r)

and the least squares estimates are β̂ = (Z
′
Z)−1Z

′
Y, a q × r matrix whose ith

column is the ordinary least squares estimate for response i. These estimates are

unbiased with

V ar(β̂) = Σ⊗ (Z
′
Z)−1

where Σ is the variance-covariance matrix of the responses.

2.4 Multiresponse Experimental Design

For experiments with multiple responses, one might consider designing it with this

multivariate structure in mind. Thus, the design should account for the correla-

tion between responses, if possible, and also for the differences in the form of the

relationships between the factors and each of the responses.

In univariate optimal design, the form of the assumed model is of great impor-

tance in the determination of an optimal design. Thus, intuitively, if the form of

the assumed model is the same for each response in a multiresponse situation, it

would seem to follow that the univariate optimal design would be the same as the

multivariate optimal design. This is, in fact, true in the case of D-optimality (see,

e.g., Chang [22]).

On the other hand, if the form of the assumed model differs across responses,

the optimal design for the first response is probably different than the optimal

design for the second. Developing designs that are optimal with respect to all

responses taken together, while considering the covariance matrix as well, is the

goal of multiresponse optimal design of experiments.

22

Perhaps the first to consider multiresponse experimental design was Daniel [30].

He extended standard fractional factorial designs to take advantage of the fact that

in a two-response system both may not be related to all of the same factors. He

did not consider the correlation between the responses, assumed that those factors

influencing each response were known, and found it difficult to extend his approach

to more than two responses. Another early consideration of multiresponse design

was by Roy et al. [90], who also studied how the 2k factorial design might be

extended to account for situations in which different responses were related to

different sets of factors, or the case in which different responses were related to the

same set of factors but with different effects (i.e. different model-forms). Other

work, such as [67] and [21], has also considered the special case of two responses.

Draper and Hunter [34] were the first to examine the problem of optimal mul-

tiresponse experimental design. Using a Bayesian formulation with a noninforma-

tive prior for the parameter vector β and the assumption of normal errors, they

devised the following criterion, which if maximized would in turn maximize the

posterior information available with respect to the parameters:

∣∣∣X̃′ (
Σ−1 ⊗ I

)
X̃
∣∣∣ =

∣∣∣∣∣
r∑
i=1

r∑
j=1

σijX
′

iXj

∣∣∣∣∣ (2.9)

where r is the number of responses, σij is a known variance or covariance, Xi is

the Jacobian of the possibly nonlinear multivariate response function, and X̃ =

(X1, . . . ,Xr). In the case of a linear model Xi is the customary expanded design

matrix. Equation (2.9) is similar to the univariate D-optimal criteria, except it

maximizes the determinant of a weighted sum of X
′
iXi matrices. In order for the

matrices in (2.9) to be conformable all Xi must have the same number of columns,

which implies that each response depends on the same set of parameters. This is

indeed the assumption, though some columns are allowed to be 0.

Later, the same authors [35] extended this work to the case of a multivariate

normal prior on the parameters, proposing a criterion which incorporates the prior

precision matrix: ∣∣∣X̃′ (
Σ−1 ⊗ I

)
X̃ + Ω−1

∣∣∣
Then, Box and Draper [20] extended the same basic idea to include provisions

23

for non-homogenous variances among blocks, some known and some unknown.

Another area of multiresponse design research has been to give conditions for

which the optimal design can be obtained irrespective of Σ. Krafft and Schaefer

[69] first gave a condition, followed by Kurotschka and Schwabe [70] and Bischoff

[15, 16]. Among the several conditions given, these authors showed that if the

response models are nested, the D-optimal design is invariant to Σ. This, of

course, assumes that the response model forms are known.

To calculate D-optimal designs for multiresponse systems, there are four meth-

ods of interest which we will describe. Before that, we will extend the design

notation of §1.2 to the multiresponse case.

Define the multiresponse information matrix

Mm(ξ,Σ) =

∫
χ

ρ(x)Σ−1ρ′(x) dξ (2.10)

where ξ is a design measure defined in §1.2, ρ
′
(x) = diag(z

′
1(x), z

′
2(x), . . . , z

′
r(x))

is an r × q matrix, and z
′
i(x) is a vector with entries of the same form as the

expanded design matrix Zi in (2.2) for response i and design point x. Further, for

a particular point x, the prediction variance matrix is

Vm(x, ξ,Σ) = ρ
′
(x)M−1

m (ξ,Σ)ρ(x) (2.11)

For the exact design defined in (1.3), we have

Mm(ξn,Σ) =
n∑
i=1

ρ(xi)Σ
−1ρ′(xi) (2.12)

= Z′Ω−1Z (2.13)

=
[
V ar(β̂∗)

]−1

(2.14)

Fedorov [41] proved an equivalence theorem which facilitated an algorithm to

generate continuous D-optimal designs for the multiresponse regression model.

Simply put, a design ξ∗ is D-optimal if and only if the maximum over all points in

the design space of tr [Σ−1V(x, ξ∗,Σ)] is equal to the total number of parameters

being estimated. This allowed Fedorov to develop a design algorithm, which uses

24

this equivalence to move toward the optimal design.

Fedorov’s algorithm assumes that Σ is known. Wijesinha [112] uses the above

algorithm as a basis for a sequential procedure which begins with Σ = I and

calculates an ever-improving estimate of Σ at each iteration. Wijesinha shows

that this procedure converges to the true multiresponse D-optimal design.

Chang [23] concentrated on response surface designs (designs for polynomial

models of order 1 and 2) and showed via simulation that using a design support

consisting only of the union of the D-optimal support for each of the individual

responses, nearly D-optimal continuous designs could be constructed with Σ = I.

All three of the algorithms above must solve an optimization subproblem dur-

ing each iteration of the algorithm. Chang’s algorithm would appear to be the

most computationally inexpensive because it restricts the design space. However,

Atashgah and Seifi [8] formulated the problem as a semi-definite program, which

turns the problem into a single, large optimization problem. They construct both

continuous and exact designs using their method, though they require a discretiza-

tion of the design space reminiscent of the candidate list required by exchange

algorithms. They also assume that Σ is known or estimated from previous data.

Almost no work has been done to extend the idea of model-robustness to the

multivariate setting. Kim and Draper [67] examine the case of two responses with

no common parameters. They assume that the fit will be linear with a small

amount of quadratic bias and that the correlation between the responses can be

approximately known. The general model-robust idea of Box and Draper [18] is

used to define a metric, now a matrix, which represents the mean squared deviation

from the true response, and can be decomposed into a variance and bias component.

They seek to minimize the trace of this metric matrix, but the approach is severely

limited by the fact that this method is not readily extendible to more than two

responses. It also demands knowledge of the model being protected against.

Yue [114] used the idea of an approximately polynomial model with an unknown

contamination function (as in [74, 40]) but with an extension to the multiresponse

setting, using the Box-Draper model formulation of Section 2.3.2. They assume

that the contamination function (i.e. bias) belongs to some class of random func-

tions, and use an average expected loss criterion which is similar to that used by

Box and Draper [18] which can be partitioned into a variance and bias compo-

25

nent. Later, Liu and Yue [75] used a different criteria, namely P-optimality, which

maximizes the coverage probability of the confidence ellipsoid on the regression

coefficients, in the same general multiresponse context.

These multiresponse approaches, while general in the sense that they do not

restrict the bias functions to be of a particular form, are not necessarily practical

as they assume the bias originates from a class of random functions with 0 mean

and specified variance. Designs can be produced under certain assumptions about

the bias functions and responses, but it seems unlikely that in real situations there

would be a plausible basis for making such assumptions.

2.5 Split-Plot Experimental Design

Though dating back to Yates [113], split-plot experiments have undergone a re-

naissance of sorts in the experimental design literature over the last twenty years.

Research by Lucas and coauthors [76, 2] and Leitsinger et al. [72], as well as an

abundance of later work, suggests a rising level of awareness of these experiments

among researchers and practitioners. Recently, Jones and Nachtsheim [61] gave a

thorough review of these developments.

Optimal design in this area, dominated by Goos and coauthors (e.g. [49, 50,

51, 59]), utilizes the D-optimality criterion to produce exact designs that estimate

model parameters as precisely as possible. Goos and Vandebroek [50] developed

a D-optimal split-plot exchange algorithm for which the experimenter specifies

the number and size of each whole plot. The same authors have also presented

algorithms which decide the number and size of the whole plot automatically [49,

51]. These procedures require estimates of the ratio between the whole plot and

subplot variance, but empirical evidence suggests that the designs are not very

sensitive to this quantity.

Various other papers by Goos and coauthors address several additional issues in

the design of these experiments. Goos [46] compares the optimal design approach

to equivalent estimation and orthogonal approaches in the context of split-plot

experiments, and concludes that the optimal design approach provides adequate

flexibility and superior efficiency. Jones and Goos [59] develop an alternative,

computationally more efficient, split plot coordinate exchange algorithm, inspired

26

by Meyer and Nachtsheim [77] which does not require a candidate list. Goos and

Donev [47] use optimal design algorithms for split plot designs to construct designs

in which both mixture and process variables are present. Arnouts and Goos [5]

give determinant- and inverse-updating formulae for the information matrix for

several scenarios of interest in the split-plot situation. They give results for 1)

changes in easy-to-change factor levels; 2) changes in hard-to-change factor levels;

3) points exchanged between two whole plots; and 4) changes in the number of

runs in a whole plot. This is important because these updating formulae allow the

exchange algorithms to be executed with computational advantage.

Besides optimal design, there are other approaches to the design of split-plot

experiments. One early algorithmic approach was by Trinca and Gilmour [99], who

give methodology for the more general setting in which there are any number of

randomization strata (as opposed to the split-plot case in which there are only two).

Instead of using traditional notions of design optimality, they adopt orthogonality

as their chief criterion and develop a method which builds the design stratum by

stratum, where each stratum is close to orthogonal to the others. This procedure

does not require prior information about the variance components.

Lucas and coauthors [76, 2, 3] have studied the advantages of split-plot designs,

and argue for superefficiency, the phenomenon that in some situations split-plot

designs have higher efficiencies than CRDs. Goos and Vandebroek [51] also make

this claim, in terms of both D- and G-efficiencies. In another line of research

[43, 62, 44, 104], researchers examine the devastating effects of analyzing a split-

plot experiment as a CRD, and note in particular that if the levels for all factors

are not independently reset, a de facto split-plot design has been run.

Fractional Factorial Split Plot designs have also been extensively studied [55,

12, 17, 14], often using the minimum aberration criteria to differentiate competing

designs. Other authors have generalized second-order response surface designs,

such as central composite and Box-Behnken, to the split-plot case (e.g. [36, 103,

84]). A related area of research is the so-called equivalent estimation designs which

allow estimation of split-plot models via ordinary least squares [72, 103, 84, 102].

Chapter 3
Multiresponse Exchange Algorithms

for Constructing Single Response

Model-Robust Experimental Designs

3.1 Introduction

Since Kiefer [64] debuted the idea of optimal design of experiments, a vast literature

has grown up around the notion of choosing a design based upon some numerical

criterion. The most common is D-optimality, which chooses the design minimizing

the generalized variance of the regression parameter estimates. Though standard

designs can be used in most design situations, optimal procedures are useful when,

for instance, there are constraints on the design space, some factors are categorical,

or nonstandard sample sizes are required.

An example in which optimal designs are a natural choice is in the case of mix-

ture experiments because of the constrained nature of the design region. Heinsman

and Montgomery [52] describe an experiment involving a household product with

four surfactant mixture factors. Beyond the mixture constraint, the factors were

restricted as well which made an optimal design natural. However, such a de-

sign would require the complete specification of the form of the mixture regression

model. For instance a special cubic Scheffé polynomial model might be chosen,

though it is unknown before the experiment whether this is the correct model

28

form. We provide a procedure which allows the experimenter to obtain a design

which does not assume a single model form, but rather accounts for a class of

user-specified models. We revisit this example later.

We propose a new, practical method which produces designs robust for a set

of user-defined possible models by maximizing the product of the determinants of

the information matrices. These ideas are motivated by the a connection between

multiresponse regression [115], multiresponse optimal design [41], and a contin-

uous model-robust optimal design approach due to Läuter [71]. To implement

these ideas, we develop an exchange algorithm which generalizes existing univari-

ate methods.

This chapter is organized as follows. In the next section we review the technical

background and describe the basic approach taken to find model-robust designs.

We then review some basic univariate exchange algorithms and give a general-

ization of the univariate determinant-updating formula which is used to drive

the model-robust exchange algorithm. We next give several examples illustrat-

ing our method and compare our designs to those of DuMouchel and Jones [37]

and Heredia-Langner et al. [54]. We conclude with a discussion of the procedure

and its results.

3.2 Setting and Proposed Approach

Though given in §1.2, the regression and design setting are reviewed here. Suppose

one is interested in performing an experiment with a single quantitative response

variable, y, and a factors (quantitative or categorical), x = (x1, . . . , xa). We assume

that the classical univariate linear regression model will be fit, where yi = f ′(xi)β+

εi, i = 1, . . . , n with β a p-vector of parameters and f(x) the p-vector valued model

function, though p and the precise form of f(x) are unknown. In matrix notation,

we have y = Xβ + ε where y is an n-vector (independent observations), X is

an n × p expanded design matrix, and ε is also an n-vector with E(ε) = 0 and

V ar(ε) = σ2In. We assume also that the least squares criterion is used to estimate

β, in which case the estimator is β̂ = (X′X)−1X′Y with V ar(β̂) = σ2(X′X)−1.

To fit such a model, the design must be chosen and yi observed at each of the

designs points, xi. Let X be the design space, Ξ be the set of all possible designs

29

and ξn(x) ∈ Ξ be a discrete, n-point design:

ξn =

(
x1 x2 . . . xd

n1 n2 . . . nd

)

where n is the total number of experimental runs, and ni, i, . . . , d is the number of

runs performed at design point, xi. We define the information matrix in this case

as M(ξ) = σ−2
∑n

i=1 f(x)f ′(x) and in the specific instance of the linear regression

model, M(ξ) = (X′X)/σ2 = [V ar(β̂)]−1.

An optimal design approach would attempt to find the n points, xi ∈ χ, i =

1, . . . , n, such that some criterion, φ(M(ξ)), is optimized. Many criteria have been

proposed, but probably the most popular and mathematically tractable is the D-

optimality, for which φ(M(ξ)) = |M(ξ)|. Assuming normality, such an optimal

design minimizes the volume of the confidence ellipsoid of the parameters.

Since the precise form of f(x) is generally unknown, we might make the weaker

assumption that there exists a set of r possible models F that might be fit. Läuter

[71] presented this idea for continuous designs ξ (designs with asymptotic run sizes),

and introduced a model-robust criterion similar to φ (MF(ξ)) =
∏

f∈F |Mf (ξ)|,
where MF = (M1, . . . ,Mr) and Mf is the information matrix for model f . Thus,

the design which maximizes φ(MF(ξ)) over all possible designs might be considered

robust to the models in F . Cook and Nachtsheim [28] utilized this idea to develop

linear-optimal designs focusing on prediction, and Dette [31] used the theory of

canonical moments to give more explicit solutions for this product criterion. These

papers, however, are limited to continuous designs and unconstrained cuboidal

design regions.

Our discrete approach springs from Läuter’s idea, since allowing the experi-

menter to define a class of possible models is practically compelling. When model-

robustness is viewed in this way, it is closely related to multiresponse optimal

design, which has a literature in its own right; see [41], [63], [23], and [9]. These

methods are based upon a multiresponse regression model due to Zellner [115]

which allows the functional form of the factors to be different for each response

and can produce more precise estimates of the regression parameters by considering

the covariance structure of the responses.

Zellner’s seemingly unrelated regression (SUR) model was given in §2.3.1, but

30

is reviewed here as well. This model, with r responses, can be written as
y1

y2

...

yr

 =

X1 0 . . . 0

0 X2 . . . 0
...

...
. . .

...

0 0 . . . Xr

β1

β2

...

βr

+

ε1

ε2

...

εr

 (3.1)

where each yi and εi are n-vectors, βi is a qi-vector, and Xi is a n× qi expanded

design matrix for response i and the total number of parameters is
∑r

i=1 qi = q.

It is assumed that the n observations are independent, but the r responses for

the ith observation are correlated as specified by the r × r covariance matrix Σ.

This leads to an error covariance matrix which is Ω = Σ ⊗ In where ‘⊗’ is the

Kronecker product. Consequently, the generalized least squares estimator is β̂∗ =

(Z
′
Ω−1Z)−1Z

′
Ω−1Y with V ar(β̂∗) = (Z

′
Ω−1Z)−1 where

Z =

X1 0 . . . 0

0 X2 . . . 0
...

...
. . .

...

0 0 . . . Xr

as seen in (3.1). Then the q×q multiresponse information matrix is Mm = Z

′
Ω−1Z.

Thus, for a given Σ, to find a multiresponse D-optimal design, one must find that

which maximizes |Mm|, which, as in the univariate case, will be the design which

minimizes the volume of the confidence ellipsoid for the parameters when normality

is assumed.

Notice, however, that finding the multiresponse optimal design for r responses

with different regression functions should give a design that is simultaneously

“good” for all the response models, though not optimal for any particular one.

Consequently, when a univariate model-robust design is viewed as one which per-

forms well for a set of specified models, finding such a design is similar to a parallel

multiresponse situation in which there are r response models and we calculate the

corresponding multiresponse D-optimal design. Since this work was begun, we

discovered a technical report [38] which makes the same connection, though the

basis of our work is independent of theirs.

31

Results by Bischoff [15, 16] and Kurotschka and Schwabe [70] prove that when

the response models are nested (i.e., when ordered from smallest to largest in

terms of the number of parameters, each succeeding model contains the previous),

multiresponse optimal designs are invariant to Σ. Moreover, since our primary

concern is model-robustness, it seems reasonable to assume the identity matrix as

the covariance between the r “responses” or models, which when the models in

F are nested gives an attractive multiresponse D-optimal interpretation for the

model-robust design. To implement these ideas, we will develop a generalization

of the determinant-updating formula used in univariate exchange algorithms, and

implement a model-robust exchange algorithm based upon it.

3.3 Multiresponse and Model-Robust Exchange

Algorithms

In this section we first review the basic univariate exchange algorithms upon which

our methods are based. Then we present a generalization to the matrix-updating

formulas used in the univariate procedures, which is equivalent to a multiresponse

generalization when when Σ = I. Finally, we introduce our model-robust ex-

change algorithm, which utilizes this generalization to avoid calculating determi-

nants when evaluating potential exchanges.

3.3.1 Univariate Exchange Algorithms

The idea which buttresses the original exchange algorithm [41] is simple. Starting

with a nonsingular design, consider exchanges between each design point and each

member of a candidate list of points covering the design space, X . Choose the

exchange which most increases the determinant of the information matrix, and

repeat until convergence. This brute force method has been made computationally

feasible by a quick determinant-updating formula. Fedorov [41] showed that given

design ξn and model form f , if xj ∈ ξn is exchanged for x ∈ X resulting in the

new design ξ̃n, then

|Mf (ξ̃n)| = |Mf (ξn)| (1 + ∆f (xj,x, ξn)) (3.2)

32

where

∆f (xj,x, ξn) = Vf (x, ξn)−Vf (x, ξn)Vf (xj, ξn)+V2
f (x,xj, ξn)−Vf (xj, ξn) (3.3)

under the assumption that σ2 = 1, with

Vf (x, ξn) = f
′
(x)M−1

f f(x)

and

Vf (x,xj, ξn) = f
′
(x)M−1

f f(xj).

We can also update the inverse of the information matrix using Lemma 3.3.1

in Fedorov [41] (using notation from Meyer and Nachtsheim [77]):

M−1
f (ξ̃n) = M−1

f (ξn)−M−1
f (ξn)F1(I2 + F

′

2M
−1
f (ξn)F1)−1F

′

2M
−1
f (ξn) (3.4)

with F1 = [f(x),−f(xj)] and F2 = [f(x), f(xj)]. The Fedorov algorithm is as

follows:

1. Initialize algorithm: Begin with a nonsingular design; construct grid, C ⊂ X

2. Let j = 1.

3. For design point xj, calculate ∆(xj,x, ξn) as in (3.3) for all x ∈ C. Choose

x∗j = arg maxx∈χ ∆(xj,x, ξn).

4. Increment j and if j < n return to Step 3. Else choose

j∗ = arg max
j∈{1,··· ,n}

∆(xj,x
∗
j , ξn),

exchange xj∗ and x∗j∗ , and update the determinant.

5. Update the inverse of the information matrix according to (3.4).

6. If ∆(xj∗ ,x
∗
j∗ , ξn) < ε, STOP. Else return to Step 2.

This algorithm generates a convergent nondecreasing sequence of determinants,

but will not in general converge to the global optimum. Therefore, it is necessary

33

to run many instances of the algorithm each with a randomly generated initial

design. Despite the cheap updates, Fedorov’s eponymous procedure will sputter

for large problems, since each iteration searches the candidate list n times—once

for each design point—but only makes a single exchange. Consequently, many

improvements and alternatives have been proposed over the years; see §2.1.

Cook and Nachtsheim [26] proposed a modified Fedorov exchange algorithm,

which mimics Fedorov’s original procedure but exchanges each xj and x∗j in Step

3. This capitalizes on each of the n optimizations that are performed during each

iteration, and seems to be as effective as its archetype. It is actually a special case

of the k-exchange algorithm [58], which considers only the k least critical design

points (those with the smallest prediction variance) for exchange.

In the remainder of this chapter, we develop a multiresponse generalization

of the modified Fedorov exchange algorithm and use it to construct single re-

sponse model-robust designs. We focus on this algorithm since we found it to be

faster than the original Fedorov algorithm while producing better designs than the

k-exchange. Similar extensions to other existing univariate algorithms, such as

DETMAX [79], BLKL [10], and coordinate-exchange [77], could be developed.

3.3.2 Model-Robust Exchange Algorithm

Model-robust exchange algorithms arise from a confluence of motivating factors.

First, there is a need to develop practical and intuitive tools which allow experi-

menters to design experiments for nonstandard situations. Since the form of the

model is rarely known in advance, traditional optimal design methods fall short in

providing the necessary technical machinery.

Secondly, by noting the similarity between multiresponse optimal design and

the single response model-robust design problem we might consider the use of ex-

isting multiresponse optimal design methods to construct model-robust designs.

However, there exists almost no exact design methods for multiresponse optimal

design. This has led us to the development of multiresponse optimal design ex-

change algorithms based on the multiresponse determinant updating formula (see

Chapter 5). In the present context, we use a simplification of the multiresponse

procedure to produce model-robust designs.

34

3.3.2.1 Model-Robust Updating Formula

Recall that q is the total number of parameters in the multiresponse regression

model given in (3.1) and r is the number of responses. A multiresponse gener-

alization of the determinant updating formula (5.6) can be developed (again, see

Chapter 5) which allows the determinant of the q × q multiresponse information

matrix to be updated by evaluating the determinant of a 2r × 2r matrix when a

single point is exchanged.

However, if we assume that Σ = Ir we can simplify this updating formula so

that the update involves only scalar quantities. It is well known that the determi-

nant of a block diagonal matrix is the product of the determinants of the blocks.

Thus,

∣∣∣Mm(ξ̃)
∣∣∣ =

∣∣∣Z′newZnew

∣∣∣ =
r∏
i=1

∣∣∣X′

i,newXi,new

∣∣∣
=

r∏
i=1

∣∣∣X′

iXi

∣∣∣ · (1 + ∆i(xj,x)) (3.5)

where Znew is the multiresponse expanded design matrix for post-exchange design

ξ̃, Xi,new is the univariate expanded design matrix for model i and ξ̃, Xi is the

univariate expanded design matrix for model i and the pre-exchange design ξ, and

∆i is as in (3.3). The last equality follows from the univariate identity (3.2). This

allows us to update the information matrix via (3.5), a scalar. We are now prepared

to describe the proposed model-robust modified Fedorov exchange algorithm.

3.3.2.2 Model-Robust Modified Fedorov Exchange Algorithm

As in Läuter [71] we consider, instead of a single model, a finite set of possible

models, F . More specifically, let ξn be an n-point design and Mi(ξn) be the

information matrix for model i where fi ∈ F , i = 1, · · · , r. Suppose that we

exchange a design point xj for an arbitrary point x in the design region, resulting

in a new design ξ̃n. Then the model-robust optimization criteria can be written

as:

φ(MF(ξ̃n)) =
r∏
i=1

∣∣∣Mi(ξ̃n)
∣∣∣ (3.6)

35

=
r∏
i=1

|Mi(ξn)| (1 + ∆i(xj,x))

= φ(Mf (ξn))
r∏
i=1

(1 + ∆i(xj,x))

so that for each iteration of the algorithm, we need to just calculate and maximize∏r
i=1(1+∆i(xj,x)) where ∆i is calculated as in (3.3) for model i. We make a slight

adjustment to this criterion so our algorithm will not choose to exchange a point

that is so bad that (1 + ∆i(xj,x)) < 0 for an even number of models, which would

result in a positive value of our criterion even though the exchange is undesirable.

Thus, we choose the exchange which maximizes

r∏
i=1

(1 + ∆i(xj,x))I(1 + ∆i(xj,x) > 0) (3.7)

where I is the indicator function. By (3.5) this is equivalent to updating the

multiresponse information matrix under the assumption that Σ = I.

Based on the above development, the algorithm is as follows:

1. Initialize algorithm: Begin with a nonsingular design ξn; construct grid, C ⊂
X .

2. Let j = 1.

3. For design point xj, calculate (3.7) for all x ∈ C. Choose

x∗j = arg max
x∈χ

r∏
i=1

(1 + ∆i(xj,x))I(1 + ∆i(xj,x) > 0).

4. Perform exchange x∗j for xj, updating ξn. Update the determinant and also(
X
′
iXi

)−1
for each model using (3.4).

5. Increment j and if j < n return to Step 3. Else, if

max
j

r∏
i=1

(1 + ∆i(xj,x
∗
j)) < 1 + ε,

STOP. Else return to Step 2.

36

As in the univariate algorithm, to find a global optimum for larger problems it

is necessary to perform many runs of the algorithm using different initial designs.

We use ε = 0.01 for the convergence parameter.

3.4 Examples

In this section we present several examples illustrating the proposed model-robust

modified Fedorov (MRMF) exchange algorithm, and compare it with two other

exact model-robust design methods in the literature. Before giving the examples,

we briefly describe these methods and discuss how the designs will be evaluated.

DuMouchel and Jones [37] use a Bayesian approach to provide protection

against higher-order terms. They set s1 terms as primary and s2 terms as potential

and after scaling the two groups to make them nearly orthogonal, they assume an

informative prior for the potential terms and calculate a posterior distribution for

the parameters with variance A = [X
′
X + K/κ2]−1, where X = (Xpri|Xpot) and

K is a (s1 + s2)× (s1 + s2) diagonal matrix with 0 on the first s1 diagonals and 1

on the last s2. The prior variance parameter, κ, is to be chosen by the user. Then,

they simply choose the design that minimizes |A| using straightforward alterations

to existing exchange algorithms.

A distinct advantage of this method is that it can provide protection against

models with more parameters than observations. On the other hand, it is not

designed to produce model-robust designs with respect to more than two models.

Since it is a prominent model-robust technique for exact designs, we compare its

results to ours. Difficulties associated with this method are the choice of the prior

precision value, 1
κ
, and how to designate the primary and potential terms. We use

1
κ

= 1, as recommended by DuMouchel and Jones, but also include designs based

upon 1
κ

= 16. Because of the structure of A, larger prior precision values will result

in less consideration of the potential terms as manifested by lower efficiencies for

models involving those terms. We also generally assume more primary terms as

opposed to less. The results are based upon the implementation of this method in

the SASr software’s PROC OPTEX [92].

Heredia-Langner et al. [54] use a genetic algorithm to calculate exact model-

robust designs. They consider r possible models and optimize a desirability func-

37

tion which incorporates the determinants of the information matrices of each of the

models. Their procedure does not require a candidate list, though implementation

of a tuned genetic algorithm is not trivial. Examples in §3.4.1 and §3.4.3 are taken

from their paper, which allows comparisons to be made.

We compare designs on the basis of D-efficiencies with respect to each model

f ∈ F . The D-efficiency for model f is Df =
(
|Mf |
|M∗f |

)1/p

where M∗
f is the informa-

tion matrix for the design optimal for f alone, and p is the number of parameters

for model f . Since determinants can roughly be viewed as measures of volume,

this quantity takes the ratio of the volumes and scales the comparison to a per-

parameter basis.

For the individual model optimal designs in all examples save the last, Fe-

dorov’s algorithm via PROC OPTEX was run 50 times from randomly chosen

initial designs and the best final design was chosen. For the final example, the

MRMF algorithm was used to find the best designs for the models individually.

Furthermore, all model-robust designs produced by the methods in this chapter,

as well as those based upon the Bayesian procedure [37], were also generated based

on 50 separate algorithm instances.

All designs referred to in the following examples are given in Appendix A.

Matlabr (Version 7.8) code can be found at http://www.stat.psu.edu/~jlr/

pub/Smucker/.

3.4.1 Constrained Response Surface Experiment

A constrained two-factor example, taken from Heredia-Langner et al. [54], will

serve as an initial example illustrating our method. The design region, shown in

Figure 3.1, is X = {x = (x1, x2) : −1 ≤ x1, x2 ≤ 1, x1 + x2 ≤ 1,−0.5 ≤ x1 + x2}
with n = 6. The experimenter would like a design robust for a first-order, a first-

order with interaction, and full quadratic polynomial; i.e. F = {f ′i (x)βi, 1 ≤ i ≤
3,x ∈ X} where

f
′

1(x) = (1, x1, x2) (3.8)

f
′

2(x) = (1, x1, x2, x1x2) (3.9)

f
′

3(x) = (1, x1, x2, x1x2, x
2
1, x

2
2) (3.10)

38

The candidate list for this example consisted of 266 points constituting a grid

of resolution 0.1 placed over the design space. For the Bayesian method, we adopt
1
κ

= 1 and assign f
′
pri = (1, x1, x2, x1x2) and f

′
pot = (x2

1, x
2
2) in accordance with

recommendations in DuMouchel and Jones. We also include in our comparison

the model-robust design of Heredia-Langner et al. [54] as well as the optimal

design for the largest model.

The model-robust designs are given in Tables A.1-A.3 in Appendix A and are

shown graphically in Figure 3.1. Three design points are common to all four

designs, {(0, 1), (1, 0), (1,−1)}, and the MRMF and Bayes methods produced the

same design. Table 3.1 also compares the designs in terms of the determinant

and D-efficiency for each of the considered models, and the last column gives the

product of the determinants and efficiencies. The last row gives the determinant of

the information matrix for the D-optimal design for each of the models individually

(see Tables A.3-A.5 in Appendix A), and the efficiencies are calculated using these

values.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

Genetic Algorithm
Bayes and MRMF
Optimal Design for Quadratic

Figure 3.1. Model-robust designs for example in §3.4.1

Even though the Bayesian and MRMF designs seem close to the optimal de-

sign for the quadratic model (since their D-efficiency for the quadratic model is

nearly 1), the individually optimal design produces a poor efficiency with respect

39

to the interaction model. It is also somewhat surprising that the Bayesian method

produced the same design as the MRMF method, given that three models were to

be guarded against. However, in this simple example the MRMF design for the

three models is the same as that obtained when considering only models (3.9) and

(3.10) and ignoring (3.8). Therefore, it appears that the first-order model has no

effect upon the MRMF algorithm, so that there are essentially two models under

consideration, a situation for which the Bayesian procedure is natural.

Model
Design Measure (3.8) (3.9) (3.10) Product
MRMF |Mf | 27.04 33 3.01 2685.88

Df .810 .907 .995 .731
Genetic Algorithm |Mf | 31.14 26.91 2.21 1851.93

Df .849 .862 .945 .692
Bayes (1

κ
= 1) |Mf | 27.04 33 3.01 2685.88

Df .810 .907 .995 .731
Optimal Design for (4.10) |Mf | 31.63 14.35 3.11 1411.60

Df .853 .737 1 .629
Optimal (for each model) |Mf | 50.88 48.77 3.11

Table 3.1. Determinants, with D-efficiencies, for example in §3.4.1 with n = 6, protect-
ing against three models.

3.4.2 Hypothetical Constrained 3-factor Experiment

To further explore our method and how it compares to the Bayesian method in par-

ticular, consider a three-factor example with design region χ = {x = (x1, x2, x3) :

−1 ≤ x1, x2, x3 ≤ 1,−1 ≤ x1 + x2 + x3 ≤ 1,−1 ≤ x1 + x2 ≤ 1,−1 ≤ x1 + x3 ≤
1,−1 ≤ x2 + x3 ≤ 1} and five models of interest:

f
′

1(x) = (1, x1, x2, x3) (3.11)

f
′

2(x) = (f
′

1, x1x2, x1x3, x2x3) (3.12)

f
′

3(x) = (f
′

2, x
2
1, x

2
2, x

2
3) (3.13)

f
′

4(x) = (f
′

3, x
2
1x2, x

2
1x3, x1x

2
2, x

2
2x3, x1x

2
3, x2x

2
3, x1x2x3) (3.14)

f
′

5(x) = (f
′

4, x
3
1, x

3
2, x

3
3) (3.15)

so that F = {f ′i (x)βi, 1 ≤ i ≤ 5,x ∈ χ}.

40

In particular, assume that the experimenter would like to use n = 20 runs

and would like a design that can fit each of these models well. To specify the

Bayesian procedure, we take as primary all terms in (3.13) and designate the rest

as potential. We give the MRMF design in Table 3.2, as well as Bayesian designs

with 1
κ

= 1 and 1
κ

= 16 and the optimal design for the largest model, all using

a candidate list consisting of a grid of points with resolution 0.1 placed over the

design space.

The Bayesian designs are competitive for most of the models, but the designs

lack efficiency for model (3.14) when compared to the MRMF design, which might

be expected since it is in between the primary and full model and as such not

explicitly considered. None of the designs perform very well for model (3.12),

though the MRMF design is marginally better. As we expect, when a larger

prior precision value is used in the Bayesian procedure, the efficiency of models

containing primary terms is reduced, and in this case significantly degrades the

design in terms of the product criterion. The optimal design for the largest model

is competitive with the Bayesian designs in terms of model-robustness, though the

MRMF design would likely be preferred because of its higher efficiencies in models

(3.12), (3.13), and (3.14).

41

M
o
d
el

D
es

ig
n

M
ea

su
re

(3
.1

1)
(3

.1
2)

(3
.1

3)
(3

.1
4)

(3
.1

5)
P

ro
d
u
ct

M
R

M
F

|M
f
|

6.
58

e3
5.

57
e4

1.
10

e5
3.

21
e0

5.
24

e-
3

6.
78

e1
1

D
f

.8
64

.7
56

.8
70

.9
55

.9
79

.5
31

B
ay

es
(

1 κ
=

1)
|M

f
|

6.
63

e3
5.

21
e4

9.
74

e4
9.

92
e-

1
7.

94
e-

3
2.

65
e1

1
D
f

.8
67

.7
49

.8
60

.8
92

.9
99

.4
98

B
ay

es
(

1 κ
=

16
)

|M
f
|

5.
93

e3
4.

39
e4

1.
12

e5
4.

61
e-

1
4.

41
e-

3
5.

93
e1

0
D
f

.8
43

.7
31

.8
72

.8
52

.9
70

.4
44

O
p
ti

m
al

fo
r

(3
.1

5)
|M

f
|

6.
44

e3
4.

94
e4

9.
62

e4
7.

63
e-

1
8.

07
e-

3
1.

88
e1

1
D
f

.8
60

.7
44

.8
59

.8
78

1
.4

82
6

O
p
ti

m
al

(f
or

ea
ch

m
o
d
el

)
|M

f
|

1.
18

e4
3.

93
e5

4.
42

e5
6.

97
e0

8.
07

e-
3

T
ab

le
3.

2.
D

et
er

m
in

an
ts

,
w

it
h
D

-e
ffi

ci
en

ci
es

,
fo

r
ex

am
pl

e
in
§3

.4
.2

w
it

h
n

=
20

,
pr

ot
ec

ti
ng

ag
ai

ns
t

fiv
e

m
od

el
s.

42

3.4.3 Constrained Mixture Experiment

We now revisit the example briefly described at the outset. This is a four-factor

constrained mixture experiment regarding the formulation of a household product

in which 20 runs are available. The design region can be defined by:

X =

{
x = (x1, x2, x3, x4) :

4∑
i=1

xi = 1, .5 ≤ x1 ≤ 1, 0 ≤ x2, x3 ≤ .5, 0 ≤ x4 ≤ .05

}

where x1 is a nonionic surfactant, x2 is an anionic surfactant, x3 is a second nonionic

surfactant, and x4 is a zwitterionic surfactant. Because of the dependency induced

by the mixture constraint, standard mixture design models are considered which

do not include an intercept:

f
′

1(x) = (x1, x2, x3, x4) (3.16)

f
′

2(x) = (f
′

1, {xixj, i < j ≤ 4}) (3.17)

f
′

3(x) = (f
′

2, {xixjxk, i < j < k ≤ 4}) (3.18)

f
′

4(x) = (f
′

3, {xixj(xi − xj), i < j ≤ 4}) (3.19)

so that F = {f ′i (x)βi, 1 ≤ i ≤ 4,x ∈ χ}. Heredia-Langner et al. [54] also used this

example, and so we compare our method to their Genetic Algorithm as well as to

the Bayesian method of DuMouchel and Jones [37]. For the latter, we use both a

standard value for the prior precision, 1
κ

= 1, and a larger value, 1
κ

= 16, with all

terms primary except those unique to f4, which are regarded as potential.

Since this is a large mixture design, we supplemented a regular grid (resolution

0.01) with extreme vertices and approximate centroids of the design region using

code as described by Piepel [85].

43

M
o
d
el

D
es

ig
n

M
ea

su
re

(3
.1

6)
(3

.1
7)

(3
.1

8)
(3

.1
9)

P
ro

d
u
ct

M
R

M
F

|M
f
|

5.
31

e-
2

7.
22

e-
22

2.
65

e-
43

8.
36

e-
78

8.
49

e-
14

3
D
f

.7
28

.8
97

.9
31

.9
96

.6
06

G
en

et
ic

A
lg

or
it

h
m

|M
f
|

5.
23

e-
2

7.
46

e-
22

2.
90

e-
43

7.
80

e-
78

8.
83

e-
14

3
D
f

.7
25

.9
00

.9
37

.9
92

.6
07

B
ay

es
(

1 κ
=

1)
|M

f
|

5.
46

e-
2

6.
74

e-
22

2.
24

e-
43

9.
08

e-
78

7.
48

e-
14

3
D
f

.7
33

.8
90

.9
19

1
.6

00
B

ay
es

(
1 κ

=
16

)
|M

f
|

5.
64

e-
2

6.
12

e-
22

3.
01

e-
43

3.
08

e-
78

3.
20

e-
14

3
D
f

.7
39

.8
82

.9
39

.9
47

.5
80

O
p
ti

m
al

D
es

ig
n

fo
r

(3
.1

9)
|M

f
|

5.
46

e-
2

6.
74

e-
22

2.
24

e-
43

9.
08

e-
78

7.
48

e-
14

3
D
f

.7
33

.8
90

.9
19

1
.6

00
O

p
ti

m
al

(f
or

ea
ch

m
o
d
el

)
|M

f
|

1.
89

e-
1

2.
15

e-
21

7.
26

e-
43

9.
08

e-
78

T
ab

le
3.

3.
D

et
er

m
in

an
ts

,
w

it
h
D

-e
ffi

ci
en

ci
es

,
fo

r
ex

am
pl

e
in
§3

.4
.3

w
it

h
n

=
20

,
pr

ot
ec

ti
ng

ag
ai

ns
t

fo
ur

m
od

el
s.

44

In Table 3.3, the MRMF method can be seen to be competitive with the Ge-

netic Algorithm, though their design is slightly superior by our product optimality

criterion. This is likely a function of the discretization in our candidate list. Note

that the optimal design for model (3.19) alone has a significantly higher objective

function value (9.08e-78) than that given in Heredia-Langner et al. [54] (7.83e-78),

though theirs was asserted to have been obtained from PROC OPTEX in SAS as

well.

It is the case again in this example that the best design found by the MRMF

method is relatively close to that of the optimal design for the largest model. The

Bayesian design with precision of 1 actually chooses the optimal design for the

largest model, and shows that this design is competitive with those that look to

maximize the product of the determinants. When the precision is increased, we see

the same behavior as was noted before: The Bayesian design becomes less efficient

for the model that involves potential terms. The resulting Bayesian design gives

slightly more balance, but suffers against the product optimality criterion.

3.4.4 Mixture Experiment with Disparate Models

For our final example we use an unconstrained mixture experiment by Frisbee and

McGinity [42] with n = 11. The response is the glass transition temperature of

a certain film with three nonionic surfactant factors. The goal was to minimize

this transition temperature, and Frisbee and McGinity fit a traditional polynomial

model. However, another class of models, the so-called Becker models [29, Sec.

6.5], were shown by Rajagopal and Castillo [89] to also fit the data well and lead

to a significantly different optimal solution. These models, originally considered to

address certain shortcomings in the Sheffé polynomial models, use min(·) instead

of prod(·) to model second order mixture blending.

In this case,

X =

{
x = (x1, x2, x3) :

3∑
i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, 2, 3

}

45

and we take five possible models:

f
′

1(x) = ({xi, i = 1, 2, 3}) (3.20)

f
′

2(x) = (f
′

1, {xixj, i < j ≤ 3}) (3.21)

f
′

3(x) = (f
′

2, {x1x2x3}) (3.22)

f
′

4(x) = (f
′

1, {min(xi, xj), i < j ≤ 3}) (3.23)

f
′

5(x) = (f
′

4, {min(x1, x2, x3)}) (3.24)

so that F = {f ′i (x)βi, 1 ≤ i ≤ 5,x ∈ X}.
In addition to the five models we are guarding against, we also examine effec-

tiveness of our design with respect to the model fit by Frisbee and McGinity, as

well as the most probable model found a posteriori by Rajagopal and Castillo,

respectively:

f
′

fm(x) = (x1, x2, x3, x1x3, x2x3) (3.25)

f
′

rc(x) = (x1, x2, x3,min(x1, x3),min(x2, x3)) (3.26)

For a candidate list, we used a regular grid with resolution 1/12, which because

of the regular design region, contained the vertices and centroids of the region.

With the disparate model types, the Bayes procedure, with its primary and

potential factors, cannot be easily applied. Instead, we examine the results of the

MRMF design and compare it in Table 3.4 to the design that was actually used.

In terms of efficiency, the design used by Frisbee and McGinity is much inferior

for all models considered because it includes, in addition to two centroid points,

three other points on the interior of the simplex design region.

As seen in Table 3.4, the MRMF design is optimal for models (3.22), (3.23),

and (3.24). This is because the optimal designs for these models individually are

interchangeable; i.e. the optimal design for one is also optimal for another. Note

that since the models are not nested we do not have the multiresponse D-optimality

interpretation.

46

M
o
d
el

D
es

ig
n

M
ea

su
re

(3
.2

0)
(3

.2
1)

(3
.2

2)
(3

.2
3)

(3
.2

4)
(4

.2
0)

(4
.2

1)
M

R
M

F
|M

f
|

19
.8

1
5.

91
e-

3
5.

36
e-

6
0.

56
9

2.
78

e-
2

6.
61

e-
2

1.
46

D
f

.7
45

.9
54

1
1

1
.8

12
.8

66
F

ri
sb

ee
an

d
M

cG
in

it
y

|M
f
|

8.
25

1.
22

e-
3

1.
51

e-
6

.1
46

8.
82

e-
3

2.
30

e-
2

.5
88

D
f

.5
56

.7
33

.8
35

.7
97

.8
49

.6
58

.7
22

O
p
ti

m
al

(f
or

ea
ch

m
o
d
el

)
|M

f
|

48
7.

8e
-3

5.
36

e-
6

.5
69

2.
78

e-
2

.1
88

3

T
ab

le
3.

4.
D

et
er

m
in

an
ts

,
w

it
h
D

-e
ffi

ci
en

ci
es

,
fo

r
ex

am
pl

e
in
§3

.4
.4

,
w

it
h
n

=
11

,
pr

ot
ec

ti
ng

ag
ai

ns
t

fiv
e

m
od

el
s.

47

3.5 Discussion

The Model-Robust Modified Fedorov (MRMF) exchange algorithm presented in

this chapter provides a natural tool with which to find designs when an optimal

design is desired but the model-form is unknown. The mechanism to achieve

this is intuitive and simple: The experimenter chooses r models for which he/she

would like to design. Then, a design is found which maximizes the product of

the determinant of the information matrices of each of the models. In the case

that the models under consideration are nested, this is the D-optimal design for

the associated multiresponse model with r responses and thus, under normality,

minimizes the volume of the confidence ellipsoid of the parameters.

Furthermore, the MRMF method produces designs that are competitive, with

simpler algorithmic machinery, than the Genetic Algorithm (GA) approach of

Heredia-Langner et al. [54]. The strength of the MRMF method with respect

to the GA technique is that it is automatic and a straightforward extension of

commonly used exchange algorithms. The GA requires tuning of several parame-

ters and is nontrivial to implement effectively.

We also compared our procedure to the Bayesian method of DuMouchel and

Jones [37], a widely available model-robust technique. We initially hypothesized

that the Bayesian method would suffer when confronted with multiple possible

models, since it categorizes terms into just two groups. This is supported by

the second example, though the procedure performed well in the first and third

examples. The choice of 1
κ

certainly affects the model-robustness of the design;

indeed for certain values of 1
κ

(i.e. 1
κ

= 1 in the third example) the method seems

to produce a design optimal for the highest-order model, while for large enough

values of 1
κ

the full model is not even estimable. The choice of terms as primary

or potential also makes an impact. Our procedure does not suffer from these

uncertainties, has a multiresponse D-optimal interpretation (for F nested) and

explicitly considers a larger class of models; it can also handle situations as in

Example 4 in which the possible models are disparate and impossible to nest.

One strategy, if faced with a situation necessitating a D-optimal design, might

be to design for the highest-order model possible. If, as assumed in this disserta-

tion, there are a sufficient number of runs to estimate the largest model, one might

48

question whether the efficiency gained using model-robust methods is worth the

additional methodology. In certain cases, as in the third example, the gains appear

to be limited. But as demonstrated by the first and second examples, significant

gains can be made by utilizing the model-robust approach. Therefore, a dedicated

procedure based upon accepted univariate exchange algorithms will be useful to

produce model-robust designs.

In terms of D-efficiency, the MRMF designs seem to favor larger models. In

other words, the efficiency of the smaller models suffer as compared to the larger

ones. To mitigate this, one might consider the following optimization criterion

[10, 38], instead of (3.6):

φ(MF(ξ̃n)) =
r∏
i=1

∣∣∣Mi(ξ̃n)
∣∣∣1/qi (3.27)

where qi is the number of parameters in the ith model. It is straightforward to

derive an exchange algorithm using this criterion–call it the scaled MRMF–which

has the effect of shrinking values of dissimilar orders of magnitude toward each

other, in essence weighting more heavily those models with fewer parameters. We

implemented this procedure using several examples, and the results were surpris-

ingly similar to the unscaled MRMF. For instance, for the constrained mixture

experiment in the third example, the scaled MRMF design resulted in a design

very close to the MRMF in Table 3.3. For the second example in §3.4.2, the scaled

MRMF design produced more of a difference, with D-efficiencies increasing from

86.4% to about 89% for model (3.11) and from 75.6% to about 78% for model

(3.12), while decreasing the efficiencies of model (3.13) from 87% to about 85.5%

and model (3.15) from 97.9% to about 96.5%. In any case, the scaled MRMF does

not result in dramatic changes in efficiency.

The model-robust criterion used in this chapter could easily be extended to

include prior information in terms of model weights, if certain models are preferred

over the others. However, since this work was motivated in part by multiresponse

optimal design theory, the minimal volume of the parameter confidence ellipsoid

interpretation of D-optimality is used and thus we only consider equally weighted

models. Furthermore, the relative ineffectiveness of the scaled MRMF to provide

designs with balanced D-efficiencies underscores the difficulty in balancing the

49

designs using weights.

Finally, assume that Te is the time it takes to run the univariate exchange

algorithm. The runtime for these model-robust algorithms should be rTe where

r is the number of models considered. Commercial software programs have fast

implementations of exchange algorithms, so the computational burden imposed by

a similarly implemented model-robust exchange algorithm should not be heavy.

Chapter 4
A Maximin Model-Robust Exchange

Algorithm and its Generalization to

Include Model Preferences

In the previous chapter, we considered a model-robust procedure for an experimen-

tal scenario in which we allow the specification of multiple models and a maximiza-

tion of the product of the determinant of the information matrices with respect to

these models. In this chapter, we stay within the same model-set framework, but

maximize the minimum D-efficiency.

4.1 Introduction

Again, assume that an experiment is to be designed for which there is a single

response and k factors of interest. As before, the linear regression model y = Xβ+ε

will be fit, where y is an n-vector of independent observations, X is the n × p

expanded design matrix, β is the p × 1 vector of unknown parameters, and ε is

also an n-vector with E(ε) = 0 and V ar(ε) = σ2. Assume also that the classical

least squares criterion will be used to estimate β, in which case the estimator is

β̂ = (X′X)−1X′Y with V ar(β̂) = σ2(X′X)−1. Recall that the inverse of V ar(β̂)

is called the information matrix, denoted as M = (X′X)/σ2 = [V ar(β̂)]−1.

Furthermore, we again let X be the design space, Ξ be the set of all possible

51

designs and ξn ∈ Ξ be a discrete, n-point design which can be represented as

ξn =

(
x1 x2 . . . xd

n1 n2 . . . nd

)
(4.1)

where n =
∑d

i=1 ni is the total number of experiments, and ni is the number of

experiments performed at design point xi, i = 1, . . . , d.

An optimal design strategy chooses a design by optimizing a function of the

information matrix. The D-criterion maximizes φ(M) = |M|, which is equivalent

to minimizing the volume of the confidence ellipsoid about the parameter estimates

if normality is assumed.

Implicit in the structure of X is the design, ξn, as well as a model form, f(x),

which is a p × 1 expanded design vector that is usually assumed given though

in reality is rarely known. Consequently, we represent the information matrix

as Mf (ξn), though we may express it as Mf in the interest of simplicity. Thus,

φ(Mf (ξn)) depends upon the model form f and an optimal design for one model

is not in general optimal for another. To mitigate against an undue reliance upon

a single model form f , we again allow a user-chosen set of models, F .

In our experience the model-robust procedures which use a form ofD-optimality

(such as our procedure in Chapter 3, the Genetic Algorithm approach of Heredia-

Langner et al. [54], and the Bayesian approach of DuMouchel and Jones [37])

often produce designs which have high D-efficiencies for some models (generally

those with the most parameters), but considerably lower D-efficiencies for others.

Furthermore, these algorithms give experimenters little a priori control over the

efficiencies of the design with respect to the given possible models and indeed

exhibit a substantial lack of efficiency balance across them. Efficiency balance,

which we formally define in §4.3, occurs when a design has the same efficiency

with respect to each model in a specified set.

We propose a maximin model-robust exchange algorithm which gives exact

designs with substantially more balance than those from the aforementioned pro-

cedures, while optimizing the worst-case efficiency with respect to a user-specified

set of models. We develop a generalization of this algorithm which allows the spec-

ification of model interest levels (weights), providing additional control over the

52

D-efficiencies with respect to each model. Though the procedure is explicitly for

finite run sizes, we explore some asymptotic properties of this generalized maximin

criterion, showing that even if there is not perfect balance among the efficiencies

of all models, there will be among a subset of at least two models. We also specify

a condition which guarantees complete asymptotic efficiency balance among all

models in F .

Several authors have studied a similar criterion. For instance, Imhof and Wong

[57] give a graphical method to find asymptotic maximin designs when two dif-

ferent optimality criteria are used. Dette and Franke [33] explicitly characterize

continuous maximin designs in the specific case of polynomial regression on [−1, 1],

where they maximize the minimum efficiency with respect to possible polynomial

models as well as a goodness-of-fit criterion. Berger and Tan [11] use the maximin

criterion for mixed effects models. In contrast, the motivation for our work in this

chapter is to provide a useful, flexible tool for experimenters to construct exact

model-robust designs, for completely randomized experiments, for general design

spaces and small run sizes, allowing the user to specify a class of possible models

and exert as much control as possible over the design performance with respect

to each. The continuous design results in this chapter are an almost incidental

consequence of our observations of the discrete procedure’s performance, and we

will show empirically that even small run sizes exhibit similar behavior.

The chapter is arranged as follows. In the next section, we describe classic

exchange algorithms for D-optimality, and then present our generalized maximin

procedure. Following that, we give some results concerning the balance properties

of this criterion, though here we resort to continuous design theory. We then

present several examples illustrating the exact procedure, and conclude with a

discussion.

4.2 A Generalized Maximin Model-Robust Ex-

change Algorithm

The maximin procedure we describe is built upon a classic exchange algorithm for

D-optimality. This and other such algorithms were reviewed in Chapter 3.3.1. We

53

follow our previous work and use the modified Fedorov algorithm [26] as the basis

for our model-robust procedure. The determinant and inverse of the information

matrix for a particular model f can be updated via (3.2) and (3.4).

We assume that a set of r models, F , will be chosen and explicitly formulated.

For instance, for single-factor polynomial regression, the experimenter might desire

protection for possible polynomial models of degree 1 to 4.

Furthermore, a model interest (weight) vector, v = (v1, . . . , vr) ∈ (0, 1], must

be supplied which quantifies the interest the experimenter has in each model. By

default, the model interest is unity for all models in which case the algorithm

maximizes the minimum efficiency. If certain models are less important, however,

they can be assigned lower interest levels which will often decrease their efficiencies

compared to those with larger values. We require that maxf∈F vf = 1. Note

that these model interest levels can also be framed as prior probabilities. For

instance, if there are two possible models, f1 and f2, and the model interest vector is

v = (1, 0.8), this is equivalent to specifying a prior probability of 1/(1+0.8) = 0.56

for the first model and 0.8/(1 + 0.8) = 0.44 for the second.

The algorithm also requires as input the determinant of the information matrix

of the optimal design for each model individually so that efficiencies can be cal-

culated. This is not a stringent requirement in light of the capabilities of readily

available software; for instance, the SASr software’s PROC OPTEX [92]. Finally,

the algorithm requires a user-constructed candidate list, C, of design points.

The algorithm works on efficiencies, and the most prevalent in this context is

D-efficiency. Assuming ξ∗n is the optimal design for model f , the D-efficiency for a

design ξn with respect to model f is defined as:

Df (ξn) =

(
|Mf (ξn)|
|Mf (ξ∗n)|

)1/p

(4.2)

where Mf (ξn) is the information matrix with respect to model f and design ξn,

Mf (ξ
∗
n) is the information matrix for the design optimal for f alone, and p is the

number of parameters for model f . The D-efficiency roughly scales the efficiency

of a design to a per-parameter basis and the reciprocal is a factor indicating the

additional sample size required to estimate the parameters to the same level of

precision as the optimal design (note: Df (ξn) ∈ [0, 1]). In the generalized version

54

of our maximin algorithm, we define generalized D-efficiency, for model f , as

Gf (ξn) =
Df (ξn)

vf
(4.3)

where vf is the interest weight for model f . Note that unlike D-efficiency, Gf (ξn) ∈
[0,∞).

To illustrate the utility of generalized D-efficiency, consider an experimental

situation in which there are two models of interest, f1 and f2, with a model interest

vector v = (1, .8). In this case, finding a design maximizing the minimum D-

efficiency will not reflect this prior belief. Instead, we find the maximin design

using Gf (ξn). Thus, if the current design gives Df1(ξn) = 0.85 and Df2(ξn) = 0.75,

we find that Gf1(ξn) = 0.85 and Gf2(ξn) = 0.75/v2 = 0.75/.8 = .9375 so that f1

has the lower generalized D-efficiency even though it has the larger D-efficiency.

By working on Gf (ξn) instead of Df (ξn), the model interest levels are reflected in

the D-efficiencies of the generalized maximin design.

In the algorithm, we extend the notation of (4.3) to Gf,jk(ξn) to represent

the generalized D-efficiency when the jth design point is exchanged with the kth

candidate point. The algorithm is as follows.

1. Initialize algorithm: Input optimal determinants, |M∗
f |, for each f ∈ F as

well as model interest vector, v. Construct candidate list, C ⊂ X , with c

candidate points. Specify nonsingular initial design, ξn. For each model,

calculate Gf (ξn) via (4.3) and determine fmin = arg minf∈F Gf (ξn).

2. Let j = 1 (index for design points).

3. Let k = 1 (index for candidate points).

4. For design point xj and candidate point xk, calculate ∆fmin
(xj,xk, ξn) as in

(3.3).

(a) If ∆fmin
(xj,xk, ξn) < 0, do not consider xk for exchange because the

minimum efficiency would not be increased.

i. If k = c, go to step 5.

ii. If k < c set k = k + 1 and return to step 4.

55

(b) If ∆fmin
(xj,xk, ξn) ≥ 0, calculate ∆f (xj,xk, ξn) for all f 6= fmin and

evaluate the determinant of the information matrices for each f ∈ F
according to (3.2). Calculate the generalized efficiencies via (4.2) and

(4.3) and determine Gfmin,jk(ξn) = minf∈F Gf,jk(ξn).

i. If k = c, go to step 5.

ii. If k < c set k = k + 1 and return to step 4.

5. Exchange xj with xk∗j , where k∗j = arg maxkGfmin,jk(ξn).

6. Update M−1
f for all f ∈ F using (3.4). Calculate |Mf | for all f ∈ F .

7. Set j = j+1 and if j < n return to step 3. If j = n and termination criterion

is met, STOP. If j = n and termination criterion not met, return to Step 2.

The termination criterion stops the algorithm if maxj,f∈F ∆f (xj,x
∗
kj
, ξn) < ε,

where ε is a small, positive constant (typically ε = 0.01).

If the experimenter is interested in each model equally, this algorithm spe-

cializes to a maximin procedure which finds a design maximizing the smallest

D-efficiency. The model interest vector, however, affords the user a great deal of

flexibility because designs focusing primarily on those models of most interest can

be generated, while protection against and estimability for less likely models can

be maintained.

Though we explore some asymptotic properties of this model-robust criterion

in the following section, we have not found these properties severely compromised

in small-sample situations. In what follows, the “maximin” design or exchange

algorithm refers to the specific case in which each element of the model interest

vector is 1. “Generalized maximin” refers to possibly unequal model interest ele-

ments. Similarly, “efficiency” refers to Df , while “generalized efficiency” refers to

the efficiencies adjusted by the model interest vector as in (4.3).

4.3 Asymptotic Properties of Generalized Max-

imin Criterion

Although we believe that exact designs are most useful and relevant to experi-

menters, we can obtain insight into these maximin designs by studying their con-

56

tinuous counterparts. In what follows, we give a condition which ensures that the

generalized maximin criterion will produce designs balanced in terms of generalized

efficiencies. Technical details, and proofs of the results in this section, are given in

Appendix B.

For the purposes of this section we define an asymptotic, or continuous, de-

sign as a discrete probability measure ξ over X , which implies that there exists a

countable number of design points upon which there is positive measure. A design

defined in this way can be thought of as the proportion of the available exper-

imental budget assigned to any particular design point x in X and represented

as

ξ(x) =

(
x1 x2 . . . xd

λ1 λ2 . . . λd

)
(4.4)

where λi, i = 1, . . . , d is the measure on the designs points with positive measure.

The information matrix is p× p:

M(ξ) = σ−2

d∑
i=1

λif(xi)f
′
(xi) (4.5)

Before proceeding further, we formally define generalized efficiency balance and

limiting models.

Definition 1. Given a design, ξ, along with a set of models, F , generalized effi-

ciency balance is achieved for a subset of models F ′ ⊆ F if

Gfmax(ξ)−Gfmin
(ξ) = 0 (4.6)

where fmin = arg minf∈F ′ Gf (ξ), fmax = arg maxf∈F ′ Gf (ξ), and fmin 6= fmax.

Alternatively, we refer to the elements of F ′ as limiting models.

Notice that a design could have generalized efficiency balance with respect to

F , the complete set of models, in which case we say that the design has complete

generalized efficiency balance (CGEB).

The following result guarantees that the maximin design will have generalized

efficiency balance for some subset of F . In other words, a set of at least two

limiting models is sure to exist.

57

Theorem 1. Assume F has r ≥ 2 elements and let ξ∗ = arg maxξ∈Ξ minf∈F Gf (ξ)

and fmin = arg minf∈F Gf (ξ
∗). Also, assume that ξ∗ is not optimal for any f ∈ F

individually. Then, Gf (ξ
∗)−Gfmin

(ξ∗) = 0 for at least one f ∈ F\fmin.

We next give a condition which, if satisfied, ensures that CGEB is attained

for the continuous maximin design. Assume F is a set of models with an arbi-

trary proper subset F ′ ⊂ F , and let ξ∗ = arg maxξ∈Ξ minf∈F Gf (ξ), and ξ
′

=

arg maxξ∈Ξ minf∈F ′ Gf (ξ). Then, the condition is

min
f∈F ′

Gf (ξ
′
) > min

f∈F ′
Gf (ξ

∗) (4.7)

The condition specifies, essentially, that we can do better than ξ∗ when the

set of models is a strict subset of F . While Theorem 2 shows that (4.7) is a

sufficient condition for CGEB, we know of no a priori way to check it for a given

F . Consequently, the value of the following balance theorem rests on the insight

it provides when a particular set of models does not provide balance.

Theorem 2. Assume F has r elements and satisfies (4.7). Let

ξ∗ = arg max
ξ∈Ξ

min
f∈F

Gf (ξ)

and fmin = arg minf∈F Gf (ξ
∗). Then, Gf (ξ

∗)−Gfmin
(ξ∗) = 0 ∀f ∈ F .

This result is more descriptive than prescriptive, because it produces under-

standing in the case that balance does not happen instead of showing what classes

of models achieve generalized efficiency balance. The contrapositive to Theorem

2 is that if the models do not produce balance, condition (4.7) does not hold; i.e.

for some subset or group of subsets of F , the maximin design is no better than for

F itself. This suggests a subclass of limiting models that constrain the maximin,

which is guaranteed by Theorem 1.

The final result is a special case of Theorem 2 when r = 2, and is somewhat

like a result in Imhof and Wong [57], though in a different context.

Corollary 1. Let F have just 2 elements, f1 and f2, and

ξ∗ = arg max
ξ∈Ξ

min
f∈F

Gf (ξ),

58

and ξ∗fi
be the optimal design for model fi alone. If neither ξ∗ 6= ξ∗f1 nor ξ∗ 6= ξ∗f2,

then Gf (ξ
∗)−Gfmin

(ξ∗) = 0 for f 6= fmin.

This corollary says that when the maximin design is not the same as one of

the individually optimal designs, efficiency balance (when model interest elements

are equal) is achieved when only two models are considered. This holds, too, for

generalized maximin designs, though there are nontrivial examples in which the

maximin design is the same as the optimal design for one of the models individually.

For instance, consider the situation in which we have two nested possible mod-

els, f1 and f2, with v = (0.5, 1). It is likely that the design optimal for f2 will

have a D-efficiency with respect to f1 of more than 50%, in which case Gf1 > 1.

This implies that the maximin design, ξ∗, is the same as the optimal design for f2,

ξ∗f2 . There is obviously not CGEB here, but Corollary 1 is not invalidated because

ξ∗ = ξ∗f2 .

Because we cannot check the truth of condition (4.7) for a particular experimen-

tal situation, we cannot guarantee balance of the generalized efficiencies, though

Theorem 1 guarantees balance of some subset of F in most interesting situations.

In that sense, then, we achieve balance and the higher efficiencies for the other

models are a surplus.

However, after running the generalized maximin procedure, limiting models

often suggest themselves. Consequently, it is possible that “taking” a small amount

of efficiency from one or more of these limiting models will result in a substantial

amount of “giving” to the efficiencies of the others. Therefore, a sensitivity analysis

can be performed in which the model interest entries for the limiting models are

reduced by some user-specified amount and the algorithm is rerun. The results will

likely be lower efficiencies for the original limiting models but higher efficiencies

for the others. We will explore this in the subsequent section.

4.4 Examples

In this section we present several examples illustrating the generalized maximin

model-robust design procedure. Unless otherwise noted, all designs for a given

example were constructed using the same candidate list and 50 randomly started

algorithm tries. Optimal designs for individual models were generated using SASr

59

software’s PROC OPTEX [92]. All designs referred to in the following examples

are given in Appendix C (or, for those that appear in both this chapter and the

previous, in Appendix A). Matlabr (Version 7.8) code can be found at http:

//www.stat.psu.edu/~jlr/pub/Smucker/.

4.4.1 Constrained Two-Factor Experiment

We give first a simple six run, two-factor example used in Chapter 3 as well as

Heredia-Langner et al. [54] with a constrained design region X = {x = (x1, x2) :

−1 ≤ x1, x2 ≤ 1,−0.5 ≤ x1 + x2 ≤ 1}. Suppose the experimenter would like to

guard against three models:

f
′

1(x) = (1, x1, x2) (4.8)

f
′

2(x) = (1, x1, x2, x1x2) (4.9)

f
′

3(x) = (1, x1, x2, x1x2, x
2
1, x

2
2) (4.10)

so that F = {f ′i (x)βi, 1 ≤ i ≤ 3,x ∈ X}.
We use as a candidate list the points in a resolution 0.1 grid placed over X .

In Table 4.1 we give results for a D-maximin design and a generalized D-maximin

design with model interest vector v = (1, 1, .6), as well as two other model-robust

designs for comparison, the one produced by the MRMF algorithm of Chapter

3 and the one via the Genetic Algorithm (GA) approach of Heredia-Langner et

al. [54]. We also include the optimal design for the largest considered model,

representing what might be considered the default optimal design strategy. The

final row in the table gives |M| for the optimal design for each individual model.

Notice that the non-maximin designs favor the largest model in terms of D-

efficiencies. On the other hand, the D-maximin design is close to balanced among

the three models (D-efficiences of 88.9%, 89.4%, and 88.8%, respectively), and

provides a substantial increase in the worst-case efficiency (88.8% versus 81% for

the MRMF design and 84.9% for the GA design). Complete generalized efficiency

balance, in the sense of the previous section, is not achieved because of the finite

sample size. The (1, 1, .6)-D-maximin design provides some protection for the

quadratic model while allowing very high efficiencies for models (4.8) and (4.9).

60

Notice there is not even the suggestion of CGEB here, since Gf3 = 1
0.6
· 0.721 = 1.2

while Gf1 = .951 and Gf2 = .959. It seems likely that, asymptotically, the first

two models are the limiting ones in this case.

Our algorithm can mimic other designs, which shows its flexibility. For instance,

setting v = (.8, .9, 1) gives a design equivalent in D-efficiency to the MRMF design,

and setting v = (.9, .9, 1) produces a design with almost the same efficiencies as

that from the Genetic algorithm.

Model
Design Measure (4.8) (4.9) (4.10)
D-Maximin |Mf | 35.70 31.14 1.52

Df .889 .894 .888
(1, 1, .6)-D-Maximin |Mf | 43.79 41.34 0.44

Df .951 .959 .721
MRMF |Mf | 27.04 33 3.01

Df .810 .907 .995
Genetic Algorithm |Mf | 31.14 26.91 2.21

Df .849 .862 .945
Design Optimal for (4.10) |Mf | 31.63 14.35 3.11

Df .853 .737 1
Optimal (for each model) |Mf | 50.88 48.77 3.11

Table 4.1. Determinants, with D-efficiencies, for example in §4.4.1 with n = 6, protect-
ing against three models.

In Figure 4.1, we give a schematic illustrating the model-robust designs in Table

4.1. The MRMF and GA designs, which are close to optimal for the quadratic

model, each place a design point near the center of the design space with the

rest on the periphery. In contrast, the D-maximin design, with a lower efficiency

for the largest model, has an interior point but places it close to the boundary,

while the (1, 1, .6)-D-maximin has none strictly inside the space. Of course, by

using the model interest vector the generalized maximin algorithm can certainly

accommodate more emphasis on the quadratic model and less on the others if

desired, which would result in an interior point.

61

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x1

x2

Maximin
(1,1,.6)−Maximin
MRMF
Genetic Algorithm

Figure 4.1. Model-robust designs for example in §4.4.1

4.4.2 Constrained Mixture Experiment

A constrained mixture example, originally from Snee [96], involves five mixture

factors and their effect on the formulation of a certain plastic. The five factors

were a binder (x1), cobinder (x2), plasticizer (x3), and two monomers (x4 and x5).

In addition to the mixture constraint, each component is constrained, and there

are some multicomponent constraints as well:

X = {x = (x1, . . . , x5) :
5∑
i=1

xi = 1

0.50 ≤ x1 ≤ 0.70

0.05 ≤ x2 ≤ 0.15

0.05 ≤ x3 ≤ 0.15

0.10 ≤ x4 ≤ 0.25

0.00 ≤ x5 ≤ 0.15

0.18 ≤ x4 + x5 ≤ 0.26

0.00 ≤ x3 + x4 + x5 ≤ 0.35}

62

We consider three possible models:

f
′

1(x) = ({xi, i = 1, . . . , 5}) (4.11)

f
′

2(x) = (f
′

1, {xixj, i < j ≤ 5}) (4.12)

f
′

3(x) = (f
′

2, {xixjxk, i < j < k ≤ 5}) (4.13)

so that F = {f ′i (x)βi, 1 ≤ i ≤ 3,x ∈ X}. The experimental budget was n = 25

which means model f3 is saturated. For a candidate list of design points, we

utilized the extreme vertices and approximate centroids, using the code by Piepel

[85].

In Table 4.2, we include several generalized maximin designs, the MRMF de-

sign, as well as the optimal design for f3. These are compared to the |M| for

the optimal design for each individual model (note that in addition to the extreme

vertices and approximate centroid, the candidate list for these individually optimal

designs included a grid of resolution 0.01).

For the D-maximin design it appears that, asymptotically, models f1 and f3

would be limiting, both with D-efficiencies of about 87% in this finite-sample case.

This design’s minimum D-efficiency is larger than that of the other designs, though

it has lower D-efficiency with respect to models f2 and f3 when compared to other

model-robust strategies (i.e. the MRMF design or the design optimal for model

f3).

If the experimenter is willing to give up some efficiency for the first model the

algorithm could be rerun, for instance, with v = (.9, 1, 1). The results are in Table

4.2 and is nearly CGEB with a D-efficiency for f1 about 90% that of the others.

By giving up a relatively small amount for model f1, we gain substantially on the

others. Notice that this design is closer to the MRMF design.

Alternatively, suppose that the experimenter believes a priori that f2 is most

likely, but varying degrees of protection are desired for f1 and f3. Then, v =

(.9, 1, .5) might be chosen. The results in Table 4.2 suggest that the first two

models would have GEB asymptotically (Gf1 = 0.882/0.9 = 0.98 and Gf2 = 0.979,

while Gf3 = 0.507/0.5 = 1.014). Overall, it is clear that the generalized maximin

algorithm gives great flexibility for designing with respect to the specified models.

63

Model
Design Measure (4.11) (4.12) (4.13)
D-Maximin |Mf | 8.76e-5 1.83e-49 1.13e-124

Df .869 .903 .868
(.9, 1, 1)-D-Maximin |Mf | 7.56e-5 3.01e-49 6.87e-124

Df .844 .934 .933
(.9, 1, .5)-D-Maximin |Mf | 9.43e-5 6.09e-49 1.61e-130

Df .882 .979 .507
MRMF |Mf | 6.66e-5 4.21e-49 1.08e-123

Df .822 .955 .950
Design Optimal for (4.13) |Mf | 5.78e-5 2.56e-49 3.86e-123

Df .800 .924 1
Optimal (for each model) |Mf | 1.77e-4 8.42e-49 3.86e-123

Table 4.2. Determinants, with D-efficiencies, for example in §4.4.2 with n = 25, pro-
tecting against three models.

4.4.3 Mixture Experiment With Disparate Models

We present an additional example based on a pharmaceutical experiment reported

by Frisbee and McGinity [42]. This 11-run, mixture experiment investigated the

effect of three nonionic surfactant factors on the glass transition temperature of

films obtained from poly(DL-lactide) pseudolatex. Though Frisbee and McGinity

fit a traditional mixture model, Rajagopal and Castillo [89] showed that a model

from the class of Becker mixture models had a better fit. Consequently, we will

choose F = {f ′i (x)βi, 1 ≤ i ≤ 5,x ∈ X} with

f
′

1(x) = ({xi, i = 1, 2, 3}) (4.14)

f
′

2(x) = (f
′

1, {xixj, i < j ≤ 3}) (4.15)

f
′

3(x) = (f
′

2, x1x2x3) (4.16)

f
′

4(x) = (f
′

1, {min(xi, xj), i < j ≤ 3}) (4.17)

f
′

5(x) = (f
′

4,min(x1, x2, x3)) (4.18)

with

X =

{
x = (x1, x2, x3) :

3∑
i=1

xi = 1, 0 ≤ xi ≤ 1, i = 1, 2, 3

}
(4.19)

We will also evaluate the designs in terms of two models not explicitly consid-

64

ered in our model-robust design. The first is the model fit by Frisbee and McGinity,

and the second is the model found most probable a posteriori by Rajagopal and

Castillo:

f
′

fm(x) = (x1, x2, x3, x1x3, x2x3) (4.20)

f
′

rc(x) = (x1, x2, x3,min(x1, x3),min(x2, x3)) (4.21)

For a candidate list, we used a regular grid with resolution 1/12, which because

of the regular design region, contained its vertices and centroids.

The efficiencies for the D-maximin design are given in Table 4.3 with probable

limiting models f1 and f5 (this was confirmed by additional work in which we set

n = 50 with a denser grid). Based on this result, the experimenter might want to

generate another design in which v = (.9, 1, 1, 1, .9), which can be seen in Table 4.3

to have f1 and f4 as probable limiting models, with Gf1 = 0.883 and Gf4 = 0.888.

In this case, allowing such a sensitivity analysis produces gains for the final four

models, while degrading f1 only slightly.

Also in Table 4.3 is the MRMF design from [95] as well as the original design

of Frisbee and McGinity. For comparison purposes, we include also the optimal

designs for the two “maximal” models, f3 and f5. All designs excepting these latter

two are included in Figure 4.2.

65

M
o
d
el

D
es

ig
n

M
ea

su
re

(4
.1

4)
(4

.1
5)

(4
.1

6)
(4

.1
7)

(4
.1

8)
(4

.2
0)

(4
.2

1)
D

-M
ax

im
in

|M
f
|

24
.7

3
3.

71
e-

3
3.

00
e-

6
0.

20
0

6.
43

e-
3

7.
97

e-
2

1.
44

D
f

.8
02

.8
83

.9
21

.8
40

.8
11

.8
43

.8
63

(.
9,

1,
1,

1,
.9

)-
D

-M
ax

im
in

|M
f
|

24
.1

2
4.

48
e-

3
3.

34
e-

6
.2

80
8.

14
e-

3
7.

31
e-

2
1.

07
D
f

.7
95

.9
11

.9
35

.8
88

.8
39

.8
28

.8
14

M
R

M
F

|M
f
|

19
.8

1
5.

91
e-

3
5.

36
e-

6
0.

56
9

2.
78

e-
2

6.
61

e-
2

1.
46

D
f

.7
45

.9
55

1
1

1
.8

12
.8

66
D

es
ig

n
O

p
ti

m
al

fo
r

(4
.1

6)
|M

f
|

19
.8

1
5.

9e
-3

5.
36

e-
6

.5
69

2.
78

e-
2

.1
02

5
2.

15
D
f

.7
45

.9
55

1
1

1
.8

86
.9

36
D

es
ig

n
O

p
ti

m
al

fo
r

(4
.1

8)
|M

f
|

11
.5

8
5.

2e
-3

5.
36

e-
6

.4
86

2.
78

e-
2

7.
6e

-3
1.

36
D
f

.6
23

.9
35

1
.9

74
1

1
.8

34
.8

54
F

ri
sb

ee
an

d
M

cG
in

it
y

|M
f
|

8.
25

1.
22

e-
3

1.
51

e-
6

.1
46

8.
82

e-
3

2.
30

e-
2

.5
88

D
f

.5
56

.7
33

.8
35

.7
97

.8
49

.6
58

.7
22

O
p
ti

m
al

(f
or

ea
ch

m
o
d
el

)
|M

f
|

48
7.

8e
-3

5.
36

e-
6

.5
69

2.
78

e-
2

.1
88

3

T
ab

le
4.

3.
D

et
er

m
in

an
ts

,
w

it
h
D

-e
ffi

ci
en

ci
es

,
fo

r
ex

am
pl

e
in
§4

.4
.3

w
it

h
n

=
11

,
pr

ot
ec

ti
ng

ag
ai

ns
t

fiv
e

m
od

el
s.

66

The results of the maximin designs are as advertised: Their minimum D-

efficiency is at least 5% higher than the others. They do, however, give up efficiency

for models f2-f5. We note that choosing v = (.75, 1, 1, 1, 1) results in a generalized

maximin design equivalent to the MRMF or the design optimal for f3 alone. Care

must be taken when interpreting the efficiencies with respect to the fitted models,

ffm and frc. For instance, the MRMF design and the design optimal for f3 alone

appear to be equivalent, though their efficiencies for ffm and frc differ. This is

because, as seen in Figure 4.2, the MRMF design includes two design points at

(.5, .5, 0) and one at (0, .5, .5), while the design optimal for f3 alone (not shown)

has only one design point at (.5, .5, 0) and two at (0, .5, .5). Since the fitted models

include a blending term with both x2 and x3 but not one with x1 and x2, the latter

design is preferred over the former. Unless an a priori inclination for the correct

blending term exists, there is no reason to prefer one over the other at the design

stage.

4.5 Discussion

The maximin exchange algorithm presented in this chapter is a practical model-

robust procedure which produces designs robust for a set of experimenter-specified

model forms by maximizing the minimum D-efficiency with respect to each model.

It also admits specification of varying levels of interest in each model so that a

design reflective of those interests will be generated and as such affords additional

control to the user. This method provides a worst-case efficiency guarantee and in

our experience usually has a significantly higher minimum efficiency than those of

the procedures against which they were compared.

We noticed that the designs produced by this procedure tend to have less vari-

able efficiencies (with respect to the models designed for) than those from other

methods. This led to the asymptotic analysis in §4.3 which gives a condition which

guarantees complete generalized efficiency balance. This condition is often unsat-

isfied; however, we also proved that even when complete balance is unattainable,

some subset of the specified models is limiting and therefore balanced. We em-

phasize that the utility of this procedure is not dependent upon these asymptotic

results, but that they can provide insight into the algorithm and its designs.

67

Figure 4.2. Some 11-run designs for example in §4.4.3, with repeated points noted

Included in our comparisons are optimal designs for the largest model under

consideration. This represents a reasonable model-robust design strategy that

might be employed using commercially available software. This approach gives no

worst-case protection, however, which may result in unnecessarily small efficiencies

for smaller models. It also gives the experimenter no control over the efficiencies

with respect to any model besides the one that is assumed. Our maximin procedure

addresses both of these issues.

Our method can also be used similarly to the Bayesian approach of DuMouchel

and Jones [37], in which an assumed model exists but protection is desired for some

larger model. The maximin procedure allows a quantification of the required degree

of protection by assigning an appropriate model interest element. For instance,

68

if a main effects model is likely, but at least some estimation of the two-factor

interaction model as well as the full quadratic model is needed, a model interest

vector v = (1, .5, .5) could be specified and would result in a design with a high

efficiency for the main effects model, but much less for the larger models (though

still with the capacity to estimate them). If possible, the design would be CGEB,

but even if it is not, the differences in efficiency will be suggestive of v. We do note

that our procedure requires n ≥ pl, where pl is the number of parameters in the

largest model, while the Bayesian procedure eludes this restriction by using prior

information.

A near upper bound on the runtime of this algorithm is mTEx, where m is the

number of models considered, and TEx is the time taken by the classical exchange

algorithm (in the case of this chapter, the modified Fedorov algorithm). We say

“near upper bound” because there is a small amount of computational energy

expended in calculating efficiencies which is unnecessary in the classical case. In

practice, the runtime should be less than the near upper bound because exchanges

are only evaluated for all models if the exchange increases the efficiency for the

model currently with the lowest efficiency.

Chapter 5
Multiresponse, Model-Robust

Experimental Design

5.1 Introduction

Many times, when an experiment is to be designed, there will be more than one

response of interest. For instance, a food scientist may want to explore the effect

of different combinations of ingredients on taste, texture, nutritional value, and

cost. Or, an engineer may examine how various levels of constituent components

of a tire tread compound affect properties such as rate of wear and hardness.

The preponderance of research in the design of experiments, however, has been

directed toward the univariate case. In the multiresponse realm, there have been

primarily theoretical advances with little guidance for practical situations. Is it

worth the extra effort inherent in methodology that explicitly accounts for multiple

responses? If so, can we develop tools that leverage multiresponse characteristics

to produce an advantage over usual practice?

There are good reasons for the relative dearth of research in optimal multire-

sponse experimental design. In general, to design such an optimal experiment the

relationship between the responses as quantified in the covariance matrix Σ must

be known a priori. Furthermore, the form of the relationship—the model form—

between each response and the factors must also be specified in advance. In the

absence of these elements, the experimenter is forced to ignore both and design for

70

an assumed but unknown single model.

We approach this problem from a model-robust perspective, and argue that in

many cases a good design is a model-robust one for which Σ is irrelevant or unim-

portant anyway. When both the model form and covariance matrix are unknown,

the multiresponse D-optimal design problem can be cast effectively as a univariate

model-robust design problem.

One contribution of this chapter is to develop and present an exchange algo-

rithm to construct multiresponse D-optimal designs when the covariance matrix

and response model forms are known. But since this information is rarely known

in practice, we extend the multiresponse model and the algorithm to allow for

the construction of a design which is robust for an experimenter-specified set of

possible models for each response.

We first review the multiresponse model, and then give an overview of our ap-

proach. Subsequently, we generalize matrix- and determinant-updating formulae

given for the univariate case by Fedorov [41], and use them in a multiresponse

exchange algorithm which assumes knowledge of both the covariance matrix and

model forms. This corresponds to the most studied and least likely practical sce-

nario for multiresponse design, so we then explore the relaxation of these assump-

tions, illustrating the methodology with several examples.

5.2 Background

The classical multivariate regression model [4] assumes the model form is common

to all responses, and it has been shown [22, 70] that in this case the multiresponse

optimal design solution is identical to the univariate optimal design. We use the

more flexible seemingly unrelated regression (SUR) model [115] which allows dif-

ferent model forms for each response.

We now review this multiresponse model. Suppose there are r responses, k

factors of interest, and n observations for each response. Let

yi = Ziβi + εi

be the linear regression for response i, with yi the n-vector of observations, Zi

71

the n× qi expanded design matrix, βi the qi × 1 vector of parameters, and εi the

n-vector of errors. Further, let q =
∑

i qi. Then, this multivariate model can be

specified as
y1

y2

...

yr

 =

Z1 0 . . . 0

0 Z2 . . . 0
...

...
. . .

...

0 0 . . . Zr

β1

β2

...

βr

+

ε1

ε2

...

εr

 (5.1)

or more concisely as

Y = Zβ + ε (5.2)

where Y and ε are now nr×1 vectors, β is a q×1 vector, and Z is a nr×q matrix

and all of these quantities are shown in (5.1).

We make the standard normality assumption that ε ∼ N(0,Ω) where Ω =

Σ⊗ In and ‘⊗’ is the Kronecker product. Here Σ models the covariance between

the responses and In models the assumed independence across observations within

a particular response.

An estimate for β in (5.2) is given by the generalized least squares estimator

(also known as the Aitken estimator):

β̂ = (Z
′
Ω−1Z)−1Z

′
Ω−1Y (5.3)

with

V ar(β̂) = (Z
′
Ω−1Z)−1

Under the assumption of normality, β̂ is also the maximum likelihood estimator

[115]. Since Σ is usually unknown, the estimator in (5.3) cannot be employed

directly, though estimators for Σ have been proposed (see [115, 63]). We omit this

discussion because of the present focus on design.

The multiresponse design problem is to specify n design points with respect to

the aforementioned multiresponse regression model. Let X be the design space, Ξ

be the set of all possible designs and ξn(x) ∈ Ξ be a discrete, n-point design:

ξn =

(
x1 x2 . . . xd

n1 n2 . . . nd

)

72

where d is the number of distinct design points, and ni, i = 1, . . . , d is the number

of runs performed at design point xi.

For this exact design we define the multiresponse information matrix:

Mm(ξn,Σ) =
n∑
i=1

ρ(xi)Σ
−1ρ′(xi)

= Z′Ω−1Z

=
[
V ar(β̂)

]−1

where

ρ′(x) =

z
′
1(x) 0 . . . 0

0 z
′
2(x) . . . 0

...
...

. . .
...

0 0 . . . z
′
r(x)

 (5.4)

is an r × q matrix, and z
′
i(x) is a vector with entries of the same form as the

expanded design matrix Zi, for response i and design point x. The multiresponse

D-optimal design maximizes the determinant of the information matrix:

ξ∗n = arg max
ξn∈Ξ

|Mm(ξn,Σ)|

Implicit in the information matrix is a dependence upon ρ(x), which includes

the model form for each response, as well as the response covariance matrix Σ.

The work in this chapter examines these assumptions and design options in the

face of them.

5.3 Model-Robust Design for the SUR Model

Similar to what has been proposed in the single response case (see, for instance,

Chapters 3 and 4, as well as [71, 26, 54]), we allow the experimenter to choose a

set of potential model forms, Fi, for each response i, where each set has pi models.

What follows is an artificial, admittedly byzantine exercise meant only to establish

a structure within which model-robust designs for multiresponse experiments can

be constructed.

73

For the purposes of model-robust design, imagine a multiresponse model which

has, instead of r responses as described above, p̃ =
∑r

i=1 pi responses, one for

each possible model form assigned to each response. To specify such a framework,

we let y`j be an n-vector of observations for response ` and potential model j.

Then, all of the “data” for response ` is an np`-vector, Y` = (y
′

`1, . . . ,y
′

`p`
)
′

and

Ỹ = (Y1, . . . ,Yr)
′

is an np̃-vector. Further, let Z`j be the n× q`j expanded design

matrix for response ` and model j, where q`j is the number of parameters and∑r
`=1

∑p`

j=1 q`j = q̃. Then, we have the SUR model

y11

...

y1p1

y21

...

y2p2
...

yr1
...

yrpr

=

Z11 . . . 0 0 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

...
...

...
...

...

0 . . . Z1p1 0 . . . 0 . . . 0 . . . 0

0 . . . 0 Z21 . . . 0 . . . 0 . . . 0
...

...
...

...
. . .

...
...

...
...

...

0 . . . 0 0 . . . Z2p2 . . . 0 . . . 0
...

...
...

...
...

...
. . .

...
...

...

0 . . . 0 0 . . . 0 . . . Zr1 . . . 0
...

...
...

...
...

...
...

...
. . .

...

0 . . . 0 0 . . . 0 . . . 0 . . . Zrpr

β11

...

β1p1

β21

...

β2p1
...

βr1
...

βrpr

+

ε11

...

ε1p1

ε21

...

ε2p2
...

εr1
...

εrpr

where β`j is a q`j × 1 vector, and y`j and ε`j are n× 1 vectors. This model can be

written more succinctly as

Ỹ = Z̃β̃ + ε̃ (5.5)

where Ỹ and ε̃ are np̃-vectors, Z̃ is an np̃ × q̃ matrix, and β̃ is a q̃-vector.

Suppose we further make the distributional assumption that ε̃ has mean 0 and

np̃ × np̃ covariance matrix Ω̃. Then, the information matrix is Mm(ξn, Σ̃) =

74

∑n
i=1 ρ̃(x)Σ̃−1ρ̃

′
(x) = Z̃′Ω̃−1Z̃ where

ρ̃
′
(x) =

z
′
11(x) 0 . . . 0 . . . 0

0 z
′
12(x) . . . 0 . . . 0

...
...

. . .
...

. . .
...

0 0 . . . z
′
1p1

(x) . . . 0
...

...
. . .

...
. . .

...

0 0 . . . 0 . . . zrpr(x)

and Σ̃ is given (see below) with Ω̃ = Σ̃⊗ In.

Note that if Ω̃ and ρ̃(x) are specified, the multiresponse D-optimal design for

(5.5) will account for all model forms implicit in the SUR model. Thus, we can

relax the model-form assumption for each response by framing the model-robust

problem as a large multiresponse optimal design problem in which each response

is assigned a set of possible model forms.

Again, this is an artificial device because the design problem at hand only in-

volve r responses, not p̃. However, if the determinant of this expanded information

matrix is maximized, the resulting design should be robust to the models repre-

sented in Fu = F1 ∪F2 ∪ . . .∪Fr in the same way that a multiresponse D-optimal

design can give a model-robust single response design (see Chapter 3).

To utilize this idea we must specify Σ̃. In the expanded model, there are p̃

“responses” (really response/model combinations) which means Ω̃ = Σ̃⊗ In where

Σ̃ is p̃ × p̃. Recall that the true response covariance matrix is Σ = {σ2
ij} for

i, j = 1, . . . , r, and in the case that this quantity is known in advance, we must

incorporate it into Σ̃. Then, a reasonable specification is Σ̃ = Σ⊗Ip, where p is the

number of possible models for each response. This is somewhat restrictive, because

the number of models must be the same for all responses; however, we found that a

more complex specification allowing the number of models to vary over responses—

that different possible models within a given response are uncorrelated, but for any

two response/model combinations ij and i
′
j
′

so that i 6= i
′

the correlation is σ2
ii′

—

produced Ω̃ not always invertible. Thus, we take Ω̃ = Σ⊗ Ip ⊗ In.

Recall that when models are nested, multiresponse optimal designs can be

constructed in the absence of knowledge of Σ [69, 15, 16, 70]. The same results

75

suggest that for the expanded, model-robust version of the multiresponse model,

if the union of all possible models are nested, the design optimal for the expanded

model is invariant to Σ, which leads to a simplified criterion in which the present

problem is essentially the same as the one for univariate model-robustness (see

§5.4.1.2).

In summary, an artificially large SUR model can be constructed by assigning

a set of possible models to each response, and the optimal design for this larger

model is, in a sense, robust to the set of all possible models specified. In the case

that the specified possible models are nested, the best design with respect to this

large model can be found irrespective of Σ. If they are nonnested, there may be a

(usually small) loss of efficiency due to the necessity of using Σ = I.

5.3.1 Choosing a Set of Models

Optimally, when there is no preference for certain models, one would like to con-

struct a design that was robust for the set of all possible models, or the set of

all possible hierarchical models. However, the former grows exponentially in the

number of model parameters and the latter quickly grows unmanageable as well,

even for problems with as few as four or five factors.

In this section, we explore two different types of model sets for the general

case in which it is desired to provide robustness for first- and second-order terms.

We reiterate that the set of models is user-defined, and suggest these sets only

as defaults in case no preference is given to any particular first- or second-order

polynomial models. The first, which we call the SSPS (small, symmetric, pseudo-

spanning) set, uses just three models, regardless of the number of factors: main

effects; main effects and all two-factor interactions; and a full quadratic model.

The second, which we call SPS (symmetric, pseudo-spanning), scales linearly with

the number of factors (3k+3 models), and consists of the three models in SSPS as

well as

1. k models, each of which includes only a single main effect.

2. k models (for k > 2), each of which includes all main effects plus a single

two-factor interaction. The k interactions should be chosen so that each

factor shows up exactly twice.

76

3. k models, each of which includes all main effects and all two-factor interac-

tions, as well as a single quadratic term.

The term “symmetric” is used to illustrate the lack of preference for any par-

ticular factor. Furthermore, “pseudo-spanning” should not be taken in a technical

sense since it simply represents our attempt to “cover” the space of possible models.

We note that there has been recent work assigning priors to the space of possible

models [13] based on certain axiomatic assumptions, an approach discussed in the

final section of this chapter.

5.4 Design Algorithms

As stated above, there are two significant hurdles inherent in the design of optimal

multiresponse experimental designs. First, the response covariance matrix, Σ, is

often unknown at the design stage. At times, there may be historical estimates of

Σ but many experiments do not have this luxury. Secondly, the form of the model

with respect to each response is likely unavailable. A typical design gambit for the

multiresponse experimenter is to simply design for a large, assumed, univariate

model (i.e. full quadratic). This ignores, however, both of the aforementioned

issues.

In what follows, we develop an exchange algorithm to address the basic case

in which both Σ and ρ(x) are known. This, in itself, is a contribution because of

the scant literature on constructing exact designs for multiresponse experiments.

We facilitate this procedure by generalizing matrix- and determinant-updating

formulas given in the univariate case by Fedorov [41], and then discuss the model-

robust extension.

5.4.1 Basic Multiresponse Exchange Algorithm

We again base our algorithm on the modified Fedorov algorithm [26]. As in the

univariate case, we exploit updating formulae to enable the computational feasi-

bility of the multiresponse exchange algorithm In what follows, we first develop

the updating formulae, then we give the algorithm and discuss how it can be used

to find multiresponse model-robust designs.

77

5.4.1.1 Updating Formulae

The univariate modified Fedorov exchange algorithm seems, at first glance, to be a

brute force optimization heuristic. Although it is, the computational requirements

are moderated by a determinant-updating formula which allows the effect of an

exchange to be calculated quickly. Here, we generalize standard univariate up-

dating formulae and use them as the computational engine for our multiresponse

exchange algorithm. But first, we give the updating formula for the standard uni-

variate regression model: Given design ξn, design point xj ∈ ξn, and candidate list

point x ∈ χ, a new design ξ̃n is generated when the two points are swapped and

the new determinant of the univariate information matrix (denoted by M(ξn)) is

|M(ξ̃n)| = |M(ξn)| (1 + ∆(xj,x, ξn)) (5.6)

where

∆(xj,x, ξn) = V(x, ξn)−V(x, ξn)V(xi, ξn) + V2(x,xj, ξn)−V(xj, ξn)

with V(x, ξn) = f ′(x)M−1(ξn)f(x) and V(x,xj, ξn) = f ′(x)M−1(ξn)f(xj). This

is under standard assumptions about the univariate model, including, without loss

of generality, that the variance of the error term is σ2 = 1.

We prove a multivariate generalization of a result from Fedorov (Lemma 3.2.1,

[41]) from which the univariate determinant update (5.6) is derived, using the

same sorts of arguments. This is essentially identical to that given in Huizenga et

al. [56], but we present it here with an explicit proof and give a corollary which

further reduces computational burden in certain cases. We also follow Fedorov and

give a more general result in which ` points are swapped, instead of just 1. Some

supporting lemmas are given in Appendix D.

Theorem 3. Let ξn be an exact design consisting of points x1,x2, . . . ,xn and ξ̃n

be the design produced when xj1 ,xj2 , . . . ,xj`, xji ∈ ξn, are exchanged for x̃k ∈ χ,

k = 1, . . . , `. Further, let Mm(ξn,Σ) be the q×q multivariate information matrix of

the design ξn and ρ
′
(xjk) be the r×q multiresponse basis matrix, where q =

∑r
i=1 qi

78

and qi is the number of parameters for the ith response; then

|Mm(ξ̃n,Σ)| = |Mm(ξn,Σ)||I2`r + A
′

2M
−1
m (ξn,Σ)A1| (5.7)

where

A1 =
(
−ρ(xj1)Σ

−1/2,ρ(x̃1)Σ−1/2, . . . ,−ρ(xj`)Σ
−1/2,ρ(x̃`)Σ

−1/2
)

and

A2 =
(
ρ(xj1)Σ

−1/2,ρ(x̃1)Σ−1/2, . . . ,ρ(xj`)Σ
−1/2,ρ(x̃`)Σ

−1/2
)

and both matrices are q × 2`r.

Proof. For brevity, we denote Mm(ξn,Σ) as Mm and Mm(ξ̃n,Σ) as M̃m.

By definition,

M̃m = Mm −
∑̀
k=1

ρ(xjk)Σ−1ρ
′
(xjk) +

∑̀
k=1

ρ(x̃k)Σ
−1ρ

′
(x̃k)

Now,

A1A
′
2 =

(
−ρ(xj1)Σ−1/2,ρ(x̃1)Σ−1/2, . . . ,−ρ(xj`)Σ

−1/2,ρ(x̃`)Σ−1/2
)

Σ−1/2ρ
′
(xj1)

Σ−1/2ρ
′
(x̃1)

...

Σ−1/2ρ
′
(xj`)

Σ−1/2ρ
′
(x̃`)

=
∑̀
k=1

−ρ(xjk)Σ−1ρ
′
(xjk) + ρ(x̃k)Σ−1ρ

′
(x̃k)

This implies that M̃m = Mm + A1A
′
2 and by Lemma 6 (Appendix D),

|Mm + A1A
′

2| = |Mm||I2`r + A
′

2M
−1
m A1| (5.8)

which implies what we wanted to prove.

We can generalize this further, in the case where ` = 1 and a particular

matrix is invertible. Let d(x, ξn) = ρ′(x)M−1
m (ξn,Σ)ρ(x) and d(xj,x, ξn) =

ρ′(xj)M
−1
m (ξn,Σ)ρ(x) and x ∈ X .

79

Corollary 2. Let the setup be as in Theorem 3. Additionally, assume that ` = 1

and B = Ir −Σ−1/2d(xj, ξn)Σ−1/2 is invertible. Then

|Mm(ξ̃n,Σ)| = |Mm(ξn,Σ)| × |B| × |Ir + Σ−1/2d(x, ξn)Σ−1/2

+ Σ−1/2d(xj,x, ξn)Σ−1/2B−1Σ−1/2d(xj,x, ξn)Σ−1/2| (5.9)

Proof. For convenience, let M−1
m = M−1

m (ξn,Σ) and M̃m
−1

= M−1
m (ξ̃n,Σ). Since

` = 1,

A1 =
(
−ρ′(xj)Σ

−1/2,ρ′(x)Σ−1/2
)

and

A2 =
(
ρ′(xj)Σ

−1/2,ρ′(x)Σ−1/2
)
.

By Theorem 3, |M̃m| = |Mm||I2r + A
′
2M

−1
m A1|. Now,

A
′

2M
−1
m A1 =

(
Σ−1/2ρ′(xj)

Σ−1/2ρ′(x)

)
M−1

m

(
−Σ−1/2ρ′(xj),Σ

−1/2ρ′(x)
)

=

(
−Σ−1/2ρ′(xj)M

−1
m ρ(xj)Σ

−1/2 Σ−1/2ρ′(xj)M
−1
m ρ(x)Σ−1/2·

−Σ−1/2ρ′(xj)M
−1
m ρ(x)Σ−1/2 Σ−1/2ρ′(x)M−1

m ρ(x)Σ−1/2

)

=

(
−Σ−1/2d(xj, ξn)Σ−1/2 Σ−1/2d(xj,x, ξn)Σ−1/2

−Σ−1/2d(xj,x, ξn)Σ−1/2 Σ−1/2d(x, ξn)Σ−1/2

)

Then,

|I2r + A
′

2M
−1
m A1| =

∣∣∣∣∣ −Σ−1/2d(xj, ξn)Σ−1/2 Σ−1/2d(xj,x, ξn)Σ−1/2

−Σ−1/2d(xj,x, ξn)Σ−1/2 Σ−1/2d(x, ξn)Σ−1/2

∣∣∣∣∣
= |Ir −Σ−1/2d(xj, ξn)Σ−1/2|

|Ir + Σ−1/2d(x, ξn)Σ−1/2 + Σ−1/2d(xj,x, ξn)Σ−1/2

(Ir −Σ−1/2d(xj, ξn)Σ−1/2)−1Σ−1/2d(xj,x, ξn)Σ−1/2|

where the first equality follows from Lemma 5 and the second from Lemma 4. This

implies that which we wanted to prove.

80

Theorem 3 (assuming a single exchange, i.e., ` = 1) provides computational

relief when 2r < q, and Corollary 2 reduces the burden even further, by computing

determinants and an inverse of smaller, r × r matrices.

We also would like updating formulae for the information matrix as well as

its inverse. The justification for the former is given in the proof for Theorem 3.

The proof of the latter is essentially from Fedorov [41], though it is explicitly for

a multiresponse situation.

Corollary 3. Using the assumptions of Theorem 3,

Mm(ξ̃n,Σ) = Mm(ξn,Σ) + A1A
′
2 (5.10)

Theorem 4. Using the assumptions of Theorem 3,

M−1
m (ξ̃n,Σ) =

(
Iq −M−1

m (ξn,Σ)A1

(
I2` + A

′

2M
−1
m (ξn,Σ)A1

)−1

A
′

2

)
M−1

m (ξn,Σ)

(5.11)

Proof. First, take the inverse of both sides of (5.10) to get

M̃−1
m = (Mm + A1A

′

2)−1 = (Iq + M−1
m A1A

′

2)−1M−1
m

The last equality can be verified by right multiplying both sides by Mm + A1A
′
2:

(Mm + A1A
′

2)−1(Mm + A1A
′

2) = Iq

and

(Iq + M−1
m A1A

′

2)−1M−1
m (Mm + A1A

′

2)

= (Iq + M−1
m A1A

′

2)−1(Iq + M−1
m A1A

′

2) = Iq

Then, using Lemma 7 from Appendix D, it follows that

M̃−1
m =

(
Iq + M−1

m A1A
′

2

)−1

M−1
m

=

(
Iq −M−1

m A1

(
I2` + A

′

2M
−1
m A1

)−1

A
′

2

)
M−1

m

81

5.4.1.2 Multiresponse Exchange Algorithm for D-Optimal Designs

The D-optimality criterion for the n-point multiresponse model is to maximize

φ(Mm(ξn,Σ)) = |Mm(ξn,Σ)| = |Z′Ω−1Z| = |Z′(Σ−1 ⊗ In)Z|.

However, because of the above development, when xj ∈ ξn and x ∈ X are

swapped, we have that

φ(Mm(ξ̃n,Σ)) = φ(Mm(ξn,Σ))∆m(xj,x,Σ)

where, assuming B = Ir −Σ−1/2d(xj, ξn)Σ−1/2 is invertible,

∆m(xj,x,Σ) = |B| × |Ir + Σ−1/2d(x, ξn)Σ−1/2

+ Σ−1/2d(xj,x, ξn)Σ−1/2B−1Σ−1/2d(xj,x, ξn)Σ−1/2| (5.12)

with d(x, ξn) and d(xj,x, ξn) defined as in the prelude to Corollary 2. Otherwise,

if B−1 does not exist,

∆m(xj,x,Σ) = |I2r + A
′

2M
−1
m (ξn,Σ)A1| (5.13)

with A1 and A2 defined as in the proof of Corollary 2. Consequently, as the

exchange algorithm considers swaps, it can choose the one which maximizes ∆m,

not φ.

If the known model forms are nested, or if Σ = Ir, it is possible to simplify φ

even further, as done in Chapter 3:

φ(Mm(ξ̃n)) =
r∏
i=1

∣∣∣Mi(ξ̃n)
∣∣∣ (5.14)

=
r∏
i=1

|Mi(ξn)| (1 + ∆i(xj,x))

=
r∏
i=1

|Mi(ξn)|
r∏
i=1

(1 + ∆i(xj,x))

82

where Mi and ∆i are the univariate information matrices and update functions

for response model i. Then, to evaluate an exchange, we need only to calculate∏r
i=1(1 + ∆i(xj,x)) where ∆i is calculated, for response i, as in (5.6).

We can make yet another simplification if some of the model forms are the

same for the different responses. Assume there are a total of R ≤ r distinct model

forms, and let td be the number of times model d appears among all the model

forms. Then we have that

r∏
i=1

(1 + ∆i(xj,x)) =
R∏
d=1

(1 + ∆d(xj,x))td (5.15)

We make a slight adjustment to this criterion so our algorithm will not choose

an exchange so bad that (1+∆d(xj,x)) < 0 for an even td and/or an even number of

distinct models, which would result in a positive value of our criterion even though

the exchange is undesirable. Thus, we choose the exchange which maximizes

R∏
d=1

(1 + ∆d(xj,x))tdI(1 + ∆d(xj,x) > 0) (5.16)

where I is the indicator function.

Based on the above development, the Multiresponse Exchange (MX) algorithm

is as follows:

1. Initialize algorithm constructing a nonsingular initial design ξn and a grid,

C ⊂ X .

2. Let j = 1.

3. For design point xj:

(a) If models are nested or Σ = I, calculate (5.16) for all x ∈ C. Let

x∗j = arg maxx∈C
∏r

i=1(1 + ∆i(xj,x))I(1 + ∆i(xj,x) > 0).

(b) Otherwise, if models are not nested and Σ 6= I, calculate ∆m(xj,x,Σ),

according to (5.12) or (5.13) as appropriate, for all x ∈ C. Let x∗j =

arg maxx∈C ∆m(xj,x,Σ).

83

4. Perform exchange x∗j for xj, updating ξn. Update the determinant and also

M−1(ξn,Σ) via Theorem 4.

5. Increment j and if j < N return to Step 3. Else, if algorithm has converged,

STOP. Else return to Step 2.

The convergence criterion used here is similar to that for the algorithm in Chap-

ter ?? (ε = 0.01). This algorithm is guaranteed to converge because it produces a

bounded, nondecreasing sequence of determinants. It will not necessarily converge

to the global solution, so multiple algorithm tries using different initial designs

should be executed. Also, for large problems in particular, the determinants may

need to be calculated on the log scale.

5.4.2 Model-robust, Multiresponse Exchange Algorithm

In §5.4.1, we developed an exchange algorithm for the multiresponse model when

the response covariance matrix, Σ, and the model form of each response, ρ, are

known a priori. To extend this to the model-robust situation, for which it is

assumed that the form of the response models is not known precisely, we refer back

to §5.3 and choose a set of possible models, Fi, for each response and use them to

construct the artificial SUR model in (5.5) with covariance matrix Ω̃ = Σ⊗Ip⊗In.

Then, the MX algorithm can be used to calculate the model-robust design.

At this point, there still is the problem of unknown Σ. However, if the choice

of possible models are such that the union of them are nested, the model-robust

design is invariant to Σ. Even for nonnested cases, our experience is that there is

little or no efficiency lost by using Σ = I (see the examples).

5.5 Examples

In this section, we demonstrate the model-robust procedures using two simple

theoretical examples, as well as a real example. All designs referred to are in

Appendix E. Matlabr (Version 7.8) code can be found at http://www.stat.psu.

edu/~jlr/pub/Smucker/.

84

5.5.1 3-factor, 2-response Experiment

The first example, used in the multiresponse design literature [112, 9], is one in

which Σ and ρ(x) are given and there is an experimental budget of n = 20 runs.

To remain consistent with previous literature, we take the design space to be

X = {x = (x1, x2, x3) : −1.73 ≤ x1, x2, x3 ≤ 1.73} with known model forms, for

each response,

z
′

1(x) = (1, x1, x2, x3, x1x2, x1x3, x
2
1, x

2
3)

z
′

2(x) = (1, x1, x2, x1x2, x
2
1, x

2
2)

so that ρ
′
(x) =

(
z
′
1 0

0 z
′
2

)
. We also have that the variance-covariance matrix of

the responses are

Σ =

(
2 0.4

0.4 1

)
.

We will use the multiresponse exchange algorithm developed in §5.4.1.2 to

produce an exact solution to the multiresponse D-optimal design problem using

the given Σ and ρ. The same problem is addressed in Atashgah and Seifi [9] using

semidefinite programming, and we will compare our solution with theirs. We then

will demonstrate how the problem and solution changes when Σ and/or ρ(x) are

unknown. Before going further, we define the D-efficiency of a design.

Definition 2. The D-efficiency of design ξn for the multiresponse regression model

with covariance matrix Σ is defined as

D(ξn,Σ) =

∣∣Z′ξn (Σ−1 ⊗ In) Zξn

∣∣∣∣∣Z′ξ∗n (Σ−1 ⊗ In) Zξ∗n

∣∣∣
1/q

where ξ∗n = arg maxξn∈Ξ

∣∣Z′ξn (Σ−1 ⊗ In) Z
′

ξn

∣∣.
5.5.1.1 When ρ(x) is Known

When both ρ(x) and Σ are known, the MX algorithm in §5.4.1.2 can be used to

find the optimal design. We use a 27-element candidate list with just 3 levels (-1.73,

85

0, 1.73) for each factor, since the models have no terms higher than quadratic (a

denser candidate list with seven levels was tried also, but effected no change in the

solution). The design, in Table E.1, is the best out of 50 algorithm tries. Atashgah

and Seifi [9], on the other hand, used a semi-definite programming algorithm and

50 so-called “test vectors” to generate their design. It is unclear why they did not

limit themselves to the 33 set of test vectors, or, if those 27 were included, why the

procedure chose others, as shown in Table E.2.

However, if the experimenter is confident in the form of the regression function

for each response, but does not know the covariance matrix which relates them,

let Σ = I and use the MX algorithm to construct a design (Table E.3), using the

same 27-point candidate list and the best of 50 algorithm tries. Table 5.1 compares

the two designs and shows the superiority of that constructed using our exchange

algorithm. Note also that very little efficiency is lost when Σ is unknown. The

D-efficiencies are with respect to the best design we found, in this case using the

MX algorithm.

Design Covariance |Mm| D-Eff.
MX I 8.30e20 0.999
MX Σ 8.38e20 1
SDP Σ 5.48e20 0.970

Table 5.1. Determinants, with D-efficiencies, for example in §5.5.1 with ρ(x) known.

5.5.1.2 When ρ(x) is Unknown

Now we consider the case in which the model form for each response is unknown.

Whether the covariance matrix is known or unknown, the experimenter specifies

F = (F1,F2, . . . ,Fr), where each Fi is a set of possible model forms for response

i. If Fu = F1 ∪ F2 ∪ . . . ∪ Fr is nested, we can utilize theory by Bischoff [15] and

others to justify the use of the simpler determinant updates via (5.15) for the MX

algorithm. If the model forms are not nested and Σ 6= I, then we must use the

determinant-updating formula (5.12) which accounts for Σ.

Two model sets, as described in §5.3.1, will be considered. For three factors,

the SSPS set is

f
′

11(x) = (1, x1, x2, x3) (5.17)

86

f
′

12(x) = (f11, x1x2, x1x3, x2x3) (5.18)

f
′

13(x) = (f12, x
2
1, x

2
2, x

2
3) (5.19)

so that F1,SSPS = {f ′i (x)β1i, 1 ≤ i ≤ 3,x ∈ χ}. Further, assume that F2,SSPS =

F1,SSPS so that both responses have the same set of possible models. Then,

Fu,SSPS = F1,SSPS ∪ F2,SSPS is nested and consequently we can use the simpler

algorithm.

The SPS set includes twelve models

f
′

1+(x) = (1, x1) (5.20)

f
′

2+(x) = (1, x2) (5.21)

f
′

3+(x) = (1, x3) (5.22)

f
′

4+(x) = (1, x1, x2, x3) (5.23)

f
′

5+(x) = (f4+, x1x2) (5.24)

f
′

6+(x) = (f4+, x1x3) (5.25)

f
′

7+(x) = (f4+, x2x3) (5.26)

f
′

8+(x) = (f4+, x1x2, x1x3, x2x3) (5.27)

f
′

9+(x) = (f8+, x
2
1) (5.28)

f
′

10+(x) = (f8+, x
2
2) (5.29)

f
′

11+(x) = (f8+, x
2
3) (5.30)

f
′

12+(x) = (f8+, x
2
1, x

2
2, x

2
3) (5.31)

so that F1,SPS = {f ′i+(x)β1i+, 1 ≤ i ≤ 12,x ∈ X} and F2,SPS = F1,SPS. This

set of models is not nested, so the SPS-model-robust design will depend upon Σ.

Using the MX algorithm of §5.4.1.2, we can calculate three model-robust designs:

SSPSMR (SSPS-model-robust, given in Table E.4); SPSMR-Σ (in the case that the

covariance matrix is known); and SPSMR-I (when the covariance is unknown), and

compare with the design optimal for the full quadratic alone (i.e. usual practice,

given in Table E.6). In this case SPSMR-Σ and SPSMR-I are the same (Table

E.5).

For a three-factor experiment, there are in total 63 possible models which obey

87

the oft-observed hierarchical principal (see [82, 13]), which says that higher-order

terms are included in the model only if appropriate lower-order terms appears.

Since there are two responses, this results in 632 = 3969 total possible hierarchical

models. To evaluate the model-robust designs described above, we have found the

optimal designs for each of these possible models individually (based upon only

10 algorithm tries due to computational constraints, and using a multiresponse

exchange algorithm in which only one exchange is made per iteration), allowing

us to calculate the D-efficiency of the model-robust designs with respect to each

of the 3969 models. We give relevant, comparative statistics in Table 5.2. For

these hierarchical models, the model-robust designs have higher D-efficiencies on

average, with less variability, than the design optimal for the full quadratic model.

Interestingly, while the design for the larger SPS set has less variability in its

efficiencies, its average is inferior to the design with respect to the smaller SSPS

set.

Design Mean StDev Min
SSPSMR 0.940 0.037 0.829
SPSMR-Σ/SPSMR-I 0.920 0.024 0.838
Quadratic 0.915 0.056 0.740

Table 5.2. Comparison of model-robust designs for example in §5.5.1, in terms of
D-efficiencies with respect to all 3969 possible true models.

5.5.2 Two-factor, Two-response Experiment

We also consider a theoretical example in which there are two responses, two

factors and 12 runs, with both Σ and ρ(x) unknown. Since the covariance matrix

is unknown we assume Σ = I when constructing designs.

We can again use the algorithm of §5.4.1.2 to construct these model-robust

designs, one each with respect to the SSPS and SPS sets, using 50 algorithm tries

and a small 32 candidate list. In this case, the two designs turn out to be equivalent

(Table E.7). To evaluate the model-robustness of this design, we again consider

the set of all possible hierarchical models up through second order polynomials.

Since there are seven such models for each response, there are 72 = 49 models in

total.

88

We found the optimal designs for each of the 49 models (note that for conve-

nience we did not use the simplification of Equation (5.14) even when appropriate;

also, we again used an exchange algorithm similar to the one described in §5.4.1.2

except with only one swap made per iteration), for each of three assumed “true”

Σ:

Σ1 =

(
1 0

0 1

)
, (5.32)

Σ2 =

(
1 .8

.8 1

)
, (5.33)

Σ3 =

(
9 1.5

1.5 1

)
. (5.34)

We also constructed the design optimal for the quadratic model alone (Table

E.8) and compared it with the model-robust design. Table 5.3 shows that the

model-robust design has a higher average and minimum D-efficiency, with smaller

standard deviation. For Σ1, we give histograms of these efficiencies for both de-

signs, as well.

SSPS/SPS Model-Robust Optimal for Quadratic
Mean StDev Min Mean StDev Min

Σ1 0.931 0.0468 0.825 0.893 0.0726 0.740
Σ2 0.932 0.0482 0.825 0.894 0.0737 0.740
Σ3 0.932 0.0481 0.825 0.894 0.0735 0.740

Table 5.3. Comparison of model-robust design and design optimal for full quadratic
model, for each of three assumed true covariance matrices, as measured by the mean
D-efficiency, standard deviation of the D-efficiency, and the minimum D-efficiency.

5.5.3 Mullet Meat Experiment

The final example, taken from Shah et al. [94] via Tseo et al. [101], was an ex-

periment in which washing minced mullet flesh was investigated. The controllable

factors were washing temperature (x1), washing time (x2), and washing ratio (x3)

and there were four responses: springiness (y1), thiobarbituric acid number (y2),

percent cooking loss (y3), and whiteness index (y4). The original experiment was

a central composite design with eight corner points, six axial points, and three

89

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

2

4

6

8

10

12

14

Figure 5.1. Histogram of D-efficiencies with respect to the 49 models and Σ1, for the
model-robust design.

center points (N = 17). Shah et al. [94] used an SUR model to fit the following

models:

y1 = 1.884634− 0.097383x1 − 0.103901x2
1 (5.35)

y2 = 22.648811 + 5.614804x1 − 0.341069x2 + 7.830449x2
1 + 2.681968x1x2 (5.36)

y3 = 18.956432 + 0.744422x1 − 0.207512x2 − 1.331086x3 + 3.222674x2
1

+ 1.392487x2
3 + 1.587398x1x2 + 1.804884x1x3 (5.37)

y4 = 51.910033 + 2.436441x1 − 3.428739x2
1 (5.38)

with estimated covariance matrix

Σ̂ =

.0016525 −.0086836 −.0358445 −.0804776

−.0086836 7.5417141 −.5390002 2.4998582

−.0358445 −.5390002 4.5640517 4.8343599

−.0804776 2.4998582 4.8343599 14.2181839

 . (5.39)

We first use the MX algorithm to produce, as a standard, the optimal design

using (5.35)-(5.38) and (5.39) as the truth (Table E.9). Then, we also construct

90

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0

2

4

6

8

10

12

14

Figure 5.2. Histogram of D-efficiencies with respect to the 49 models and Σ1, for the
design optimal for the quadratic model alone

two model-robust designs, one using the SSPS set (Table E.10) and the other using

the SPS set (Table E.11). We also include the design optimal for the quadratic

model alone in Table E.12. With respect to the particular “true” model forms and

covariance matrix, the design optimal for the quadratic model is 91.9% D-efficient,

while the model robust designs are only 89.2% and 88.2%, respectively. This is not

surprising because the fitted model forms include quadratic terms. If the “true”

models are modified such that three of the five quadratic terms are removed from

the model forms in (5.35)-(5.38) (x2
1 from y1 and y2 and x2

3 from y3), the SSPS-MR

and SPS-MR are 92.5% and 95.3% efficient, while the full quadratic is 91.1%.

5.6 Discussion

In this chapter we have generalized the matrix updating formulae of Fedorov [41]

to facilitate the development of an exchange algorithm to construct exact mul-

tiresponse designs. However, since neither the covariance matrix of the responses

or the model forms for each response is likely to be known at the design stage,

we extend the methodology and demonstrate that a model-robust approach can

91

be effective in constructing designs in the multiresponse context, compared to the

usual practice of ignoring the multiple responses and designing for the largest as-

sumed univariate model. Furthermore, our work confirms the general conclusion

of Chang [23] which found the effect of Σ on the optimal multiresponse design

to be minimal. Compared to the model response forms, the covariance matrix is

inconsequential.

When large problems are coupled with a large potential model set, computa-

tional requirements could become crippling, particularly if a higher granularity is

desired in the candidate list. For the small-to-moderate sized problems in this

chapter, model-robust designs can be computed in a reasonable amount of time.

However, to counteract debilitating computational demands for larger problems,

further work might include a coordinate exchange algorithm [77] for multiresponse

design, which would eliminate the need for a candidate list. For regular design

regions in particular, the extension should be straightforward.

Work has been done by Bingham and Chipman [13] which takes a more so-

phisticated view of selecting sets of a priori model forms. Instead of choosing

more or less ad hoc sets as we have in this work, these authors develop a prior

distribution of possible models based upon three axiomatic principles: Effect spar-

sity, effect hierarchy, and effect heredity. Their approach does not eliminate the

problem of exploding model size (in the end, they only handle a small subset of

the models with the largest prior probabilities), but it does represent a principled

approach that might be adapted to the current setting. However, we note that

1) this approach would further exaggerate the superiority of the model-robust de-

signs, because of the effect hierarchy assumption which favors lower-order effects

to higher-order ones; and 2) it would not be a straightforward application of their

methodology because we consider quadratic effects and require designs for which

these effects are estimable.

Chapter 6
Maximin Model-Robust Designs for

Split Plot Experiments

6.1 Introduction

Split-plot experiments arise when certain factors are significantly harder and/or

more expensive to change (whole plot factors) than others (subplot factors). To

alleviate these difficulties, a two-step randomization scheme is employed. First, the

designer specifies the number of whole plots, and randomly assigns some combina-

tion of the whole plot factors to each. Then, within each whole plot, combinations

of subplot factor levels are randomly assigned to the subplots within each whole

plot. Thus, a split-plot design reduces the number of required independent resets

of the levels of the whole plot factors, compared to the completely randomized

design (CRD), and saves the experimenter time and/or money.

For instance, suppose an experiment is to be conducted to learn about factors

affecting the strength of a type of ceramic pipe. Two of the factors are concerned

with the temperature of different parts of a furnace, and are difficult to change

from run to run. The other two factors are the amount of binder and the grinding

speed, and are easy to change. A desirable design minimizes the number of changes

to the temperature factors–thus a split-plot design is appropriate. We return to

this example in §6.4.1.

For most of their history, split-plot experiments have been viewed as categorical

93

designs; that is, designs with qualitative factors. However, the recent split-plot

resurgence has viewed these as designed experiments with continuous factors and

this approach has spawned relatively recent work in the optimal design of split-plot

experiments. This helps to explain why there is not an asymptotic design theory

for split-plot experiments, though CRDs have a thorough asymptotic development.

Optimal design in this area, led by Goos and coauthors (e.g. [49, 50, 51,

59]), utilizes the D-optimality criterion to produce exact designs that estimate

model parameters as precisely as possible. As in the case of CRDs, these optimal

designs require the specification of a particular model form–an often unrealistic

assumption.

There is a paucity of extant research in model-robustness for split-plot experi-

ments. In this chapter, we provide a framework in which the model form assump-

tion can be relaxed and an exchange algorithm used to construct model-robust

split-plot designs. Instead of a single model, we allow the user to specify a set of

models; instead of directly using the D-criterion to construct the design, we use a

criterion which maximizes the minimum D-efficiency with respect to this set. A

generalization allows the experimenter to specify a level of interest in each model,

giving the experimenter recourse if certain models are preferred over others, and

flexibility to inject prior belief into the design process. We find also, corroborat-

ing previous work, that the ratio of variance components has little impact on the

optimal design.

6.2 The Split-Plot Model and Design

Here, we follow the notation of Goos and Vandebroek [49]. A split-plot experi-

ment consists of two disparate groups of factors: the nw difficult to change whole

plot variables, denoted z = (z1, z2, . . . , znw), and the remaining ns easy to change

subplot factors, denoted x = (x1, x2, . . . , xns). Whole plot factor level combina-

tions are randomly assigned to the whole plots, and then within each whole plot

factor level combinations of x are randomly assigned. We can represent an exact

94

split-plot design as

ξnb =

(
(z1,x11) (z1,x12) . . . (z1,x1u1) (z2,x21) . . . (zb,xbub

)

n11 n12 . . . n1u1 n21 . . . nbub

)
(6.1)

where n is the total number of runs, b is the number of whole plots, ui is the

number of distinct points in the ith whole plot, and nik is the number of runs for

the kth distinct point in the ith whole plot.

The regression model for the jth observation within the ith whole plot is

yij = f
′
(zi,xij)τ + δi + εij (6.2)

where f is the model expansion in terms of the whole plot and subplot factors, τ

is a p-vector of model parameters, δi is the whole plot error term, and εij is the

subplot error term. The parameter vector includes pw parameters for whole plot

factors only, ps parameters for subplot factors only, and pws parameters for whole

plot-by-subplot interactions. We can write the model in matrix notation as

Y = Xτ + δ + ε (6.3)

Both δi and εij are assumed to be normally distributed with mean 0 and vari-

ances σ2
δ and σ2

ε , respectively. Each observation yij has two variance components,

one contributed by the whole plot, σ2
δ , and one contributed by the subplot, σ2

ε .

Thus, V ar(yij) = σ2
δ + σ2

ε . However, within whole plot i, observations are corre-

lated because the whole plot is fixed. This is represented by Cov(yij, yij′) = σ2
δ ,

where j 6= j′. Thus, the variance-covariance matrix for whole plot i is

Wi = σ2
ε Isi

+ σ2
δ1si

1
′

si

= σ2
ε (Isi

+ η1si
1
′

si
)

where η = σ2
δ/σ

2
ε , si is the number of runs in whole plot i, Isi

is the identity

matrix, and 1si
is an si-vector of ones. Since the whole plots are assumed to be

95

independent of one another, the covariance matrix for (6.3) is block diagonal:

W =

W1 0 . . . 0

0 W2 . . . 0
...

...
. . .

...

0 0 . . . Wb

To estimate the parameters of this model, we use Generalized Least Squares

(GLS), which give τ̂ =
(
X
′
W−1X

)−1
X′R−1Y so that V ar(τ̂) =

(
X
′
W−1X

)−1
.

The information matrix, then, is

Msp = X
′
W−1X.

This expression for the information matrix can be simplified [49]; see Appendix

F.1 for details. First, W−1
i can be written as

W−1
i =

1

σ2
ε

(
Isi
− d

1 + sid
1si

1
′

si

)
which leads to a convenient, updatable form of the information matrix:

Msp =
w∑
i=1

X
′

iW
−1
i Xi

=
1

σ2
ε

(
w∑
i=1

si∑
j=1

f(zi,xij)f
′
(zi,xij)−

w∑
i=1

d

1 + sid
(X

′

i1si
)(X

′

i1si
)
′

)
.

In this chapter, we are primarily interested in D-optimality, which is given by

|Msp| =
∣∣∣X′

W−1X
∣∣∣ . (6.4)

We also give the prediction variance for design ξ and point (zi,xij), because our

algorithm uses it to construct an initial design:

Vsp(zi,xij, ξ) = f
′
(zi,xij)M

−1
sp (ξ)f(zi,xij). (6.5)

96

6.3 Model-Robust, Maximin Split-Plot Design

Algorithm

In this section, we first review the basic idea of the exchange algorithm for D-

optimal split-plot designs, given by Goos and Vandebroek [50]. We then give a

generalization of the algorithm which is robust to a set of user-specified models,

achieving this robustness by seeking the design which maximizes the minimum

D-efficiency with respect to the model set.

6.3.1 D-Optimal Split-Plot Exchange Algorithm

The algorithm upon which ours is based [50] requires the specification of the num-

ber of whole plots as well as the number of subplots per whole plot. The same

authors [51] also give an algorithm for which these requirements are relaxed. How-

ever, when split-plot experiments are called for, it is most often because certain

factors are difficult or expensive to change. Thus, at the very least an algorithm

is desired for which the number of whole plots can be constrained, and for our

purposes we will consider only the case in which the number and size of the whole

plots are explicitly specified.

Thus, the D-optimal split-plot algorithm requires the construction of a candi-

date list, the number and size of the whole plots, the ratio of variance components,

η = σ2
δ/σ

2
ε , and a given, assumed model form. The algorithm first randomly spec-

ifies an initial design, and then iteratively improves upon the design using three

exchange mechanisms: 1) Consider swaps of current design points with candidate

points having the same whole plot factor settings; 2) Consider swaps of current

design points with other design points having the same whole plot factor settings;

and 3) Consider swaps of current whole plot factor settings with other possible

whole plot factor settings. For each mechanism in turn, all possible exchanges

are considered for each appropriate design point (or whole plot). The algorithm

iterates until convergence. Since this is not a concave optimization problem, the

algorithm is not guaranteed to converge to the globally optimal solution. Conse-

quently, numerous algorithm tries, each with a randomly generated initial design,

are used to overcome possibly local optima (we use 50 tries, and Goos and Vande-

97

broek [50] give evidence that this is adequate to produce an optimal design with

high probability). The model-robust algorithm developed below is similar to this

procedure in structure and approach.

Many updates of the determinant of the split-plot information matrix are re-

quired as exchanges are considered. Arnouts and Goos [5] developed updating

formulae that speed the computation of these updates. We reproduce them in

Appendix F.2, and refer to them in our algorithm as they are used.

6.3.2 Maximin Split-Plot Exchange Algorithm

In this section we describe a model-robust procedure for the split-plot optimal

design problem which parallels that in Chapter 4 for the completely randomized

setting. This is based upon F , a user-specified set of r models. Our goal is to

find a design that is maximin optimal with respect to a generalized measure of

D-efficiency, Gf (ξnb), defined as

Gf (ξnb) =
Df (ξnb)

vf
(6.6)

where vf represents the model interest (weight) element for model f and Df (ξnb)

is the D-efficiency for a design ξnb with respect to model f , calculated as

Df (ξnb) =

(
|Msp,f (ξnb)|
|Msp,f (ξ∗nb)|

)1/p

(6.7)

where ξ∗nb is the optimal design for model f . The model interest vector is v =

(v1, . . . , vr) ∈ (0, 1] and represents the experimenter’s level of interest in each of

the r specified models. By convention, we scale this vector so that the a priori

most likely model(s) has (have) a model interest level of 1. (Note that the user

could renormalize these model interest weights as prior probabilities.) The algo-

rithm gives a lower priority to models with smaller interest levels and in fact gives

precedence to each model commensurate with its model interest level. This hier-

archy is sometimes reflected in the efficiencies of the design with respect to the

models in F (i.e. if F = (f1, f2) and v = (1, .8), the resulting design may have a

D-efficiency with respect to the second model form that is about 80% that of the

98

first). Due to the discrete nature of the exact split-plot design problem, as well as

complications inherent in model sets with more than two elements (see Chapter

4), the efficiency precedence may be obscured or nonexistent, as demonstrated in

our examples.

This model-robust procedure is computationally more demanding than the orig-

inal split-plot exchange algorithm. First, there are r models to consider instead

of just one. Secondly, it requires that the optimal design for each of the models

individually be found. There are fewer commercially available optimal design al-

gorithms for split-plot experiments than for CRDs, though they do exist (e.g. SAS

JMP). However, if the model-robust algorithm is implemented the optimal design

split-plot algorithm is a special case when F consists of just a single model, and

thus could be used to furnish the individually optimal designs.

To describe our algorithm, we adopt the same basic structure (though different

notation) as Goos and Vandebroek [50]: There is assumed to be c candidate points,

the set of which is denoted by C. Similarly, there are b whole plots and the set

of them is B, and the ki design points in the ith whole plot for a design ξnb are

denoted by Hi. Thus, the total number of design points is n =
∑b

i=1 ki. The whole

plot factor level combinations for the ith whole plot is given by zi, and the set of

candidate points with the same whole plot factor combinations as the ith whole

plot is given by Ci. The generalized D-efficiency for model f is Gf , as in (6.6).

The best minimum generalized efficiency found at any given point in the algorithm

is represented as G∗fmin
. Also, we let the set of possible whole plot factor levels be

P . The number of algorithm tries is given by t and the current try is tc. See §6.4.1

for an illustration of this notation.

For the algorithm, we must specify 1) a candidate list, C; 2) the number of

whole plots, b; 3) the size of each whole plot, k1, k2, . . . , kb; 4) the ratio of variance

components, η; 5) the set of possible model forms, F ; 6) a model interest vector,

v, specifying the relative preference for each model (if no preferences, enter vf = 1

for all f ∈ F ; and 7) for each model f ∈ F ,
∣∣Msp,f (ξ

∗
f)
∣∣, where ξ∗nb,f is the optimal

design for model f alone. One consequence of our set of models approach is that the

number of whole plots, b, must be greater than pw,fmax , the number of parameters

with only whole plot terms, for the largest model. The algorithm is as follows:

1. Set tc = 1.

99

2. Determine pw,f , the number of coefficients for whole plot factors only, for all

f ∈ F .

3. Determine ps,f , the number of coefficients for subplot factors only, for all

f ∈ F .

4. Set Msp,f = ωI (where ω is a small constant set at 0.01) for all f ∈ F ; set

Hi = ∅.

5. Construct initial design

(a) Randomly assign pw,fmax unique whole-plot factor settings to pw,fmax

whole plots, where fmax is the model with the most parameters (to

ensure estimability of whole plot coefficients for largest model).

(b) Randomly assign b− pw,fmax levels of the whole-plot factors to the rest

of the whole plots.

(c) Randomly choose u (1 ≤ u ≤ pfmax), where pfmax is the number of

parameters for model fmax.

(d) Do u times (this step gives initial design a measure of randomness):

i. Randomly select i ∈ B (select a whole plot at random)

ii. Randomly select j ∈ Ci (select a candidate point with the ith setting

of whole plot, at random)

iii. If #Hi < ki, then Hi = Hi ∪ j; otherwise, go back to step i.

iv. Update M−1
sp,f for all f ∈ F via (F.1).

(e) Do n − u times (this step attempts to give initial design a measure of

quality with respect to all models f ∈ F):

i. Randomly select f ∈ F .

ii. Set l = 1.

iii. For model f , determine j ∈ C with the lth biggest prediction vari-

ance via (6.5).

iv. Find i, where i ∈ B, j ∈ Ci, and #Hi < ki (find a nonfull whole

plot into which j can be inserted). If no such i exists, set l = l + 1

and return to step iii.

100

v. Hi = Hi ∪ j.

vi. Update M−1
sp,f for all f ∈ F via (F.1).

6. Compute M−1
sp,f for all f ∈ F and Gfmin

(the smallest generalized efficiency).

If Gfmin
= 0, go back to step 4. Otherwise, continue.

7. Set ν = 0.

8. Evaluate design point exchanges (swapping design points with candidate

points, where whole plot factors settings are the same):

(a) Set γ = Gfmin
= minf∈F Gf .

(b) ∀i ∈ B, ∀j ∈ Hi, ∀k ∈ Ci, j 6= k:

i. Determine the effect δijk,fmin
= |Mi

jk,sp,fmin
|/|Msp,fmin

| of exchang-

ing, in the ith whole plot, points j and k, using (F.4).

ii. If δijk,fmin
> 1, calculate δijk,f = |Mi

jk,sp,fmin
|/|Msp,fmin

| for all f 6=
fmin and update |Msp,f | for all f ∈ F via (F.4). Then, compute

Gi
jk,f for all f ∈ F .

iii. If minf∈F G
i
jk,f > γ, then γ = minf∈F G

i
jk,f and store i, j, and k.

9. If γ > Gfmin
+ ε, then go to step 10; otherwise, go to step 11.

10. Perform the best exchange:

(a) Hi = Hi \ j ∪ k.

(b) Update M−1
sp,f and |Msp,f | for all f ∈ F via (F.5) and (F.4), respectively.

(c) Set ν = 1.

11. Evaluate interchanges of points within whole plots with the same factor lev-

els:

(a) Set γ = Gfmin
= minf∈F Gf .

(b) ∀i, j ∈ B, i < j, zi = zj, ∀k ∈ Hi, ∀l ∈ Hj, k 6= l:

i. Determine the effect δjlik,fmin
= |Mjl

ik,sp,fmin
|/|Msp,fmin

| of moving k

to whole plot j (from whole plot i) and l to whole plot i (from whole

plot j), via (F.7).

101

ii. If δjlij,fmin
> 1, calculate δjlik,f = |Mjl

ik,sp,fmin
|/|Msp,fmin

| for all f 6=
fmin and update |Msp,f | for all f ∈ F via (F.7). Then, compute

Gjl
ik,f for all f ∈ F .

iii. If minf∈F G
jl
ik,f > γ, then γ = minf∈F G

jl
ik,f and store i, j, k, and l.

12. If γ > Gfmin
+ ε, go to step 13; otherwise, go to step 14.

13. Perform the best interchange:

(a) Hi = Hi \ k ∪ l.

(b) Hj = Hj \ l ∪ k.

(c) Recalculate M−1
sp,f and update |Msp,f | via (F.7).

(d) Set η = 1.

14. Evaluate exchanges of whole-plot factor settings:

(a) Set γ = Gfmin
= minf∈F Gf .

(b) ∀i ∈ B, ∀j ∈ P , zi 6= zj:

i. Determine the effect δij,fmin
= |Mij,sp,fmin

|/|Msp,fmin
| of exchanging

zi by zj in the ith whole plot, via (F.10).

ii. If δij,fmin
> 1, calculate δij,f = |Mij,sp,fmin

|/|Msp,fmin
| for all f 6=

fmin and update |Msp,f | for all f ∈ F via (F.10). Then, compute

Gij,f for all f ∈ F .

iii. If minf∈F Gij,f > γ, then γ = minf∈F Gij,f and store i and j.

15. If γ > Gfmin
+ ε, go to step 16; otherwise, go to step 17.

16. Perform best exchange:

(a) Update Hi and Ci.

(b) Update M−1
sp,f and |Msp,f | for all f ∈ F via (F.11) and (F.10), respec-

tively.

(c) Set η = 1.

17. If η = 1, go to step 7.

102

18. If Gfmin
= minf∈F Gf > G∗fmin

, then G∗fmin
= Gfmin

; also, update the design

ξnb.

19. If tc < t, then tc = tc + 1, and go back to step 4; otherwise, STOP.

Notes: 1) This algorithm, including Step 5 which generates the initial design,

generalizes Goos and Vandebroek [50] but follows its basic outline. 2) In 13(c),

we recalculate M−1 by directly taking its inverse, because of numerical issues

associated with the updated formula in (F.8). This should have a minimal effect

on the speed of the algorithm because it occurs only once per iteration. 3) In steps

9, 12, and 15, we have changed the original algorithm of Goos and Vandebroek [50]

slightly by requiring that, for any considered exchange/interchange, the increase

in the minimum efficiency is greater than ε = 0.0001 (instead of 0, as it was

originally), to encourage algorithmic stability. 4) Note that the ε here is not a

convergence parameter as in the previous chapters. For a particular algorithm try,

tc, the procedure terminates when an iteration results in no exchanges.

6.4 Examples

In this section we illustrate our model-robust procedure using two examples from

the literature. The first involves two whole plot factors and two subplot factors.

The second includes two process (whole plot) factors and three mixture (subplot)

factors. In what follows, we reference and discuss a large number of designs. In the

interest of space, they can be found in the supplementary material accompanying

this article. All designs referred to in the following examples are given in Appendix

H. Matlabr (Version 7.8) code can be found at http://www.stat.psu.edu/~jlr/

pub/Smucker/.

6.4.1 Strength of Ceramic Pipe Experiment

In a reprise of the example at the outset, the first example is taken from Vining

et al. [103] and concerns an experiment on the strength of ceramic pipe. To

illustrate and clarify the notation for the algorithm in the previous section, we will

include that notation in the description of this example. There were four factors,

103

two hard-to-change (zone 1 temperature of furnace, z1; zone 2 temperature of

furnace, z2) and two easy-to-change (amount of binder, x1; grinding speed, x2).

The experiment used b = 12 whole plots each of size 4 (ki = 4 for i = 1, . . . , 12 so

that n =
∑12

i=1 ki = 48). A given design for this experiment is denoted by ξnb and

the part of the design associated with the ith whole plot is Hi.

After running the experiment, it was found that η̂ = σ̂2
δ/σ̂

2
ε = .52828/.09348 =

5.65. The model to be fit was full quadratic in all factors:

f
′
(z,x) = (1, z1, z2, z1z2, z

2
1 , z

2
2 , x1, x2, x1x2, z1x1, z1x2, z2x1, z2x2, x

2
1, x

2
2) (6.8)

with X = {z = (z1, z2),x = (x1, x2) : −1 ≤ z,x ≤ 1}.
Vining et al. [103] used a face-centered central composite design (CCD) mod-

ified to accommodate the split-plot structure. Another design approach would

be to use the D-optimal exchange algorithm of Goos and Vandebroek [50] (or,

alternatively, the candidate list-free exchange algorithm of, [59]) assuming (6.8)

to be the true model. In retrospect, this model seemed to be a good approxi-

mation of the true model [103], but if the experimenter were not confident about

the form of the model a priori, it would be advantageous to choose a set of mod-

els and construct a design robust for all of them. For instance, we might choose

F1 = {f ′i (z,x)τi, 1 ≤ i ≤ 3; z,x ∈ X} with

f
′

1(z,x) = (1, z1, z2, x1, x2) (6.9)

f
′

2(z,x) = (f
′

1, z1z2, x1x2, z1x1, z1x2, z2x1, z2x2) (6.10)

f
′

3(z,x) = (f
′

2, z
2
1 , z

2
2 , x

2
1, x

2
2). (6.11)

A weakness of optimal design—addressed for exact designs in an ad-hoc way

in the split-plot case by Goos and Donev [47] and in a more systematic way in

the CRD case by, for instance, DuMouchel and Jones [37] and Goos et al. [48]—is

that it devotes all of the available experimental resources to increase the efficiency

of the design and none to allow lack-of-fit testing. To overcome this shortcoming,

while remaining in the optimal design paradigm and thus enjoying a great deal of

efficiency, a strategy would be to construct a design somewhat less efficient with

respect to models considered likely, while affording the experimenter estimability

104

for a larger model. This approach can serve as a hedge against a larger-than-

expected model, though it does not necessarily allow traditional lack-of-fit testing.

To illustrate, we take F2 = {F1, f
′
4} with

f4 = (f3,x1x2x3, x1x2x4, x1x3x4, x2x3x4, (6.12)

x2
1x2, x

2
1x3, x

2
1x4, x

2
2x1, x

2
2x3, x

2
2x4, x

2
3x1, x

2
3x2, x

2
3x4, x

2
4x1, x

2
4x2, x

2
4x3,

x3
1, x

3
2, x

3
3, x

3
4),

the full cubic model.

In Table 6.1, we consider seven designs in all, evaluating them by calculating

their D-efficiencies with respect to each of the possible models we have discussed.

The first four are based on the methodology developed in this work, and the last

three are included for comparative purposes. The maximin designs, as well as

the optimal designs for models (6.11) and (6.12), have been calculated under the

assumption that the variance components are the same (i.e. no prior knowledge

of η) and the best of t = 50 algorithm tries taken, each starting with a randomly

chosen design, using a 54 candidate list–all combinations of (−1,−0.5, 0, 0.5, 1) for

each of the four factors. Thus, c = 54 = 625 and C is the set of these points,

while Ci is the portion of these points whose whole plot factor combinations match

that of the ith whole plot. This also implies that P , the possible factor level

combinations of the two whole plot factors, consists of 52 points (all combinations

of (−1,−0.5, 0, 0.5, 1)).

105

η
=

1
η

=
5.

65
D

es
ig

n
(6

.9
)

(6
.1

0)
(6

.1
1)

(6
.1

2)
(6

.9
)

(6
.1

0)
(6

.1
1)

(6
.1

2)

F
1
-M

ax
im

in
.9

33
.8

79
.8

79
0

.9
33

.8
78

.8
79

0
(.

9,
.9

,1
)-
F

1
-M

ax
im

in
.9

05
.8

38
.9

31
0

.9
04

.8
37

.9
31

0
F

2
-M

ax
im

in
.8

76
.7

78
.8

74
.7

77
.8

76
.7

77
.8

72
.7

69
(.

8,
.8

,1
,.
5)

-F
2
-M

ax
im

in
.8

52
.7

54
.9

42
.7

08
.8

50
.7

52
.9

42
.7

07
O

p
ti

m
al

fo
r

(6
.1

1)
.8

50
.7

52
1

0
.8

47
.7

50
1.

00
0

0
O

p
ti

m
al

fo
r

(6
.1

2)
.7

59
.6

00
.8

82
1

.7
58

.5
99

.8
82

.9
99

V
in

in
g

et
al

.
[1

03
]

.5
12

.4
05

.5
82

0
.5

12
.4

05
.5

27
0

T
ab

le
6.

1.
Fo

r
ex

am
pl

e
in
§6

.4
.1

,
D

-e
ffi

ci
en

ci
es

fo
r

va
ri

ou
s

de
si

gn
s

w
it

h
re

sp
ec

t
to

m
od

el
s

(6
.9

)-
(6

.1
2)

.
W

e
gi

ve
effi

ci
en

ci
es

as
su

m
in

g
η

=
1

as
w

el
l

as
η

=
5.

65
.

106

In Table 6.1, we calculate the efficiencies both under the assumption that η = 1

and η = 5.65 (estimated by Vining et al. [103]). It can be seen that η has almost

no effect on the efficiencies of the designs. The maximin design with respect to

F1 is relatively efficient for the three models, but cannot estimate the larger cubic

model, (6.12). The (.9,.9,1)-F1-maximin design is appropriate if more emphasis

is desired for the quadratic model, (6.11), than the smaller ones. In comparison

to the design optimal for the quadratic model alone, this design gives up some

precision for the quadratic model but is more efficient for the two smaller models.

However, if some protection is desired for a lurking, higher-order model we

expand to the set F2. The F2-maximin design shows, unsurprisingly, that adding

the full cubic model dampens the ability to estimate the other models. However, if

we take v = (.8, .8, 1, .5) and compare the resulting maximin design to the optimal

design for (6.11), this design estimates the smaller models as well, gives up just 6%

in efficiency for the quadratic model and simultaneously allows for 71%-efficient

estimation of the full cubic model.

In terms of D-efficiency, the design proposed by Vining et al. [103] (a CCD in

the whole plot factors with various subplot designs at each whole plot) is not com-

petitive, but this does not necessarily preclude it from the consideration of the ex-

perimenter. It has other qualities—for instance, it allows for a model-independent

estimate of the variance components and a replication-based lack-of-fit test—that

recommend it to an experimenter that wishes to remain within the structure of

classic designs (i.e. CCDs).

6.4.2 Vinyl-Thickness Experiment

We next consider an example given in Cornell [29] and used later by Kowalski et

al. [68] and Goos and Donev [47]. This experiment measured the thickness of

manufactured vinyl for automobile seat covers and included two process factors

(extrusion rate, z1, and drying temperature, z2) and three mixture factors (plas-

ticizers, x1, x2, and x3). Complete randomization was unwieldy, so the process

variables were treated as whole plot factors, and the mixture variables as subplot

factors. Though the original design was run in eight whole plots each of size six,

Kowalski et al. [68] and Goos and Donev [47] used only 28 total runs, with 7 whole

107

plots each of size 4. We will adopt this approach as well.

The model used by Kowalski et al. [68] and Goos and Donev [47] was as in

(6.2) with z,x ∈ X where

f
′
(z,x) = (x1, x2, x3, x1x2, x1x3, x2x3, z1x1, z2x1, z1x2, z2x2, z1x3, z2x3, z1z2)

(6.13)

and

X =

{
z = (z1, z2),x = (x1, x2, x3) : −1 ≤ z,x ≤ 1;

3∑
i=1

xi = 1

}
.

Since this experiment involved both mixture and process variables, the model

is a combination of an interaction model for the process factors and a second-order

Sheffé polynomial model for the mixture factors (see [68]). The designs of [68]

and [47] assumed the model in (6.13) but in the analysis done by Kowalski et al.

[68] it was concluded that few of the terms were significant and thus the assumed

model was overspecified. This was not, of course, known before the experiment was

conducted, and illustrates why it might be desirable to use a design that accounts

for more than just a single, assumed model.

To demonstrate the flexibility of our algorithm, we will consider two experi-

mental scenarios. The first assumes that there is a high degree of confidence that

the true model includes some combination of terms in the original fitted model. In

this case, it would make sense to choose F1 = {f ′1i(z,x)τ1i, 1 ≤ i ≤ 6; z,x ∈ X}
with

f
′

11(z,x) = (x1, x2, x3) (6.14)

f
′

12(z,x) = (f
′

11, x1x2, x1x3, x2x3) (6.15)

f
′

13(z,x) = (f
′

11, z1x1, z2x1, z1x2, z2x2, z1x3, z2x3) (6.16)

f
′

14(z,x) = (f
′

13, z1z2) (6.17)

f
′

15(z,x) = (f
′

12, z1x1, z2x1, z1x2, z2x2, z1x3, z2x3) (6.18)

f
′

16(z,x) = (f
′

15, z1z2) (6.19)

as a set of possible models, the largest of which is equivalent to (6.13). These

designs have no estimation abilities for models with higher order terms, so if the

experimenter wishes to guard against this possibility, consider augmenting F1 with

108

several such models: F2 = (F1, {f
′
2i(z,x)τ2i, 1 ≤ i ≤ 6; z,x ∈ X} where

f
′

21(z,x) = (f
′

12, x1x2x3) (6.20)

f
′

22(z,x) = (f
′

14, z
2
1 , z

2
2) (6.21)

f
′

23(z,x) = (f
′

15, x1x2x3) (6.22)

f
′

24(z,x) = (f
′

15, z1z2, x1x2x3) (6.23)

f
′

25(z,x) = (f
′

16, z
2
1 , z

2
2) (6.24)

f
′

26(z,x) = (f
′

24, z
2
1 , z

2
2) (6.25)

In all the maximin (and individually optimal) designs for this example, we

use 50 algorithm tries with a 90-element candidate list (a 32 list for the whole

plot variables crossed with a 10-element set of mixture points: (1, 0, 0), (0, 1, 0),

(0, 0, 1), (1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2), (1/3, 1/3, 1/3), (2/3, 1/6, 1/6),

(1/6, 2/3, 1/6), and (1/6, 1/6, 2/3)). We have assumed η = 1 throughout.

In Table 6.2 we show the efficiencies of the F1-maximin and (.7, .9, 1, 1, 1, 1)-

F1-maximin designs with respect to models (6.14)-(6.25). We also give a design

which explicitly accounts for all models in F2, the (1, 1, 1, 1, 1, 1, .5, .5, .5, .5, .5, .5)-

F2-maximin design. Compared to the design optimal for the original assumed

model,(6.13), the F1-Maximin design successfully raises the lowest of the efficien-

cies for the models in F1. The second design represents the situation in which the

experimenter cares most about estimating models (6.16)-(6.19).

The third design gives up estimability for models (6.14)-(6.19) but allows the

estimability of the models (6.20)-(6.25). These latter models have model interest

vector elements of 0.5, so we might expect the efficiencies of these models to be

lower, say about 50% of the efficiencies for those models with model interest vec-

tor elements of 1. This is not the case, however, and we conjecture that in the

asymptotic case (i.e. when both the number and size of the whole plots tends to

infinity), and with a larger candidate list, the efficiencies would be more suggestive

of the differences in the model interest vector. Even with model interest vector

elements for the last six models of 0.3 or 0.15 instead of 0.5, designs with similar

efficiencies resulted. See the last section for more discussion of this point.

When the experimenter believes that a model more complex than (6.13) is some-

109

what likely, designs giving more weight to the higher order models in F2 are appro-

priate. In Table 6.3 we include the F2-maximin design, as well as one in which the

larger models are downweighted slightly, with v = (1, 1, 1, 1, 1, 1, .9, .9, .9, .9, .9, .9).

To demonstrate that quality designs can be obtained using a well-chosen subset of

F2, we include two designs based upon

F3 = {f ′11(z,x)τ11, f
′

16(z,x)τ16, f
′

26(z,x)τ26}, (6.26)

as well. As a benchmark, we compare these designs with the design optimal for

(6.25).

The design optimal for (6.25) does not estimate models (6.22) or (6.23) pre-

cisely. All of the maximin designs do much better for these models, and it under-

scores the general point that the maximin designs allow control of the worst-case

much better than using a design optimal for a single model. Furthermore, the

(.7, 1, .9)-F3-Maximin design dominates the individually optimal design for 10 of

12 models (the F2-Maximin design is better for 9 of 12, whereas the other two

designs only 6 of 12).

110

D
es

ig
n

(6
.1

4
)

(6
.1

5
)

(6
.1

6
)

(6
.1

7
)

(6
.1

8
)

(6
.1

9
)

(6
.2

0
)

(6
.2

1
)

(6
.2

2
)

(6
.2

3
)

(6
.2

4
)

(6
.2

5
)

F
1
-M

a
x
im

in
.8

7
1

.8
9
6

.8
7
2

.8
8
5

.9
7
3

.9
7
5

0
0

0
0

0
0

(.
7
,.

9
,1
,1
,1
,1

)-
F

1
-M

a
x
im

in
.9

0
7

.8
1
4

.9
1
5

.9
2
3

.9
6
7

.9
6
9

0
0

0
0

.0
1
2

0
(1
,1
,1
,1
,1
,1
,.

5
,.

5
,.

5
,.

5
,.

5
,.

5
)-
F

2
-M

a
x
im

in
.8

8
8

.8
2
3

.8
2
3

.8
1
2

.9
0
4

.8
8
8

.6
2
6

.9
2
3

.8
0
6

.7
9
9

.9
5
6

.8
5
4

O
p

ti
m

a
l

fo
r

(6
.1

3
)

.8
3
1

.9
5
8

.8
3
1

.8
4
7

1
1

0
0

0
0

0
0

K
o
w

a
ls

k
i

et
a
l.

[6
8
]

.4
3
0

.5
5
5

.3
5
4

.3
7
5

.4
7
5

.4
8
1

.5
9
3

0
.5

2
0

.5
1
1

0
0

T
ab

le
6.

2.
Fo

r
ex

am
pl

e
in
§6

.4
.2

,d
es

ig
ns

fo
cu

se
d

on
sm

al
le

r
m

od
el

s,
w

it
h
D

-e
ffi

ci
en

ci
es

fo
r

m
od

el
s

(6
.1

4)
-(

6.
25

),
as

su
m

in
g
η

=
1

D
es

ig
n

(6
.1

4
)

(6
.1

5
)

(6
.1

6
)

(6
.1

7
)

(6
.1

8
)

(6
.1

9
)

(6
.2

0
)

(6
.2

1
)

(6
.2

2
)

(6
.2

3
)

(6
.2

4
)

(6
.2

5
)

F
2
-M

a
x
im

in
.8

6
6

.8
7
4

.8
0
1

.7
9
2

.9
1
9

.9
0
1

.7
9
8

.9
0
5

.9
0
8

.8
9
4

.9
6
9

.9
4
2

(1
,1
,1
,1
,1
,1
,.

9
,.

9
,.

9
,.

9
,.

9
,.

9
)-
F

2
-M

a
x
im

in
.8

8
2

.8
3
3

.8
1
7

.8
0
7

.8
9
9

.8
8
2

.7
6
3

.9
1
8

.8
8
7

.8
7
3

.9
5
2

.9
2
6

F
3
-M

a
x
im

in
.8

8
7

.8
3
4

.8
1
5

.8
0
5

.9
0
5

.8
8
9

.7
7
1

.9
1
6

.8
9
5

.8
8
0

.9
5
6

.9
3
2

(.
7
,1
,.

9
)-
F

3
-M

a
x
im

in
.8

2
2

.9
4
8

.7
6
7

.7
6
2

.9
3
7

.9
1
8

.8
5
9

.8
7
5

.9
2
8

.9
1
0

.9
8
6

.9
5
8

O
p

ti
m

a
l

fo
r

(6
.2

5
)

.7
6
3

.9
0
4

.6
6
2

.6
5
8

.8
3
8

.8
1
9

.9
5
4

.8
5
4

.9
0
6

.8
8
2

.9
6
0

1

T
ab

le
6.

3.
Fo

r
ex

am
pl

e
§6

.4
.2

,
de

si
gn

s
fo

cu
si

ng
on

bo
th

sm
al

l
an

d
la

rg
e

m
od

el
s,

w
it

h
D

-e
ffi

ci
en

ci
es

fo
r

m
od

el
s

(6
.1

4)
-(

6.
25

),
as

su
m

in
g
η

=
1

111

6.5 Discussion

In this chapter we have presented a generalization of the split-plot exchange al-

gorithm of Goos and Vandebroek [50] which relaxes the model form assumption

inherent in optimal design by designing with respect to a set of specified possible

models. Our algorithm tries to choose the design which maximizes the smallest

D-efficiency with respect to the specified models, robustifying the experiment to

the models in the set. This approach requires that the optimal designs for each of

the individual models in the set be found, but once these are in hand the experi-

menter is afforded much more flexibility because they can specify a model interest

vector that quantifies the relative interest in each model.

In Chapter 4, we have used this criterion to construct model-robust designs

in the CRD case. There, the efficiencies more faithfully reflect the model inter-

est vector than do the maximin designs in this chapter. In fact, several results

were proven in the CRD case regarding the balance of these designs in terms of

their D-efficiencies for a given set of models (e.g. for a given set of models, the

maximin design will include at least two whose generalized D-efficiencies are the

same). However, these were results assuming infinite run sizes, drawing on clas-

sical asymptotic design theory. The same basic asymptotic development does not

exist, to our knowledge, for restricted randomization designs; further research is

necessary. We conjecture that these “balance” type results have split-plot analogs.

However, even if our conjecture is correct, for finite run sizes such balance may

not be evident, due to the typically small number and size of the whole plots

in these experiments and the lack of a dense enough candidate list. This latter

difficulty could be mitigated somewhat by generalizing the algorithm of Jones and

Goos [59], which requires no candidate list. The original algorithm was limited in

that it could not work for constrained design spaces, but recent work reports that

it is possible [86, 59].

Within the “set of models” framework, other criteria could have been used.

For instance, several authors [71, 27, 54, 95] use something akin to
∏m

i=1 |Mi(ξn)|
as a model-robust criterion. This obviates the need for first obtaining the optimal

designs for each of the individual models. The downside is the lack of flexibility

for the experimenter in terms of the efficiencies with respect to each model: If

112

the design favors one model over another (say, by endowing the former with an

efficiency very close to 1 and the latter with a much lower efficiency), the only

recourse might be to try weighting the criterion:
∏m

i=1 |Mi(ξn)|ai . However, in the

CRD case, this proved ineffective. Overall, with the ever-increasing computational

power at hand, we feel that the extra work is worth the additional flexibility

afforded by the maximin criterion.

Extensive simulations have been done (e.g. [49]) demonstrating that the ratio

of variance components, η, has a minimal effect on the optimal designs. Our work

here confirms that, and is shown in particular in Table 6.1. The second example,

although we do not show the efficiencies under the estimated η, gives similar re-

sults. In short, very little information is lost by a lack of a priori knowledge of

η, particularly when compared to the precision lost when an incorrect model is

assumed. Though we do not understand precisely why this is the case, it comports

with other research (Chapter 5, [23]) in which the correlated, multiple responses

seem to have little effect on experimental design.

Chapter 7
Contributions and Future Work

In this dissertation, a practical model-robust framework for exact experimental

design is presented and implemented via generalizations of an existing exchange al-

gorithm. We consider several experimental situations, including two model-robust

procedures for the univariate and completely randomized design scenario, as well

as model-robust procedures to account for multiple responses and split-plot exper-

iments. In this chapter, we review the contributions of this work, and give some

possible future research directions.

7.1 Contributions

7.1.1 Single Response Model-Robust Experimental Design

In Chapter 3 a generalization of the modified Fedorov exchange algorithm has been

developed to construct exact designs which are robust to a set of user-specified po-

tential model forms. The product of the determinants of the information matrices

for each of the possible models is used as a criterion and a connection is made be-

tween these model-robust designs and the D-optimal multiresponse design whose

responses have the same model forms as the potential models. Specifically, if the

model forms are nested the model-robust design is the same as the optimal design

for this associated multiresponse model.

The designs produced by this model-robust procedure compare favorably to

the designs produced by competing procedures in the literature. The MRMF

114

designs are competitive with and simpler to implement than the Genetic Algorithm

approach of Heredia-Langner et al. [54]. Compared to the Bayesian approach of

DuMouchel and Jones [37], the MRMF procedure is more flexible in the sense

that we can explicitly account for more than two models and we do not have the

uncertainty of choosing a prior variance parameter.

The second method for exact model-robust designs for single response, com-

pletely randomized experiments gives even more flexibility to the user. Using the

same “set of potential models” framework, a maximin criterion is used and another

generalization of the modified Fedorov exchange algorithm implemented, this time

to produce designs which maximize the smallest D-efficiency. This provides ex-

perimenters with worst case protection against the specified models and generally

seems to give designs whose D-efficiencies are less variable with respect to the

possible models than the MRMF, Genetic Algorithm, or Bayesian methods.

A generalization of this maximin procedure allows the specification of a level

of interest in each model, resulting in designs that are suggestive of the varying

interest levels. This allows the experimenter to exert considerable control over how

the design performs with respect to each model for which the design accounts. It

is shown that, once the D-efficiencies with respect to each model are standardized

by the level of interest, the generalized maximin criterion will produce a design for

which the generalized efficiencies are the same, for at least two of the models in

the set. Furthermore, a condition is given which guarantees that there is balance

for each model in the set, though experience has shown that this complete balance

is not usually achieved.

7.1.2 Multiresponse Model-Robust Experimental Design

A new exchange algorithm for multiresponse D-optimal designs is developed in

Chapter 5 by deriving multiresponse generalizations of matrix- and determinant-

updating formulae originally given in Fedorov [41]. This algorithm requires the

specification of the response covariance matrix as well as the form of the relation-

ship between each response and the factors. This procedure seems to be the most

effective and practical approach for constructing exact, multiresponse experimen-

tal designs that exists in the literature. Others either produce asymptotic designs

115

[41, 112, 23] or produce sub-optimal designs [9].

However, the required model and covariance matrix specifications are short-

comings of all of these methods. We relax the model form assumption by allowing

the user to specify a set of possible models for each response and constructing an

artificially large multiresponse regression model for which the D-optimal design is

found via the multiresponse exchange algorithm. This is a generalization of the

methodology of Chapter 3.

The response covariance matrix is found to have little impact on the D-optimal

design, so experimenters will lose little by the almost inevitable pre-experiment lack

of knowledge of the covariance matrix. Fortunately, if the experimenter is forced,

out of ignorance, to use Σ = I a simplification of the exchange algorithm is possible

which significantly reduces the computational requirements of the multiresponse

exchange algorithm. Similarly, if the union of the potential models for all responses

are nested, the simplification can be adopted.

The multiresponse methodology developed in this thesis builds upon commonly

used exact D-optimal design techniques and allows the construction of exact, mul-

tiresponse D-optimal designs, and is extended to account for the model uncertainty

that is almost sure to exist before the experiment is conducted.

7.1.3 Split-Plot Model-Robust Experimental Design

In the final part of this dissertation, the methodology developed in Chapter 4 is

extended to the more complex case of split-plot experiments. In particular, a max-

imin algorithm is used to construct D-optimal-like designs that are robust for a

set of user-specified models, just as before. The setting, and required algorithm, is

complicated by the randomization and covariance structure of a split-plot experi-

ment.

The procedure works to maximize the smallest D-efficiency with respect to the

set of user-specified models, and user flexibility is enhanced by the allowance of the

specification of varying levels of interest in each possible model. This methodology

allows the experimenter to guard against models that are seen as unlikely but

possible, while focusing primarily on a priori likely models.

116

7.2 Future Work

The most natural extensions to the work in this thesis are to other experimental

settings. For instance, split-plot experiments are considered herein, but split-

split-plot experiments (where there are three levels of randomization and three

categories of factors: very-hard-to-change, hard-to-change, and easy-to-change;

see [60]) and strip-plot experiments (in the two-factor case, both the row factor

and column factor are randomized separately, resulting in a matrix of factor level

combinations; see [6]) are not considered. The maximin model-robust approach in

particular could prove effective if the form of the model being fit is uncertain.

Another class of experiments to which these approaches could be applied are

those that fit generalized linear models. For instance, we might consider discrete

choice designs modeled via a multinomial distribution, or experiments involving

count data using Poisson or Negative Binomial distributions. These experiments

have the additional complication of depending not only on the form of the model

but also on the particular values of the parameters. This makes for a much more

difficult problem and suggests a Bayesian approach, to allow a prior distribution

to be put on the parameter values.

Though the “set of models” idea gives experimenters the ability to ensure es-

timability for particular models other than those deemed most likely, it does not

guarantee the ability to formally check for lack-of-fit. Thus, as Dette and Franke

[33] did in the one-factor, asymptotic design case, a lack-of-fit criterion could be

added to the set of models. Then, the minimum efficiency with respect to each

model and the lack-of-fit criterion could be maximized using the exchange algo-

rithm.

The modified Fedorov exchange algorithm [26], upon which our work is based,

requires a candidate list which quickly becomes large as its resolution and number

of factors increases. An alternative is the candidate-set-free coordinate exchange

algorithm [77] which in its original form could not handle irregular design spaces.

Recently, we became aware that this algorithm could be adapted to such cases and

as such this presents an attractive alternative upon which to base our model-robust

procedures.

Another area of additional research would be to study how to better choose

117

the set of models. In the simplest case, a default of just three different model

forms is used: main effects only; main effects plus two-way interactions; and full

quadratic. In Chapter 5 we explore larger sets, but in an ad hoc way. Bingham

and Chipman [13] develop prior distributions on possible models using several

assumptions about how effects distribute themselves. It is possible that their

approach could be integrated with ours to produce additional, more compelling,

sets of possible models.

A striking deficiency in the literature is continuous design theory for restricted

randomization experiments. In Chapter 4, we were able to lean upon well devel-

oped continuous design theory for completely randomized designs to prove some

asymptotic results about the designs produced by the maximin criterion. However,

the same does not exist, to our knowledge, for split-plot designs. Thus, an area

of future research would be to develop such theory which would allow analogous

maximin results for the split-plot case. This study is complicated by the complex-

ity of the two-stage design and its information matrix, and it is unclear whether

significant progress can be made. Still, it warrants additional study.

Appendix A
Designs for Chapter 3

A.1 Designs for Example in §3.4.1

Run x1 x2

1 -1 1
2 -0.3 -0.2
3 0 1
4 0.2 0.1
5 1 -1
6 1 0

Table A.1. Model-robust design using MRMF algorithm, for the example in §3.4.1.
This is also the Bayesian model-robust design.

Run x1 x2

1 -1 1
2 0 1
3 1 0
4 1 -1
5 -0.9 0.4
6 0.15 -0.1

Table A.2. Model-robust design using Genetic Algorithm [54], for the example in §3.4.1.

119

Run x1 x2

1 -1 0.5
2 0 0.2
3 0 1
4 0.3 -0.8
5 1 -1
6 1 0

Table A.3. Optimal design for model (3.10), for the example in §3.4.1.

Run x1 x2

1 -1 0.5
2 -1 0.5
3 0 1
4 0.5 -1
5 1 -1
6 1 0

Table A.4. Optimal design for model (3.8), for the example in §3.4.1.

Run x1 x2

1 -1 1
2 -0.3 -0.2
3 -0.2 -0.3
4 0 1
5 1 -1
6 1 0

Table A.5. Optimal design for model (3.9), for the example in §3.4.1.

120

A.2 Designs for Example in §3.4.2

Run x1 x2 x3 Run x1 x2 x3

1 1 0 -1 11 0 1 -1
2 0 0.6 0.4 12 0.1 0.3 -0.4
3 1 0 0 13 0.5 -1 0.5
4 0 -1 1 14 0 -1 0
5 0 0 -1 15 -1 0 1
6 0 1 -0.2 16 -1 0 0
7 -0.5 0 1 17 0.4 -0.3 0.6
8 1 -1 0 18 -0.5 -0.5 0.4
9 0.7 -0.6 -0.4 19 0 0 1
10 -1 1 0 20 -1 0.5 0

Table A.6. Model-robust design constructed using MRMF algorithm, for the example
in §3.4.2.

Run x1 x2 x3 Run x1 x2 x3

1 -1 0 0 11 0 0 1
2 -1 0 1 12 0 1 -1
3 -1 1 0 13 0 1 0
4 -0.5 -0.5 0.3 14 0.4 -0.6 -0.4
5 -0.5 0.5 -0.5 15 0.4 0.2 0.4
6 -0.3 -0.1 0.7 16 0.5 0.5 -1
7 -0.3 1 -0.3 17 0.9 -0.3 -0.3
8 0 -1 0 18 1 -1 0
9 0 -1 1 19 1 0 -1
10 0 0 -1 20 1 0 0

Table A.7. Model-robust design constructed using the Bayesian method of [37] with
1
κ = 1, for the example in §3.4.2.

121

Run x1 x2 x3 Run x1 x2 x3

1 -1 0 0 11 0 0 1
2 -1 0 1 12 0 1 -1
3 -1 1 0 13 0 1 0
4 -0.7 0.3 0.2 14 0.2 0.2 0.2
5 -0.5 0 -0.5 15 0.2 0.3 -0.7
6 -0.5 1 0 16 0.5 -0.7 0.5
7 -0.4 -0.6 0.5 17 0.5 -0.5 -0.5
8 0 -1 0 18 1 -1 0
9 0 -1 1 19 1 0 -1
10 0 0 -1 20 1 0 0

Table A.8. Model-robust design constructed using the Bayesian method of [37] with
1
κ = 16, for the example in §3.4.2.

Run x1 x2 x3 Run x1 x2 x3

1 -1 0 0 11 0 0 1
2 -1 0 1 12 0 1 -1
3 -1 1 0 13 0 1 0
4 -0.5 0.6 0.4 14 0.3 -1 0.3
5 -0.5 0.7 -0.5 15 0.4 0.6 -0.5
6 -0.3 -0.3 0.9 16 0.5 0 0.5
7 -0.2 -0.3 -0.2 17 0.9 -0.3 -0.3
8 0 -1 0 18 1 -1 0
9 0 -1 1 19 1 0 -1
10 0 0 -1 20 1 0 0

Table A.9. Design optimal for model (3.15), for the example in §3.4.2.

Run x1 x2 x3 Run x1 x2 x3

1 -1 0 0 11 0 0 1
2 -1 0 0 12 0 1 -1
3 -1 0 1 13 0 1 0
4 -1 0 1 14 0 1 0
5 -1 1 0 15 0 1 0
6 0 -1 0 16 1 -1 0
7 0 -1 1 17 1 -1 0
8 0 -1 1 18 1 0 -1
9 0 0 -1 19 1 0 -1
10 0 0 -1 20 1 0 0

Table A.10. Design optimal for model (3.11), for the example in §3.4.2.

122

Run x1 x2 x3 Run x1 x2 x3

1 -1 0 1 11 0 0.5 0.5
2 -1 0 1 12 0 1 -1
3 -1 1 0 13 0 1 -1
4 -1 1 0 14 0.4 0.2 0.4
5 -0.4 -0.2 -0.4 15 0.5 0.5 0
6 -0.3 -0.4 -0.3 16 1 -1 0
7 -0.3 -0.4 -0.3 17 1 -1 0
8 0 -1 1 18 1 -1 0
9 0 -1 1 19 1 0 -1
10 0 -1 1 20 1 0 -1

Table A.11. Design optimal for model (3.12), for the example in §3.4.2.

Run x1 x2 x3 Run x1 x2 x3

1 -1 0 0 11 0 0 -1
2 -1 0 0 12 0 0 0
3 -1 0 1 13 0 0 0
4 -1 0 1 14 0 0 1
5 -1 1 0 15 0 0 1
6 -1 1 0 16 0 1 -1
7 0 -1 0 17 0 1 0
8 0 -1 0 18 1 -1 0
9 0 -1 1 19 1 0 -1
10 0 -1 1 20 1 0 0

Table A.12. Design optimal for model (3.13), for the example in §3.4.2.

Run x1 x2 x3 Run x1 x2 x3

1 -1 0 0 11 0 0.1 -0.1
2 -1 0 1 12 0 0.5 0.5
3 -1 0.4 0 13 0 1 -1
4 -1 0.5 0.5 14 0 1 -0.2
5 -1 1 0 15 0.3 -1 0
6 -0.4 -0.6 0 16 0.6 0 0.4
7 -0.4 0 1 17 1 -1 0
8 0 -1 1 18 1 -0.5 -0.5
9 0 -0.4 1 19 1 0 -1
10 0 0 -1 20 1 0 -0.3

Table A.13. Design optimal for model (3.14), for the example in §3.4.2.

123

A.3 Designs for Example in §3.4.3

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.66 0.17 0.16 0.01 11 0.65 0 0.35 0
2 0.5 0 0.475 0.025 12 0.725 0.225 0 0.05
3 1 0 0 0 13 0.975 0 0 0.025
4 0.5 0.225 0.225 0.05 14 0.85 0.15 0 0
5 0.5 0 0.5 0 15 0.95 0 0 0.05
6 0.5 0.45 0 0.05 16 0.5 0.5 0 0
7 0.725 0 0.225 0.05 17 0.5 0.35 0.15 0
8 0.5 0.15 0.35 0 18 0.85 0 0.15 0
9 0.5 0.475 0 0.025 19 0.65 0.15 0.16 0.04
10 0.65 0.35 0 0 20 0.5 0 0.45 0.05

Table A.14. Model-robust design using the MRMF algorithm, for the example in §3.4.3.

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.5 0.5 0 0 11 0.5 0.1534 0.3466 0
2 0.5 0.3457 0.1543 0 12 0.5 0.4759 0 0.0241
3 0.8471 0.1529 0 0 13 0.8444 0 0.1556 0
4 0.95 0 0 0.05 14 0.5 0.45 0 0.05
5 0.725 0 0.225 0.05 15 0.6543 0.1544 0.1531 0.0382
6 0.6550 0.3450 0 0 16 1 0 0 0
7 0.9759 0 0 0.0241 17 0.5 0 0.4755 0.0245
8 0.725 0.225 0 0.05 18 0.5 0.225 0.225 0.05
9 0.6576 0 0.3424 0 19 0.6635 0.1637 0.1640 0.0088
10 0.5 0 0.5 0 20 0.5 0 0.45 0.05

Table A.15. Model-robust design using the Genetic Algorithm of [54], for the example
in §3.4.3. Note: numbers have been rounded to four decimal places if necessary.

124

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.5 0 0.45 0.05 11 0.64 0.36 0 0
2 0.5 0 0.475 0.025 12 0.66 0.15 0.15 0.04
3 0.5 0 0.5 0 13 0.66 0.16 0.17 0.01
4 0.5 0.14 0.36 0 14 0.725 0 0.225 0.05
5 0.5 0.225 0.225 0.05 15 0.725 0.225 0 0.05
6 0.5 0.36 0.14 0 16 0.86 0 0.14 0
7 0.5 0.45 0 0.05 17 0.86 0.14 0 0
8 0.5 0.475 0 0.025 18 0.95 0 0 0.05
9 0.5 0.5 0 0 19 0.975 0 0 0.025
10 0.64 0 0.36 0 20 1 0 0 0

Table A.16. Model-robust design using Bayesian method of [37] with 1
κ = 1, for the

example in §3.4.3.

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.5 0 0.45 0.05 11 0.64 0.36 0 0
2 0.5 0 0.475 0.025 12 0.66 0.15 0.15 0.04
3 0.5 0 0.5 0 13 0.6667 0.1667 0.1667 0
4 0.5 0.14 0.36 0 14 0.725 0 0.225 0.05
5 0.5 0.225 0.225 0.05 15 0.725 0.225 0 0.05
6 0.5 0.36 0.14 0 16 0.86 0 0.14 0
7 0.5 0.45 0 0.05 17 0.86 0.14 0 0
8 0.5 0.475 0 0.025 18 0.95 0 0 0.05
9 0.5 0.5 0 0 19 0.975 0 0 0.025
10 0.64 0 0.36 0 20 1 0 0 0

Table A.17. Model-robust design using Bayesian method of [37] with 1
κ = 16, for the

example in §3.4.3.

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.5 0 0.45 0.05 11 0.64 0.36 0 0
2 0.5 0 0.475 0.025 12 0.65 0.16 0.15 0.04
3 0.5 0 0.5 0 13 0.67 0.16 0.16 0.01
4 0.5 0.14 0.36 0 14 0.725 0 0.225 0.05
5 0.5 0.225 0.225 0.05 15 0.725 0.225 0 0.05
6 0.5 0.36 0.14 0 16 0.86 0 0.14 0
7 0.5 0.45 0 0.05 17 0.86 0.14 0 0
8 0.5 0.475 0 0.025 18 0.95 0 0 0.05
9 0.5 0.5 0 0 19 0.975 0 0 0.025
10 0.64 0 0.36 0 20 1 0 0 0

Table A.18. Optimal design for model (3.19), for the example in §3.4.3.

125

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.5 0 0.45 0.05 11 0.5 0.5 0 0
2 0.5 0 0.45 0.05 12 0.5 0.5 0 0
3 0.5 0 0.45 0.05 13 0.5 0.5 0 0
4 0.5 0 0.5 0 14 0.5 0.5 0 0
5 0.5 0 0.5 0 15 0.95 0 0 0.05
6 0.5 0 0.5 0 16 0.95 0 0 0.05
7 0.5 0 0.5 0 17 0.95 0 0 0.05
8 0.5 0.45 0 0.05 18 1 0 0 0
9 0.5 0.45 0 0.05 19 1 0 0 0
10 0.5 0.45 0 0.05 20 1 0 0 0

Table A.19. Optimal design for model (3.16), for the example in §3.4.3.

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.5 0 0.45 0.05 11 0.7375 0 0.2375 0.025
2 0.5 0 0.45 0.05 12 0.7375 0.2375 0 0.025
3 0.5 0 0.5 0 13 0.75 0 0.2 0.05
4 0.5 0 0.5 0 14 0.75 0 0.25 0
5 0.5 0.2375 0.2375 0.025 15 0.75 0.2 0 0.05
6 0.5 0.25 0.25 0 16 0.75 0.25 0 0
7 0.5 0.45 0 0.05 17 0.95 0 0 0.05
8 0.5 0.45 0 0.05 18 0.97 0 0 0.03
9 0.5 0.5 0 0 19 1 0 0 0
10 0.5 0.5 0 0 20 1 0 0 0

Table A.20. Optimal design for model (3.17), for the example in §3.4.3.

126

Run x1 x2 x3 x4 Run x1 x2 x3 x4

1 0.5 0 0.45 0.05 11 0.67 0.16 0.17 0
2 0.5 0 0.475 0.025 12 0.725 0 0.225 0.05
3 0.5 0 0.5 0 13 0.725 0.225 0 0.05
4 0.5 0.225 0.225 0.05 14 0.7375 0 0.2375 0.025
5 0.5 0.25 0.25 0 15 0.75 0 0.25 0
6 0.5 0.45 0 0.05 16 0.75 0.25 0 0
7 0.5 0.45 0 0.05 17 0.75 0.25 0 0
8 0.5 0.5 0 0 18 0.95 0 0 0.05
9 0.5 0.5 0 0 19 0.975 0 0 0.025
10 0.65 0.17 0.15 0.03 20 1 0 0 0

Table A.21. Optimal design for model (3.18), for the example in §3.4.3.

127

A.4 Designs for Example in §3.4.4

Run x1 x2 x3 Run x1 x2 x3

1 1 0 0 7 0.5 0.5 0
2 0.5 0.5 0 8 0 0.5 0.5
3 0 0 1 9 1/3 1/3 1/3
4 0 1 0 10 1 0 0
5 0 0 1 11 0 1 0
6 0.5 0 0.5

Table A.22. Design constructed using the MRMF algorithm, for the example in §3.4.4.

Run x1 x2 x3 Run x1 x2 x3

1 1 0 0 7 1/3 1/3 1/3
2 0 1 0 8 2/3 1/6 1/6
3 0 0 1 9 1/6 2/3 1/6
4 0.5 0.5 0 10 1/6 1/6 2/3
5 0.5 0 0.5 11 1/3 1/3 1/3
6 0 0.5 0.5

Table A.23. Design used by Frisbee and McGinity [42], for the example in §3.4.4.

Run x1 x2 x3 Run x1 x2 x3

1 0 1 0 7 0 0 1
2 0 1 0 8 0 0 1
3 1 0 0 9 0 1 0
4 1 0 0 10 0 1 0
5 1 0 0 11 0 0 1
6 0 0 1

Table A.24. Design optimal for model (3.20), for the example in §3.4.4.

128

Run x1 x2 x3 Run x1 x2 x3

1 1 0 0 7 0 1 0
2 0.5 0 0.5 8 0 0.5 0.5
3 1 0 0 9 0.5 0.5 0
4 0 1 0 10 0.5 0 0.5
5 0 0 1 11 0.5 0.5 0
6 0 0 1

Table A.25. Design optimal for model (3.21), for the example in §3.4.4.

Run x1 x2 x3 Run x1 x2 x3

1 0 0 1 7 0.5 0 0.5
2 0.5 0.5 0 8 1 0 0
3 1 0 0 9 0.5 0 0.5
4 0 0.5 0.5 10 1/3 1/3 1/3
5 0 0.5 0.5 11 0 1 0
6 1/3 1/3 1/3

Table A.26. Design optimal for model (3.22), for the example in §3.4.4.

Run x1 x2 x3 Run x1 x2 x3

1 0.5 0.5 0 7 0 0.5 0.5
2 0 1 0 8 1/3 1/3 1/3
3 0 0 1 9 1 0 0
4 0 1 0 10 0.5 0 0.5
5 0 0 1 11 0.5 0 0.5
6 1 0 0

Table A.27. Design optimal for model (3.23), for the example in §3.4.4.

Run x1 x2 x3 Run x1 x2 x3

1 0 0.5 0.5 7 0 1 0
2 1/3 1/3 1/3 8 0.5 0 0.5
3 1 0 0 9 0 0.5 0.5
4 0 1 0 10 0 0 1
5 1 0 0 11 0.5 0.5 0
6 0.5 0.5 0

Table A.28. Design optimal for model (3.24), for the example in §3.4.4.

Appendix B
Proof of Results in Chapter 4

B.1 Preliminaries

Fedorov [41, Lemma 2.2.2] shows that log(|Mf (ξ)|) is strictly concave. Conse-

quently, we can show that log(Df (ξ)) = 1
p

(log(|Mf (ξ)|)− log(|Mf (ξ
∗)|)) as well

as minf∈F log(Df (ξ)) are also strictly concave.

Lemma 1. h1(Mf (ξ)) = 1
p

(log(|Mf (ξ)|)− log(|Mf (ξ
∗)|)) is a strictly concave

function.

Proof. Let ξ∗ be the optimal design for model f . We must show that for any two

arbitrary designs ξ1 and ξ2,

1

p
(log |(1− α)Mf (ξ1) + αMf (ξ2)| − log |Mf (ξ

∗)|) >

1− α
p

(log |Mf (ξ1)| − log |Mf (ξ
∗)|) +

α

p
(log |Mf (ξ2)| − log |Mf (ξ

∗)|) .

Since log(|M(ξ)|) is strictly concave, we have that

1

p
(log |(1− α)Mf (ξ1) + αMf (ξ2)| − log |Mf (ξ

∗)|)

>
1

p
((1− α) log |Mf (ξ1)|+ α log |Mf (ξ2)| − log |Mf (ξ

∗)|)

=
1− α
p

log |Mf (ξ1)|+ α

p
log |Mf (ξ2)| − 1

p
log |Mf (ξ

∗)|

=
1− α
p

(log |Mf (ξ1)| − log |Mf (ξ
∗)|) +

α

p
(log |Mf (ξ2)| − log |Mf (ξ

∗)|)

130

Therefore, h1(Mf (ξ)) is strictly concave.

Lemma 2. Let a1, . . . , ar, ar+1 and b1, . . . , br, br+1 be real numbers. Then,

min(a1, . . . , ar, ar+1) + min(b1, . . . , br, br+1) ≤ min(a1 + b1, . . . , ar + br, ar+1 + br+1)

(B.1)

Proof. We prove by induction. When r = 1, the result is trivially true. Then,

assume

min(a1, . . . , ar) + min(b1, . . . , br) ≤ min(a1 + b1, . . . , ar + br), (B.2)

and show it is true for r + 1. We break it into four cases. Case 1:

min(a1, . . . , ar) ≤ ar+1, min(b1, . . . , br) ≤ br+1 (B.3)

Thus,

min(a1, . . . , ar, ar+1) + min(b1, . . . , br, br+1)

= min(min(a1, . . . , ar), ar+1) + min(min(b1, . . . , br), br+1)

= min(a1, . . . , ar) + min(b1, . . . , br) (B.4)

= min(min(a1, . . . , ar) + min(b1, . . . , br), ar+1 + br+1) (B.5)

≤ min(min(a1 + b1, . . . , ar + br), ar+1 + br+1) (B.6)

= min(a1 + b1, . . . , ar + br, ar+1 + br+1) (B.7)

where (B.4) and (B.5) are true because of (B.3), and the inequality in (B.6) is due

to (B.2). Case 2:

min(a1, . . . , ar) ≤ ar+1, min(b1, . . . , br) > br+1 (B.8)

so that

min(a1, . . . , ar, ar+1) + min(b1, . . . , br, br+1)

= min(min(a1, . . . , ar), ar+1) + min(min(b1, . . . , br), br+1)

= min(a1, . . . , ar) + br+1 (B.9)

131

≤ min(min(a1, . . . , ar) + min(b1, . . . , br), ar+1 + br+1)

(B.10)

≤ min(min(a1 + b1, . . . , ar + br), ar+1 + br+1) (B.11)

= min(a1 + b1, . . . , ar + br, ar+1 + br+1) (B.12)

by the same arguments as above. Case 3

min(a1, . . . , ar) > ar+1, min(b1, . . . , br) ≤ br+1, (B.13)

and Case 4

min(a1, . . . , ar) > ar+1, min(b1, . . . , br) > br+1, (B.14)

can be shown using essentially the same arguments. Thus, the Lemma is proven.

Lemma 3. h2(ξ) = minf∈F (log (Df (ξ))) is a strictly concave function.

Proof. We will show this directly by the definition of concavity.

min (logD1((1− α)ξ1 + αξ2), . . . , logDr((1− α)ξ1 + αξ2))

> min ((1− α) logD1(ξ1) + α logD1(ξ2), . . . , (1− α) logDr(ξ1) + α logDr(ξ2))

≥ min ((1− α) (logD1(ξ1), . . . , logDr(ξ1))) + min (α (logD1(ξ2), . . . , logDr(ξ2)))

= (1− α) min (logD1(ξ1), . . . , logDr(ξ1)) + αmin (logD1(ξ2), . . . , logDr(ξ2))

where the first inequality is using the fact that the logDf (ξ) are strictly concave

∀f ∈ F , the second is based upon Lemma 2, and the final equality based upon

min (c(a1, . . . , ar)) = cmin (a1, . . . , ar) where c and a1, . . . , ar are real. Thus we

have shown the strict concavity of this function.

It is straightforward to see that these results hold also for Gf (ξ) = DD,f (ξ)/vf ,

the generalized efficiency.

The subsequent proofs rely in part on the strict concavity of log(Gf (ξ)), which

can then be used to gain insight about Gf (ξ) itself because log(·) is a strictly

increasing function, so that for any two designs ξ1 and ξ2,

Gf (ξ1) > Gf (ξ2)⇔ log(Gf (ξ1)) > log(Gf (ξ2)) (B.15)

132

A direct, and useful, consequence of (B.15) is:

min
f∈F

Gf (ξ1) > min
f∈F

Gf (ξ2)⇔ min
f∈F

log(Gf (ξ1)) > min
f∈F

log(Gf (ξ2)) (B.16)

B.2 Proof of Theorem 1

Proof. We prove by contradiction. Assume that for design ξ∗, Gf (ξ
∗)−Gfmin

(ξ∗) >

0 for all f ∈ F\fmin. Let fg = arg minf∈F\fmin
Gf (ξ

∗) and Gfg(ξ∗) − Gfmin
(ξ∗) =

c > 0.

By the strict concavity of log(Gf (·)), and since we assume that ξ∗ is not optimal

for fmin, there exists a direction d = (λ1, . . . , λd) s.t. for an infinitesimal step we

have a new design ξ
′
for which log(Gfmin

(ξ
′
)) > log(Gfmin

(ξ∗)). By the equivalence

in (B.15), we have that Gfmin
(ξ
′
) > Gfmin

(ξ∗). Note that without loss of generality,

this new design could exclude design points in or include design points not in ξ∗.

Then by the maximin optimality of ξ∗, Gf (ξ
′
) for some f ∈ F\fmin must be

reduced by at least c (otherwise, there would exist a larger minimum so that ξ∗

would not be maximin optimal).

Now, with the information matrix as in (4.5), an arbitrarily small step in direc-

tion d results in arbitrarily small changes in ξ∗ in terms of design measures λi for all

i so that the elements of M are negligibly changed, and by the continuity of |·| with

respect to the elements of the matrix, |M| only changes negligibly, say δ < c. But

if δ < c, then ξ∗ is not maximin optimal because minf∈F Gf (ξ
′) > minf∈F Gf (ξ

∗).

Since we assumed ξ∗ is maximin optimal, this is a contradiction. Thus the assertion

holds.

B.3 Proof of Theorem 2

Proof. Proof is by contradiction, similar to that for Theorem 1. Assume that for

the generalized maximin optimal design ξ∗, Gf (ξ
∗)−Gfmin

(ξ∗) > 0 for some f ∈ F ,

a subset of models which we denote Fg. Let Fl = F\Fg. Then, among all f ∈ Fg,
let fg = arg minf∈Fg

Gf (ξ
∗) and Gfg(ξ∗)−Gfmin

(ξ∗) = c > 0.

133

Since Fl ⊂ F , condition (4.7) gives that there exists a design ξ
′
s.t.

min
f∈Fl

Gf (ξ
′
) > min

f∈Fl

Gf (ξ
∗).

By the equivalence in (B.16),

min
f∈Fl

log(Gf (ξ
′
)) > min

f∈Fl

log(Gf (ξ
∗)).

Since minf∈Fl
log(Gf (·)) is strictly concave and, evaluated at ξ∗, is not at its

maximum, there exists a direction d = (λ1, . . . , λd) s.t. for an infinitesimal step

we have a new design, ξ̃, for which minf∈Fl
log(Gf (ξ̃)) > minf∈Fl

log(Gf (ξ
∗)). By

(B.16) again, we have that minf∈Fl
Gf (ξ̃) > minf∈Fl

Gf (ξ
∗). The remainder follows

by the same arguments as the previous proof.

B.4 Proof of Corollary 1

Proof. We have that minf∈F Gf (ξ
∗) < 1 because we assume that ξ∗ 6= ξ∗f1 and

ξ∗ 6= ξ∗f2 and that v1 = 1 or v2 = 1. Then, (4.7) is satisfied because we can always

find a direction such that the minimum generalized efficiency is improved for the

model associated with the smaller generalized efficiency. Then, we can use the

same arguments as in the previous results.

Appendix C
Designs for Chapter 4

C.1 Designs for Example in §4.4.1

In this section, we give only the maximin and (1, 1, .6)-maximin designs, since the

others referred to in Table 4.1 are given in Appendix A, Tables A.1-A.5.

Run x1 x2

1 -0.3 0
2 1 -0.9
3 0 1
4 1 0
5 0.5 -1
6 -1 1

Table C.1. Maximin model-robust design, for the example in §4.4.1.

Run x1 x2

1 0.5 -1
2 1 0
3 -0.6 0.1
4 -1 1
5 0 1
6 1 -1

Table C.2. (1, 1, .6)-Maximin model-robust design, for the example in §4.4.1.

135

C.2 Designs for Example in §4.4.2

Run x1 x2 x3 x4 x5

1 0.6 0.05 0.15 0.15 0.05
2 0.64 0.05 0.05 0.18 0.08
3 0.6 0.05 0.095 0.105 0.15
4 0.64 0.05 0.05 0.25 0.01
5 0.645 0.05 0.095 0.21 0
6 0.55 0.1 0.15 0.1 0.1
7 0.62 0.15 0.05 0.1 0.08
8 0.57 0.15 0.1 0.1 0.08
9 0.57 0.1 0.07 0.11 0.15
10 0.62 0.05 0.15 0.1 0.08
11 0.5 0.15 0.1 0.25 0
12 0.52 0.15 0.15 0.18 0
13 0.6 0.05 0.15 0.2 0
14 0.7 0.07 0.05 0.1 0.08
15 0.5 0.15 0.09 0.11 0.15
16 0.55 0.15 0.05 0.1 0.15
17 0.5 0.15 0.15 0.1 0.1
18 0.54 0.15 0.05 0.25 0.01
19 0.66 0.11 0.05 0.18 0
20 0.5 0.15 0.09 0.18 0.08
21 0.538 0.15 0.1 0.212 0
22 0.7 0.05 0.05 0.2 0
23 0.65 0.05 0.05 0.1 0.15
24 0.62 0.15 0.05 0.14 0.04
25 0.66 0.05 0.11 0.18 0

Table C.3. Maximin model-robust design, for the example in §4.4.2.

136

Run x1 x2 x3 x4 x5

1 0.5 0.15 0.1 0.25 0
2 0.6 0.05 0.1 0.25 0
3 0.62 0.15 0.05 0.18 0
4 0.5 0.15 0.15 0.1 0.1
5 0.5 0.15 0.15 0.15 0.05
6 0.7 0.07 0.05 0.1 0.08
7 0.52 0.15 0.15 0.18 0
8 0.7 0.05 0.05 0.15 0.05
9 0.55 0.15 0.05 0.25 0
10 0.52 0.15 0.07 0.11 0.15
11 0.57 0.15 0.1 0.1 0.08
12 0.65 0.05 0.05 0.1 0.15
13 0.62 0.05 0.15 0.18 0
14 0.6 0.05 0.09 0.18 0.08
15 0.55 0.1 0.15 0.2 0
16 0.632 0.094 0.094 0.18 0
17 0.538 0.15 0.1 0.212 0
18 0.6 0.05 0.15 0.1 0.1
19 0.54 0.15 0.05 0.18 0.08
20 0.7 0.05 0.05 0.2 0
21 0.585 0.15 0.05 0.1 0.115
22 0.55 0.1 0.09 0.11 0.15
23 0.64 0.05 0.05 0.25 0.01
24 0.66 0.11 0.05 0.1 0.08
25 0.66 0.05 0.11 0.1 0.08

Table C.4. (.9,1,1)-maximin model-robust design, for the example in §4.4.2.

137

Run x1 x2 x3 x4 x5

1 0.54 0.15 0.05 0.18 0.08
2 0.65 0.05 0.05 0.1 0.15
3 0.5 0.15 0.15 0.1 0.1
4 0.62 0.15 0.05 0.1 0.08
5 0.57 0.15 0.1 0.18 0
6 0.6 0.05 0.09 0.11 0.15
7 0.55 0.15 0.05 0.25 0
8 0.57 0.1 0.15 0.18 0
9 0.64 0.05 0.05 0.25 0.01
10 0.5 0.15 0.09 0.25 0.01
11 0.62 0.15 0.05 0.18 0
12 0.6 0.05 0.15 0.1 0.1
13 0.52 0.15 0.15 0.1 0.08
14 0.7 0.07 0.05 0.1 0.08
15 0.62 0.05 0.15 0.18 0
16 0.66 0.05 0.11 0.1 0.08
17 0.6 0.05 0.09 0.18 0.08
18 0.7 0.07 0.05 0.18 0
19 0.7 0.05 0.05 0.2 0
20 0.5963 0.095 0.0875 0.1606 0.06062
21 0.6 0.05 0.1 0.25 0
22 0.5 0.15 0.15 0.2 0
23 0.5 0.15 0.095 0.105 0.15
24 0.55 0.15 0.05 0.1 0.15
25 0.57 0.1 0.07 0.25 0.01

Table C.5. (.9,1,.5)-maximin model-robust design, for the example in §4.4.2.

138

Run x1 x2 x3 x4 x5

1 0.64 0.05 0.05 0.18 0.08
2 0.7 0.07 0.05 0.1 0.08
3 0.6 0.1 0.05 0.25 0
4 0.5 0.15 0.15 0.1 0.1
5 0.57 0.15 0.05 0.165 0.065
6 0.7 0.05 0.05 0.2 0
7 0.5 0.15 0.09 0.18 0.08
8 0.57 0.15 0.1 0.1 0.08
9 0.62 0.15 0.05 0.1 0.08
10 0.6 0.05 0.1133 0.1683 0.0683
11 0.6 0.05 0.125 0.1 0.125
12 0.5 0.15 0.1 0.25 0
13 0.62 0.05 0.15 0.1 0.08
14 0.57 0.1 0.15 0.14 0.04
15 0.54 0.15 0.05 0.11 0.15
16 0.66 0.05 0.11 0.18 0
17 0.538 0.15 0.1 0.212 0
18 0.54 0.15 0.05 0.25 0.01
19 0.605 0.09333 0.09333 0.1 0.1083
20 0.62 0.05 0.07 0.25 0.01
21 0.62 0.15 0.05 0.18 0
22 0.52 0.15 0.15 0.18 0
23 0.55 0.1 0.09 0.11 0.15
24 0.65 0.05 0.05 0.1 0.15
25 0.6 0.05 0.15 0.2 0

Table C.6. Model-robust design constructed using MRMF algorithm, for the example
in §4.4.2.

139

Run x1 x2 x3 x4 x5 Run x1 x2 x3 x4 x5

1 0.5 0.15 0.09 0.18 0.08 14 0.6 0.05 0.15 0.1 0.1
2 0.5 0.15 0.11 0.1 0.14 15 0.6 0.1 0.05 0.25 0
3 0.5 0.15 0.15 0.2 0 16 0.6 0.15 0.05 0.1 0.1
4 0.52 0.15 0.07 0.25 0.01 17 0.61 0.1 0.11 0.1 0.08
5 0.52 0.15 0.15 0.1 0.08 18 0.62 0.05 0.15 0.16 0.02
6 0.54 0.15 0.05 0.11 0.15 19 0.62 0.15 0.05 0.18 0
7 0.54 0.15 0.1 0.15 0.06 20 0.64 0.05 0.05 0.19 0.07
8 0.56 0.09 0.09 0.11 0.15 21 0.64 0.05 0.1 0.21 0
9 0.56 0.09 0.15 0.2 0 22 0.65 0.05 0.05 0.1 0.15
10 0.56 0.15 0.05 0.18 0.06 23 0.67 0.1 0.05 0.13 0.05
11 0.56 0.15 0.11 0.18 0 24 0.7 0.05 0.05 0.2 0
12 0.6 0.05 0.1 0.25 0 25 0.7 0.05 0.07 0.1 0.08
13 0.6 0.05 0.12 0.16 0.07

Table C.7. Design optimal for model (4.13), for the example in §4.4.2.

Run x1 x2 x3 x4 x5 Run x1 x2 x3 x4 x5

1 0.5 0.15 0.09 0.11 0.15 14 0.62 0.15 0.05 0.1 0.08
2 0.5 0.15 0.09 0.11 0.15 15 0.62 0.15 0.05 0.1 0.08
3 0.5 0.15 0.09 0.11 0.15 16 0.62 0.15 0.05 0.1 0.08
4 0.5 0.15 0.09 0.25 0.01 17 0.62 0.15 0.05 0.18 0
5 0.5 0.15 0.09 0.25 0.01 18 0.62 0.15 0.05 0.18 0
6 0.5 0.15 0.09 0.25 0.01 19 0.64 0.05 0.05 0.11 0.15
7 0.5 0.15 0.15 0.1 0.1 20 0.64 0.05 0.05 0.11 0.15
8 0.5 0.15 0.15 0.2 0 21 0.64 0.05 0.05 0.11 0.15
9 0.62 0.05 0.15 0.1 0.08 22 0.64 0.05 0.05 0.25 0.01
10 0.62 0.05 0.15 0.1 0.08 23 0.64 0.05 0.05 0.25 0.01
11 0.62 0.05 0.15 0.1 0.08 24 0.64 0.05 0.05 0.25 0.01
12 0.62 0.05 0.15 0.18 0 25 0.7 0.07 0.05 0.18 0
13 0.62 0.05 0.15 0.18 0

Table C.8. Design optimal for model (4.11), for the example in §4.4.2.

140

Run x1 x2 x3 x4 x5 Run x1 x2 x3 x4 x5

1 0.5 0.15 0.09 0.11 0.15 14 0.6 0.05 0.1 0.25 0
2 0.5 0.15 0.09 0.25 0.01 15 0.6 0.05 0.15 0.1 0.1
3 0.5 0.15 0.15 0.1 0.1 16 0.6 0.05 0.15 0.2 0
4 0.5 0.15 0.15 0.2 0 17 0.62 0.05 0.15 0.1 0.08
5 0.54 0.15 0.05 0.18 0.08 18 0.62 0.15 0.05 0.1 0.08
6 0.55 0.15 0.05 0.1 0.15 19 0.62 0.15 0.05 0.18 0
7 0.56 0.09 0.1 0.1 0.15 20 0.64 0.05 0.05 0.11 0.15
8 0.56 0.11 0.15 0.18 0.18 21 0.65 0.05 0.05 0.25 0
9 0.56 0.15 0.11 0.1 0.08 22 0.67 0.05 0.1 0.18 0
10 0.58 0.15 0.05 0.22 0 23 0.69 0.05 0.05 0.1 0.11
11 0.59 0.1 0.05 0.25 0.01 24 0.7 0.07 0.05 0.1 0.08
12 0.59 0.1 0.09 0.16 0.06 25 0.7 0.07 0.05 0.18 0
13 0.6 0.05 0.09 0.18 0.08

Table C.9. Design optimal for model (4.12), for the example in §4.4.2.

141

C.3 Designs for Example in §4.4.3

In this section, we give only the maximin and (.9, 1, 1, 1, .9)-maximin designs, since

the others referred to in Table 4.3 are given in Appendix A, Tables 3.4-A.28.

Run x1 x2 x3 Run x1 x2 x3

1 0 0.5 0.5 7 1 0 0
2 0 0 1 8 1/3 1/3 1/3
3 0 1 0 9 0 1 0
4 0 0 1 10 5/12 0 7/12
5 1 0 0 11 1 0 0
6 1/3 2/3 0

Table C.10. Maximin model-robust design, for the example in §4.4.3.

Run x1 x2 x3 Run x1 x2 x3

1 0 1 0 7 0 0 1
2 0.5 0.5 0 8 1 0 0
3 0 0 1 9 7/12 0 5/12
4 1 0 0 10 1/3 5/12 1/4
5 0 1 0 11 0 0 1
6 0 0.5 0.5

Table C.11. (.9,1,1,1,.9)-maximin model-robust design, for the example in §4.4.3.

Appendix D
Matrix Algebra Results for Chapter 5

We provide here a collection of results which are necessary to prove Theorem 3

and Corollary 2. The first is well-known and presented without proof.

Lemma 4. Let ∆ be a block matrix such that

∆ =

(
∆11 ∆12

∆21 ∆22

)
, (D.1)

where ∆11 is a n × n nonsingular matrix, ∆12 is a n × k matrix, ∆21 is a k × n
matrix, and ∆22 is a k × k nonsingular matrix. Then

|∆| = |∆11||∆22 −∆21∆
−1
11 ∆12| = |∆11 −∆12∆

−1
22 ∆21||∆22|. (D.2)

The next result is a slight generalization of an identity given in Schott [93].

Lemma 5. Let M be n× n, A be n× k and B be k × n. Then

|M + AB| =

∣∣∣∣∣M A

−B Ik

∣∣∣∣∣ . (D.3)

Proof. Using basic matrix multiplication, it is true that(
M A

−B Ik

)(
In 0

B Ik

)
=

(
M + AB A

0 Ik

)
. (D.4)

Taking the determinant of both sides, and using the well known property that the

143

determinant of a product of two matrices is equal to the product of the determi-

nants of the matrices, gives∣∣∣∣∣M A

−B Ik

∣∣∣∣∣
∣∣∣∣∣In 0

B Ik

∣∣∣∣∣ =

∣∣∣∣∣M + AB A

0 Ik

∣∣∣∣∣ , (D.5)

and by Lemma 4, ∣∣∣∣∣In 0

B Ik

∣∣∣∣∣ = |In||Ik − 0| = 1. (D.6)

Thus, ∣∣∣∣∣M A

−B Ik

∣∣∣∣∣ =

∣∣∣∣∣M + AB A

0 Ik

∣∣∣∣∣
= |In||M + AB−AIk0|

= |M + AB|,

where the second equality follows from another appeal to Lemma 4.

Another identity simply combines the two previous results and is a slight gen-

eralization of Lemma 2.5.1 in Fedorov [41].

Lemma 6. Let M be a nonsingular n× n matrix, let A be a n× k matrix and let

B be an k × n matrix; then

|M + AB| = |M||Ik + BM−1A|. (D.7)

Proof. Lemma 5 gives that

|M + AB| =

∣∣∣∣∣M A

−B Ik

∣∣∣∣∣ . (D.8)

and then by Lemma 4 we get what we wanted to prove.

Finally, a useful and well-known result ([41], Lemma 2.6.1) is the Matrix In-

version Lemma.

144

Lemma 7. Let A be a n× k matrix and let B be an k × n matrix; then

(In + AB)−1 = In −A(Ik + BA)−1B. (D.9)

Appendix E
Designs for Chapter 5

E.1 Designs for Example in §5.5.1

Run x1 x2 x3 Run x1 x2 x3

1 1.73 -1.73 -1.73 11 -1.73 -1.73 1.73
2 -1.73 1.73 -1.73 12 -1.73 -1.73 -1.73
3 1.73 -1.73 1.73 13 0 -1.73 0
4 -1.73 1.73 1.73 14 1.73 -1.73 -1.73
5 -1.73 -1.73 1.73 15 0 1.73 -1.73
6 1.73 1.73 1.73 16 1.73 1.73 -1.73
7 0 1.73 1.73 17 -1.73 0 0
8 -1.73 1.73 0 18 1.73 1.73 0
9 1.73 0 1.73 19 -1.73 -1.73 -1.73
10 0 -1.73 0 20 0 0 -1.73

Table E.1. D-optimal design constructed via MX algorithm, for example in §5.5.1,
when Σ and ρ(x) are known

146

Run x1 x2 x3 Run x1 x2 x3

1 1.680 0 0 11 -1.730 1.730 0.026
2 0 0 0 12 -1.730 1.730 0.026
3 0 0 0 13 -1.729 -1.730 -1.728
4 1.728 -1.729 -1.720 14 -1.729 -1.730 -1.728
5 1.728 -1.729 -1.720 15 -1.730 -0.096 1.730
6 1.729 1.729 1.729 16 1.729 1.724 -1.729
7 1.729 1.729 1.729 17 1.729 1.724 -1.729
8 -1.725 -1.723 1.715 18 -0.154 1.730 -1.730
9 -1.730 1.721 1.729 19 -0.154 1.730 -1.730
10 1.730 -1.729 1.729 20 -0.101 -1.730 1.730

Table E.2. D-optimal design constructed using semi-definite programming [9], for ex-
ample in §5.5.1, when Σ and ρ(x) are known

Run x1 x2 x3 Run x1 x2 x3

1 -1.73 -1.73 1.73 11 1.73 1.73 1.73
2 -1.73 1.73 -1.73 12 1.73 0 -1.73
3 -1.73 -1.73 -1.73 13 0 1.73 0
4 -1.73 1.73 1.73 14 1.73 1.73 1.73
5 0 1.73 0 15 0 -1.73 1.73
6 -1.73 -1.73 0 16 1.73 -1.73 0
7 0 -1.73 1.73 17 -1.73 0 0
8 1.73 1.73 -1.73 18 1.73 -1.73 1.73
9 -1.73 1.73 1.73 19 0 0 -1.73
10 -1.73 1.73 -1.73 20 1.73 -1.73 -1.73

Table E.3. D-optimal design for example in §5.5.1 with ρ(x) known and Σ = I.

Run x1 x2 x3 Run x1 x2 x3

1 1.73 1.73 1.73 11 -1.73 1.73 1.73
2 1.73 -1.73 1.73 12 -1.73 -1.73 1.73
3 -1.73 1.73 1.73 13 0 1.73 -1.73
4 -1.73 -1.73 -1.73 14 1.73 1.73 -1.73
5 1.73 -1.73 -1.73 15 -1.73 -1.73 -1.73
6 -1.73 1.73 -1.73 16 -1.73 -1.73 1.73
7 1.73 1.73 1.73 17 1.73 -1.73 -1.73
8 1.73 1.73 0 18 0 0 1.73
9 1.73 -1.73 1.73 19 1.73 0 -1.73
10 0 -1.73 0 20 -1.73 0 0

Table E.4. Model-robust design for the example in §5.5.1, constructed using the SSPS
set of possible models for each response.

147

Run x1 x2 x3 Run x1 x2 x3

1 1.73 1.73 1.73 11 -1.73 -1.73 -1.73
2 1.73 -1.73 -1.73 12 -1.73 1.73 -1.73
3 1.73 1.73 -1.73 13 1.73 -1.73 -1.73
4 -1.73 -1.73 -1.73 14 1.73 1.73 1.73
5 1.73 -1.73 1.73 15 1.73 -1.73 1.73
6 -1.73 1.73 -1.73 16 -1.73 1.73 1.73
7 -1.73 -1.73 1.73 17 0 0 -1.73
8 -1.73 -1.73 1.73 18 0 1.73 0
9 1.73 -1.73 1.73 19 -1.73 1.73 1.73
10 1.73 1.73 -1.73 20 -1.73 0 0

Table E.5. Model-robust design for the example in §5.5.1, constructed using the SPS
set of possible models for each response, assuming Σ is known (in this case, the design
is the same if we use Σ = I).

Run x1 x2 x3 Run x1 x2 x3

1 1.73 1.73 -1.73 11 0 -1.73 0
2 1.73 -1.73 1.73 12 -1.73 -1.73 1.73
3 1.73 1.73 1.73 13 0 1.73 1.73
4 1.73 0 -1.73 14 -1.73 0 -1.73
5 -1.73 1.73 -1.73 15 -1.73 1.73 0
6 1.73 -1.73 1.73 16 1.73 0 0
7 1.73 1.73 0 17 1.73 -1.73 -1.73
8 -1.73 -1.73 1.73 18 -1.73 -1.73 -1.73
9 -1.73 1.73 1.73 19 0 -1.73 -1.73
10 0 1.73 -1.73 20 0 0 1.73

Table E.6. D-optimal design for the example in §5.5.1, constructed assuming the full
quadratic model only.

148

E.2 Designs for Example in §5.5.2

Run x1 x2 Run x1 x2

1 -1 -1 7 1 -1
2 -1 -1 8 1 -1
3 1 1 9 1 1
4 -1 1 10 -1 1
5 0 -1 11 0 1
6 1 0 12 -1 0

Table E.7. Model-robust design for example in §5.5.2, constructed using the SSPS
model set (the design constructed using the SPS model set is the same).

Run x1 x2 Run x1 x2

1 0 1 7 -1 0
2 1 -1 8 0 -1
3 1 0 9 1 -1
4 1 1 10 -1 -1
5 -1 1 11 -1 1
6 -1 -1 12 0 0

Table E.8. D-optimal design for the example in §5.5.2, constructed assuming the full
quadratic model only.

149

E.3 Designs for Example in §5.5.3

Run x1 x2 x3 Run x1 x2 x3

1 1 -1 0 10 1 -1 1
2 -1 -1 -1 11 -1 1 0
3 1 1 -1 12 0 1 0
4 1 1 0 13 0 -1 1
5 1 -1 -1 14 -1 1 -1
6 -1 1 1 15 0 -1 0
7 -1 -1 0 16 1 1 1
8 -1 -1 1 17 0 1 -1
9 0 -1 -1

Table E.9. D-optimal design for example in §5.5.3, with ρ(x) and Σ assumed known.

Run x1 x2 x3 Run x1 x2 x3

1 -1 1 -1 10 -1 0 1
2 1 1 1 11 0 1 0
3 -1 -1 -1 12 1 -1 1
4 1 -1 1 13 1 0 0
5 -1 1 -1 14 1 1 1
6 1 1 -1 15 1 -1 -1
7 -1 1 1 16 0 0 -1
8 -1 -1 1 17 1 -1 -1
9 -1 -1 0

Table E.10. Model-robust design for example in §5.5.3, constructed using the SSPS
model set.

150

Run x1 x2 x3 Run x1 x2 x3

1 -1 1 1 10 -1 -1 -1
2 1 1 1 11 1 -1 0
3 -1 -1 1 12 -1 1 -1
4 1 -1 -1 13 -1 1 -1
5 1 -1 1 14 0 0 0
6 1 1 -1 15 0 1 -1
7 -1 -1 -1 16 -1 -1 1
8 -1 1 1 17 1 0 -1
9 1 1 1

Table E.11. Model-robust design for example in §5.5.3, constructed using the SPS
model set.

Run x1 x2 x3 Run x1 x2 x3

1 1 -1 1 10 -1 -1 1
2 1 1 1 11 1 -1 -1
3 -1 1 1 12 1 -1 1
4 1 1 -1 13 -1 0 -1
5 -1 1 -1 14 1 1 0
6 -1 -1 -1 15 -1 1 0
7 -1 0 0 16 0 1 -1
8 1 0 -1 17 0 0 1
9 0 -1 0

Table E.12. D-optimal design for example in §5.5.3, for quadratic model only.

Appendix F
Updating Formulae for Split-Plot

Exchange Algorithms

F.1 Derivation of Convenient Form of the Split-

Plot Information Matrix

In this appendix, we will review the derivation of a particular form of the split-plot

information matrix, for a given model form. Fist, to calculate the inverse of W,

we need a lemma that is given and proven in Miller [78].

Lemma 8. Let G be a nonsingular square matrix and H be a rank one matrix of

the same dimension. Then,

(G + H)−1 = G−1 − 1

1 + g
G−1HG−1

where g = tr(HG−1)

Then, as given in Goos and Vandebroek [49], W−1
i can be calculated by ap-

pealing to Lemma 8, noting that tr(η1si
1
′
si

) = dsi:

W−1
i =

1

σ2
ε

(
Isi
− η

1 + siη
1si

1
′

si

)

152

Then, because W is block diagonal,

W−1 =

W−1

1 0 . . . 0

0 W−1
2 . . . 0

...
...

. . .
...

0 0 . . . W−1
b

Now, we write

X =

X1

X2

. . .

Xb

where Xi is a si × p matrix:

Xi =

f
′
(zi,xi1)

f
′
(zi,xi2)

. . .

f
′
(zi,xisi

)

Then matrix multiplication shows that the information matrix, Msp, is

Msp = X
′
W−1X =

(
X
′
1 X

′
2 . . . X

′

b

)

W−1
1 0 . . . 0

0 W−1
2 . . . 0

...
...

. . .
...

0 0 . . . W−1
b

X1

X2

. . .

Xb

=

b∑
i=1

X
′

iW
−1
i Xi

It can be shown [49] that

X
′
V−1X =

1

σ2
ε

(
b∑
i=1

si∑
j=1

f(zi,xij)f
′
(zi,xij)−

b∑
i=1

η

1 + siη
(X

′

i1si
)(X

′

i1si
)
′

)
(F.1)

This is convenient as an update formula for the information matrix. For in-

153

stance, if we want to add a point to the ith whole plot:

M̃sp = X̃
′
W̃−1X̃ = X

′
W−1X + f(zi,xi,si+1)f

′
(zi,xi,si+1)

+
η

1 + siη
(X

′

i1si
)(X

′

i1si
)
′

(F.2)

− η

1 + (si + 1)η
(X̃

′

i1si+1)(X̃
′

i1si+1)
′

where the last two parts together give the impact of the additional observation on

the last part of the information matrix in (F.1). We can rewrite (F.2) in the form

R + STU, so that we can use the well-known matrix inversion lemma (see [5]):

(R + STU)−1 = R−1 −R−1S
(
T−1 + UR−1S

)−1
UR−1

where R is r × r, S is r × t, T is t× t and U is t× r. For this case, we have

M̃ = M +

f
′
(zi,xi,si+1)

(X
′
i1si

)
′

(X̃
′
i1si+1)

′

′

1 0 0

0 d
1+sid

0

0 0 d
1+(si+1)d

f
′
(zi,xi,si+1)

(X
′
i1si

)
′

(X̃
′
i1si+1)

′

= R + STU

so that

M̃−1 = R−1 −R−1S
(
T−1 + UR−1S

)−1
UR−1.

F.2 Matrix Results Used in Split-Plot Exchange

Algorithms

For reference purposes, we reproduce some results from [5] which speed up our

algorithm. Exchanges in the split-plot situation are more complicated than the

completely randomized scenario because there are several possible types of ex-

changes, each having a different impact upon the determinant and inverse of the

information matrix. In what follows we give updating formulae for the information

matrix, its inverse, and its determinant, for each of the three relevant exchange

scenarios.

154

F.2.1 Updating Formulae for Changes in Easy-to-Change

Factors

First, we consider the case in which a design point is exchanged for a candidate

point, both having the same whole plot factor levels. The design point is (zi,xij),

whereas the candidate point to be exchanged is (zi,x
∗
ij). It is shown in Arnouts

and Goos [5] that:

M̃sp = Msp − f(zi,xij)f
′
(zi,xij) + f(zi,x

∗
ij)f

′
(zi,x

∗
ij)

+
η

1 + ηsi

(
X
′

i1si

)(
X
′

i1si

)′
− η

1 + ηsi

(
X̃
′

i1si

)(
X̃
′

i1si

)′
, (F.3)

∣∣∣M̃sp

∣∣∣ = |Msp| |D1|
∣∣∣D−1

1 + U1M
−1
sp U

′

1

∣∣∣ (F.4)

and (
M̃sp

)−1

= M−1
sp −M−1

sp U
′

1

(
D−1

1 + U1M
−1
sp U

′

1

)−1

U1M
−1
sp (F.5)

where D1 = diag
(
−1, 1, η

1+siη
,− η

1+siη

)
,

U1 =
[
f(zi,xij), f(zi,x

∗
ij),
(
X
′

i1si

)
,
(
X̃
′

i1si

)]′
,

|D1| = η2

(1+siη)2
, and X̃

′
i1si

= X
′
i1si
− f(zi,xij) + f(zi,x

∗
ij).

F.2.2 Swapping Two Points From Different Whole Plots

Another way to perturb a split-plot design is to exchange existing design points

from two different whole plots. To perform such a swap, the whole plot factor

levels for both must be the same (otherwise, the result would be whole plots with

more than one level of whole plot factors). Note that the change does not affect the

quantity X
′
X because of the simple change in ordering of the two design points.

However, it does affect whole plot part of the information matrix:

M̃sp = Msp +
η

1 + ηsi

(
X
′

i1si

)(
X
′

i1si

)′
+

η

1 + ηsl

(
X
′

l1sl

)(
X
′

l1sl

)′
− η

1 + ηsi

(
X̃
′

i1si

)(
X̃
′

i1si

)′
− η

1 + ηsl

(
X̃
′

l1sl

)(
X̃
′

l1sl

)′
, (F.6)

155

∣∣∣M̃sp

∣∣∣ = |Msp| |D2|
∣∣∣D−1

2 + U2M
−1
sp U

′

2

∣∣∣ (F.7)

and (
M̃sp

)−1

= M−1
sp −M−1

sp U
′

2

(
D−1

2 + U2M
−1
sp U

′

2

)−1

U2M
−1
sp (F.8)

where D2 = diag
(

η
1+siη

, η
1+slη

,− η
1+siη

,− η
1+slη

)
,

U2 =
[(

X
′

i1si

)
,
(
X
′

l1sl

)
,
(
X̃
′

i1si

)
,
(
X̃
′

l1sl

)]
,

|D2| = η4

(1+siη)2(1+slη)2
, X̃

′
i1si

= X
′
i1si
− f(zi,xij) + f(zl,xlm), and X̃

′

l1sl
= X

′

l1sl
−

f(zl,xlm) + f(zi,xij).

F.2.3 Updating Formulae for Changes in Hard-to-Change

Factors

If the levels of the whole plot factors are changed from zi to z∗i for any run ij, the

levels of those factors for all runs in whole plot i will have to be changed as well

because of the restriction that the whole-plot factor levels be the same within a

given whole plot. Arnouts and Goos [5] show that:

M̃sp = Msp −X
′

iXi + X̃
′

iX̃i

+
η

1 + ηsi

(
X
′

i1si

)(
X
′

i1si

)′
− η

1 + ηsi

(
X̃
′

i1si

)(
X̃
′

i1si

)′
, (F.9)

∣∣∣M̃sp

∣∣∣ = |Msp| |D3|
∣∣∣D−1

3 + U3M
−1
sp U

′

3

∣∣∣ (F.10)

and (
M̃sp

)−1

= M−1
sp −M−1

sp U
′

3

(
D−1

3 + U3M
−1
sp U

′

3

)−1

U3M
−1
sp (F.11)

where D3 = diag
(
−Isi

, Isi
, η

1+siη
,− η

1+siη

)
,

U3 =
[
X
′

i, X̃
′

i,
(
X
′

i1si

)
,
(
X̃
′

i1si

)]
,

|D3| = η3

(1+siη)3
(−1)si+1, and X̃

′
i = [f(z∗i ,xi1), . . . , f(z∗i ,xisi

)]
′
.

Appendix G
D-optimal Split-Plot Algorithm of

Goos and Vandebroek [50]

Here we give the original algorithm of [50], generally using the same notation as in

§6.3.2. For the algorithm, we must specify 1) The candidate list, C; 2) the number

of whole plots, b; 3) the size of each whole plot, k1, k2, . . . , kb; and 4) the model

form f
′
(z,x). Let M∗

sp be the information matrix for the best design found so far.

The algorithm is as follows.

1. Set |M∗
sp| = 0, tc = 1.

2. Determine pw, the number of coefficients for whole plot factors only.

3. Determine ps, the number of coefficients for subplot factors only.

4. Set Msp = ωI (where ω is a small constant) and calculate M−1
sp ; set Hi = ∅.

5. Construct initial design

(a) Randomly assign pw unique whole-plot factor settings to pw whole plots.

(b) Randomly assign b − pw levels of the whole-plot factors to the rest of

the whole plots.

(c) Randomly choose u (1 ≤ u ≤ p).

(d) Do u times:

i. Randomly select i ∈ B (select a whole plot at random)

157

ii. Randomly select j ∈ Ci (select a candidate point with the ith setting

of whole plot, at random)

iii. If #Hi < ki, then Hi = Hi ∪ j; otherwise, go back to step i.

iv. Update M−1
sp via (F.1).

(e) Do n− u times:

i. Set l = 1.

ii. Determine j ∈ C with the lth biggest prediction variance via (6.5).

iii. Find i, where i ∈ B, j ∈ Ci, and #Hi < ki (find a nonfull whole

plot into which j can be inserted). If no such i exists, set l = l + 1

and return to step ii.

iv. Hi = Hi ∪ j.

v. Update M−1
sp via (F.1).

6. Compute Msp and |Msp| for the initial design. If |Msp| = 0, go back to step

4. Otherwise, continue.

7. Set ν = 0.

8. Evaluate design point exchanges (swapping design points with candidate

points, where whole plot factors settings are the same):

(a) Set δ = 1.

(b) ∀i ∈ B, ∀j ∈ Hi, ∀k ∈ Ci, j 6= k:

i. Determine the effect δijk = |Mi
jk,sp|/|Msp| of exchanging, in the ith

whole plot, points j and k, using (F.4).

ii. if δijk > δ, then δ = δijk and store i, j, and k.

9. If δ > 1 + ε, then go to step 10; otherwise, go to step 11.

10. Perform the best exchange:

(a) Hi = Hi \ j ∪ k.

(b) Update M−1
sp via (F.5) and |Msp| via (F.4).

(c) Set ν = 1.

158

11. Evaluate interchanges of points within whole plots with the same factor levels

(a) Set δ = 1.

(b) ∀i, j ∈ B, i < j, zi = zj, ∀k ∈ Hi, ∀l ∈ Hj, k 6= l:

i. Determine the effect δjlik = |Mjl
ik,sp|/|Msp| of moving k to whole plot

j (from whole plot i) and l to whole plot i (from whole plot j), via

(F.7).

ii. If δjlik > δ, then δ = δjlik and store i, j, k, and l.

12. If δ > 1 + ε, go to step 13; otherwise, go to step 14.

13. Perform the best interchange:

(a) Hi = Hi \ k ∪ l.

(b) Hj = Hj \ l ∪ k.

(c) Update M−1
sp and |Msp| via (F.7).

(d) Set ν = 1.

14. Evaluate exchanges of whole-plot factor settings:

(a) Set δ = 1.

(b) ∀i ∈ B, ∀j ∈ P , zi 6= zj:

i. Determine the effect δij = |Mij,sp|/|Msp| of exchanging zi by zj in

the ith whole plot, via (F.10).

ii. If δij > δ, then δ = δij and store i and j.

15. If δ > 1 + ε, go to step 16; otherwise, go to step 17.

16. Perform best exchange:

(a) Update Hi and Ci.

(b) Update M−1
sp via (F.11) and |Msp| via (F.10).

(c) Set ν = 1.

17. If ν = 1, go to step 7.

159

18. If |Msp| > |M∗
sp|, then |M∗

sp| = |Msp|; also, update the design ξnb.

19. If tc < t, then tc = tc + 1, and go back to step 4; otherwise, STOP.

Notes: 1) This algorithm, including Step 5 which generates the initial design,

generalizes Goos and Vandebroek [50] but follows its basic outline. 2) In 13(c),

we recalculate M−1 by directly taking its inverse, because of numerical issues

associated with the updated formula in (F.8). This should have a minimal effect

on the speed of the algorithm because it occurs only once per iteration. 3) In steps

9, 12, and 15, we have changed the original algorithm of Goos and Vandebroek [50]

slightly by requiring that, for any considered exchange/interchange, the increase

in the minimum efficiency is greater than ε (instead of 0, as it was originally), to

encourage algorithmic stability.

Notes: 1) In step 13(c), we update M−1 by recalculating the information matrix

after the interchange and directly taking its inverse, because of numerical inaccura-

cies incurred by using (F.8). 2) In steps 9, 12, and 15, as with the maximin version

of this algorithm, we have changed the original algorithm slightly by requiring

that, for any considered exchange/interchange, the multiplicative difference in the

determinant of the information matrix is greater than ε (instead of 1, as it was

originally). Without this adjustment, we found that the algorithm was unstable.

Appendix H
Designs for Chapter 6

H.1 Designs for Example in §6.4.1

161

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 -1 1 0 1 25 -1 1 -1 -1
2 -1 1 1 -0.5 26 -1 1 1 1
3 -1 1 -1 1 27 -1 1 1 -1
4 -1 1 -1 -1 28 -1 1 -1 1
5 -1 -1 1 -1 29 -1 -1 -1 -1
6 -1 -1 -1 -0.5 30 -1 -1 1 1
7 -1 -1 -1 1 31 -1 -1 -1 1
8 -1 -1 1 1 32 -1 -1 1 -1
9 1 1 -1 1 33 1 -1 1 1
10 1 1 1 -1 34 1 -1 -1 -1
11 1 1 -1 -1 35 1 -1 0.5 -1
12 1 1 1 1 36 1 -1 -1 1
13 1 0 1 -1 37 1 1 -1 -1
14 1 0 -1 -1 38 1 1 1 1
15 1 0 -1 1 39 1 1 1 -1
16 1 0 1 1 40 1 1 -1 1
17 -1 1 -0.5 -1 41 1 -1 1 1
18 -1 1 1 -1 42 1 -1 -1 1
19 -1 1 -1 1 43 1 -1 -1 -1
20 -1 1 1 1 44 1 -1 1 -1
21 0 1 -1 -1 45 -1 -1 0 1
22 0 1 1 1 46 -1 -1 -1 -1
23 0 1 1 -1 47 -1 -1 1 0.5
24 0 1 -1 0.5 48 -1 -1 1 -1

Table H.1. F1-maximin model-robust split-plot design, for the example in §6.4.1.

162

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 1 -1 -1 1 25 0 1 -1 -1
2 1 -1 1 -1 26 0 1 1 -1
3 1 -1 -1 -1 27 0 1 -1 1
4 1 -1 1 1 28 0 1 1 1
5 -1 0 0 0 29 1 -1 1 -1
6 -1 0 1 -1 30 1 -1 -1 0
7 -1 0 -1 -1 31 1 -1 -0.5 1
8 -1 0 1 1 32 1 -1 1 1
9 1 -1 1 -0.5 33 1 1 1 1
10 1 -1 -1 1 34 1 1 -1 1
11 1 -1 -1 -1 35 1 1 -1 -1
12 1 -1 1 1 36 1 1 1 -1
13 -1 1 0 1 37 -1 -1 0 -1
14 -1 1 1 -1 38 -1 -1 1 -1
15 -1 1 -1 1 39 -1 -1 -1 1
16 -1 1 -1 -1 40 -1 -1 1 1
17 -0.5 -1 -1 1 41 -1 -1 1 -1
18 -0.5 -1 -1 -1 42 -1 -1 -1 1
19 -0.5 -1 0 1 43 -1 -1 -1 -1
20 -0.5 -1 1 0 44 -1 -1 1 1
21 -1 1 -1 1 45 1 1 1 -0.5
22 -1 1 1 1 46 1 1 -1 -1
23 -1 1 1 -1 47 1 1 1 1
24 -1 1 -1 -1 48 1 1 -1 1

Table H.2. (.9, .9, 1)-F1-maximin model-robust split-plot design, for the example in
§6.4.1.

163

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 -1 0.5 1 0 25 -1 -0.5 -1 -1
2 -1 0.5 -1 1 26 -1 -0.5 -1 1
3 -1 0.5 -1 -1 27 -1 -0.5 1 1
4 -1 0.5 1 -1 28 -1 -0.5 1 -1
5 -1 -1 1 1 29 -1 -1 -1 1
6 -1 -1 1 -1 30 -1 -1 -1 -0.5
7 -1 -1 -0.5 1 31 -1 -1 1 0.5
8 -1 -1 -1 -1 32 -1 -1 1 -1
9 1 -1 0.5 1 33 1 1 1 -1
10 1 -1 0 -1 34 1 1 -1 1
11 1 -1 -1 0.5 35 1 1 -1 -1
12 1 -1 1 -1 36 1 1 1 1
13 -0.5 1 -1 -1 37 1 -1 1 1
14 -0.5 1 0.5 -1 38 1 -1 1 -1
15 -0.5 1 -1 1 39 1 -1 -1 1
16 -0.5 1 1 1 40 1 -1 -1 -1
17 0.5 -1 1 -0.5 41 1 0.5 -1 -1
18 0.5 -1 -1 1 42 1 0.5 1 1
19 0.5 -1 1 1 43 1 0.5 1 -0.5
20 0.5 -1 -1 -1 44 1 0.5 -0.5 1
21 -1 1 1 -1 45 0.5 1 -0.5 -1
22 -1 1 -1 0.5 46 0.5 1 1 1
23 -1 1 1 1 47 0.5 1 -1 1
24 -1 1 -1 -1 48 0.5 1 1 -1

Table H.3. F2-maximin model-robust split-plot design, for the example in §6.4.1.

164

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 -0.5 -1 -1 1 25 1 0 0 0
2 -0.5 -1 -1 -1 26 1 0 -1 1
3 -0.5 -1 0 -1 27 1 0 1 -1
4 -0.5 -1 1 0 28 1 0 1 1
5 -1 -0.5 -1 0 29 -0.5 1 0 -1
6 -1 -0.5 0 1 30 -0.5 1 1 1
7 -1 -0.5 1 -1 31 -0.5 1 1 0
8 -1 -0.5 1 1 32 -0.5 1 -1 1
9 -1 0.5 -1 -1 33 0 1 -1 0
10 -1 0.5 0 1 34 0 1 1 1
11 -1 0.5 1 -0.5 35 0 1 -1 -1
12 -1 0.5 -1 1 36 0 1 1 -1
13 1 -1 -1 -1 37 1 -1 1 1
14 1 -1 1 -1 38 1 -1 -1 -1
15 1 -1 1 1 39 1 -1 -1 1
16 1 -1 -1 1 40 1 -1 1 -1
17 -1 1 1 -1 41 1 1 -1 -1
18 -1 1 -1 1 42 1 1 0.5 1
19 -1 1 -1 -1 43 1 1 -1 1
20 -1 1 1 1 44 1 1 1 -1
21 -1 -1 -1 1 45 1 1 -1 -1
22 -1 -1 1 -1 46 1 1 1 1
23 -1 -1 1 1 47 1 1 1 -0.5
24 -1 -1 -1 -1 48 1 1 -1 1

Table H.4. (.8, .8, 1, .5)-F2-maximin model-robust split-plot design, for the example in
§6.4.1.

165

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 -1 -1 -1 -1 25 0 -1 0 0
2 -1 -1 1 -1 26 0 -1 0 0
3 -1 -1 -1 1 27 0 -1 0 0
4 -1 -1 1 1 28 0 -1 0 0
5 1 -1 -1 -1 29 0 1 0 0
6 1 -1 1 -1 30 0 1 0 0
7 1 -1 -1 1 31 0 1 0 0
8 1 -1 1 1 32 0 1 0 0
9 -1 1 -1 -1 33 0 -1 0
10 -1 1 1 -1 34 0 0 1 0
11 -1 1 -1 1 35 0 0 0 -1
12 -1 1 1 1 36 0 0 0 1
13 1 1 -1 -1 37 0 0 0 0
14 1 1 1 -1 38 0 0 0 0
15 1 1 -1 1 39 0 0 0 0
16 1 1 1 1 40 0 0 0 0
17 -1 0 0 0 41 0 0 0 0
18 -1 0 0 0 42 0 0 0 0
19 -1 0 0 0 43 0 0 0 0
20 -1 0 0 0 44 0 0 0 0
21 1 0 0 0 45 0 0 0 0
22 1 0 0 0 46 0 0 0 0
23 1 0 0 0 47 0 0 0 0
24 1 0 0 0 48 0 0 0 0

Table H.5. Design used by Vining et al. [103], for the example in §6.4.1.

166

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 -1 1 1 1 25 -1 -1 -1 1
2 -1 1 1 -1 26 -1 -1 1 -1
3 -1 1 -1 -1 27 -1 -1 -1 -1
4 -1 1 -1 1 28 -1 -1 1 1
5 1 -1 1 -1 29 -1 1 -1 1
6 1 -1 1 -1 30 -1 1 1 -1
7 1 -1 -1 1 31 -1 1 1 -1
8 1 -1 -1 1 32 -1 1 -1 1
9 1 1 1 1 33 1 1 1 -1
10 1 1 -1 -1 34 1 1 -1 -1
11 1 1 -1 -1 35 1 1 -1 1
12 1 1 1 1 36 1 1 1 1
13 1 -1 1 1 37 -1 1 1 -1
14 1 -1 -1 1 38 -1 1 -1 1
15 1 -1 1 -1 39 -1 1 1 1
16 1 -1 -1 -1 40 -1 1 -1 -1
17 -1 -1 1 1 41 1 1 -1 -1
18 -1 -1 -1 -1 42 1 1 1 1
19 -1 -1 -1 -1 43 1 1 -1 1
20 -1 -1 1 1 44 1 1 1 -1
21 1 -1 1 -1 45 -1 -1 -1 1
22 1 -1 1 1 46 -1 -1 -1 -1
23 1 -1 -1 -1 47 -1 -1 1 1
24 1 -1 -1 1 48 -1 -1 1 -1

Table H.6. Optimal split-plot design for model (6.9) assuming η = 1, for the example
in §6.4.1.

167

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 1 1 1 -1 25 -1 -1 -1 -1
2 1 1 -1 -1 26 -1 -1 -1 1
3 1 1 1 1 27 -1 -1 1 -1
4 1 1 -1 1 28 -1 -1 1 1
5 -1 -1 1 1 29 -1 1 1 1
6 -1 -1 -1 1 30 -1 1 -1 1
7 -1 -1 1 -1 31 -1 1 -1 -1
8 -1 -1 -1 -1 32 -1 1 1 -1
9 -1 1 1 1 33 1 1 1 -1
10 -1 1 1 -1 34 1 1 1 1
11 -1 1 -1 -1 35 1 1 -1 -1
12 -1 1 -1 1 36 1 1 -1 1
13 1 -1 -1 1 37 1 -1 1 -1
14 1 -1 1 1 38 1 -1 -1 -1
15 1 -1 -1 -1 39 1 -1 1 1
16 1 -1 1 -1 40 1 -1 -1 1
17 1 1 -1 1 41 1 -1 -1 -1
18 1 1 1 1 42 1 -1 -1 1
19 1 1 1 -1 43 1 -1 1 1
20 1 1 -1 -1 44 1 -1 1 -1
21 -1 -1 1 -1 45 -1 1 1 -1
22 -1 -1 -1 1 46 -1 1 -1 1
23 -1 -1 -1 -1 47 -1 1 1 1
24 -1 -1 1 1 48 -1 1 -1 -1

Table H.7. Optimal split-plot design for model (6.10) assuming η = 1, for the example
in §6.4.1.

168

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 0 -1 -1 0 25 1 1 0 -1
2 0 -1 -1 1 26 1 1 1 0
3 0 -1 1 1 27 1 1 -1 -1
4 0 -1 0 -1 28 1 1 -1 1
5 -1 0 -1 0 29 -1 1 -1 1
6 -1 0 1 -1 30 -1 1 -1 -1
7 -1 0 -1 -1 31 -1 1 1 -1
8 -1 0 0 1 32 -1 1 1
9 1 1 -1 -1 33 0 -1 1
10 1 1 1 -1 34 0 1 0 0
11 1 1 1 1 35 0 1 1 1
12 1 1 -1 1 36 0 1 1 -1
13 1 0 0 1 37 -1 -1 0 -1
14 1 0 1 -1 38 -1 -1 -1 -1
15 1 0 -1 0 39 -1 -1 -1 1
16 1 0 1 1 40 -1 -1 1 0
17 -1 -1 1 1 41 -1 1 0 0
18 -1 -1 1 -1 42 -1 1 -1 -1
19 -1 -1 -1 1 43 -1 1 1 1
20 -1 -1 -1 -1 44 -1 1 1 -1
21 1 -1 -1 -1 45 1 -1 1 1
22 1 -1 0 1 46 1 -1 -1 -1
23 1 -1 1 -1 47 1 -1 1 -1
24 1 -1 1 0 48 1 -1 -1 1

Table H.8. Optimal split-plot design for model (6.11) assuming η = 1, for the example
in §6.4.1.

169

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 0 -1 -0.5 -1 25 0 0 -0.5 1
2 0 -1 0.5 1 26 0 0 -1 -1
3 0 -1 -1 1 27 0 0 1 -1
4 0 -1 1 -0.5 28 0 0 1 1
5 -1 -1 -0.5 1 29 -1 0 1 -0.5
6 -1 -1 1 0.5 30 -1 0 -1 1
7 -1 -1 1 -1 31 -1 0 0.5 1
8 -1 -1 -1 -0.5 32 -1 0 -0.5 -1
9 0.5 0.5 -1 1 33 0.5 1 -1 0
10 0.65 0.17 -1 -0.3 34 0.5 1 1 -1
11 0.5 0 1 0.5 35 0.5 1 1 0
12 0.5 0 0 -1 36 0.5 1 0 1
13 1 -0.5 -1 0 37 1 -1 -0.5 0.5
14 1 -0.5 -0.5 1 38 1 -1 -1 -1
15 1 -0.5 0 -1 39 1 -1 1 1
16 1 -0.5 1 0 40 1 -1 1 -1
17 -1 -1 1 1 41 -1 1 -1 -1
18 -1 -1 -1 -1 42 -1 1 1 1
19 -1 -1 -1 0.5 43 -1 1 1 -1
20 -1 -1 0.5 -0.5 44 -1 1 -0.5 0.5
21 1 1 -1 -1 45 1 0.5 -0.5 -0.5
22 1 1 -1 1 46 1 0.5 0.5 0.5
23 1 1 0.5 -0.5 47 1 0.5 -1 1
24 1 1 1 1 48 1 0.5 1 -1

Table H.9. Optimal split-plot design for model (6.12) assuming η = 1, for the example
in §6.4.1.

170

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 -1 -1 -1 -1 25 -1 -1 -1 1
2 -1 -1 -1 -1 26 -1 -1 -1 1
3 -1 -1 1 1 27 -1 -1 1 -1
4 -1 -1 1 1 28 -1 -1 1 -1
5 1 1 -1 -1 29 -1 1 -1 1
6 1 1 1 1 30 -1 1 -1 1
7 1 1 -1 -1 31 -1 1 1 -1
8 1 1 1 1 32 -1 1 1 -1
9 1 -1 -1 1 33 -1 -1 1 1
10 1 -1 1 -1 34 -1 -1 -1 1
11 1 -1 1 1 35 -1 -1 -1 -1
12 1 -1 -1 -1 36 -1 -1 1 -1
13 1 -1 1 -1 37 1 1 1 1
14 1 -1 -1 -1 38 1 1 1 -1
15 1 -1 -1 1 39 1 1 -1 1
16 1 -1 1 1 40 1 1 -1 -1
17 -1 1 -1 1 41 -1 1 1 1
18 -1 1 1 -1 42 -1 1 -1 -1
19 -1 1 -1 -1 43 -1 1 1 -1
20 -1 1 1 1 44 -1 1 -1 1
21 1 1 1 -1 45 1 -1 1 1
22 1 1 -1 1 46 1 -1 -1 -1
23 1 1 -1 -1 47 1 -1 1 -1
24 1 1 1 1 48 1 -1 -1 1

Table H.10. Optimal split-plot design for model (6.9) assuming η = 5.65, for the
example in §6.4.1.

171

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 1 1 -1 1 25 -1 1 1 1
2 1 1 1 1 26 -1 1 -1 1
3 1 1 -1 -1 27 -1 1 1 -1
4 1 1 1 -1 28 -1 1 -1 -1
5 1 1 1 1 29 1 -1 -1 -1
6 1 1 1 -1 30 1 -1 -1 1
7 1 1 -1 1 31 1 -1 1 1
8 1 1 -1 -1 32 1 -1 1 -1
9 1 -1 -1 -1 33 -1 -1 -1 -1
10 1 -1 -1 1 34 -1 -1 1 1
11 1 -1 1 -1 35 -1 -1 1 -1
12 1 -1 1 1 36 -1 -1 -1 1
13 -1 -1 1 -1 37 -1 1 1 1
14 -1 -1 -1 -1 38 -1 1 -1 -1
15 -1 -1 -1 1 39 -1 1 -1 1
16 -1 -1 1 1 40 -1 1 1 -1
17 -1 1 1 1 41 -1 -1 1 1
18 -1 1 1 -1 42 -1 -1 1 -1
19 -1 1 -1 1 43 -1 -1 -1 1
20 -1 1 -1 -1 44 -1 -1 -1 -1
21 1 1 1 -1 45 1 -1 1 -1
22 1 1 1 1 46 1 -1 1 1
23 1 1 -1 -1 47 1 -1 -1 1
24 1 1 -1 1 48 1 -1 -1 -1

Table H.11. Optimal split-plot design for model (6.10) assuming η = 5.65, for the
example in §6.4.1.

172

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 1 -1 1 1 25 1 -1 -1 -1
2 1 -1 -1 1 26 1 -1 0 1
3 1 -1 1 -1 27 1 -1 -1 1
4 1 -1 -1 -1 28 1 -1 1 0
5 0 1 1 -1 29 -1 -1 1 1
6 0 1 0 -1 30 -1 -1 1 -1
7 0 1 1 1 31 -1 -1 -1 0
8 0 1 -1 0 32 -1 -1 0 -1
9 -1 1 1 0 33 1 1 1 1
10 -1 1 -1 1 34 1 1 1 -1
11 -1 1 -1 -1 35 1 1 -1 -1
12 -1 1 0 1 36 1 1 -1 1
13 -1 -1 1 1 37 1 0 1 1
14 -1 -1 -1 -1 38 1 0 0 0
15 -1 -1 -1 1 39 1 0 1 -1
16 -1 -1 1 -1 40 1 0 -1 -1
17 -1 0 -1 1 41 -1 1 1 -1
18 -1 0 1 0 42 -1 1 -1 -1
19 -1 0 0 1 43 -1 1 -1 1
20 -1 0 -1 -1 44 -1 1 1 1
21 0 -1 0 0 45 1 1 -1 -1
22 0 -1 -1 1 46 1 1 1 1
23 0 -1 1 -1 47 1 1 1 -1
24 0 -1 1 1 48 1 1 -1 1

Table H.12. Optimal split-plot design for model (6.11) assuming η = 5.65, for the
example in §6.4.1.

173

Run z1 z2 x1 x2 Run z1 z2 x1 x2

1 -0.5 1 -1 1 25 0.5 1 -0.5 1
2 -0.5 1 1 -0.5 26 0.5 1 -1 0
3 -0.5 1 0.5 1 27 0.5 1 1 1
4 -0.5 1 -0.5 -1 28 0.5 1 0.5 -1
5 -1 0.5 -1 -0.5 29 1 -1 0 1
6 -1 0.5 0.5 -1 30 1 -1 -0.5 -1
7 -1 0.5 -0.5 1 31 1 -1 -1 1
8 -1 0.5 1 0.5 32 1 -1 1 0
9 1 1 0.5 0.5 33 -1 -1 -1 -1
10 1 1 -1 -1 34 -1 -1 1 -1
11 1 1 -1 1 35 -1 -1 -1 0.5
12 1 1 1 -1 36 -1 -1 0 1
13 1 -1 1 1 37 -1 -0.5 0.5 0
14 1 -1 1 -1 38 -1 -0.5 -0.5 -1
15 1 -1 -1 -1 39 -1 -0.5 -1 1
16 1 -1 -0.5 0 40 -1 -0.5 1 1
17 0 -1 1 0.5 41 1 0 1 -0.5
18 0 -1 -1 -0.5 42 1 0 1 1
19 0 -1 0.5 -1 43 1 0 -1 0.5
20 0 -1 -1 1 44 1 0 0 -1
21 -1 1 -0.5 0 45 0 0 -1 1
22 -1 1 1 -1 46 0 0 -1 -1
23 -1 1 1 1 47 0 0 1 1
24 -1 1 -1 -1 48 0 0 1 -1

Table H.13. Optimal split-plot design for model (6.12) assuming η = 5.65, for the
example in §6.4.1.

174

H.2 Designs for Example in §6.4.2

Run z1 z2 x1 x2 x3

1 -1 1 0 0 1
2 -1 1 0.5 0.5 0
3 -1 1 1 0 0
4 -1 1 0 1 0
5 1 -1 1 0 0
6 1 -1 0.5 0 0.5
7 1 -1 0 1 0
8 1 -1 0 0 1
9 1 1 1 0 0
10 1 1 0 0.5 0.5
11 1 1 0.5 0 0.5
12 1 1 0 1 0
13 -1 1 0 0.5 0.5
14 -1 1 1 0 0
15 -1 1 0 1 0
16 -1 1 0 0 1
17 1 1 0.5 0 0.5
18 1 1 0 1 0
19 1 1 0 0 1
20 1 1 1 0 0
21 -1 -1 0.5 0.5 0
22 -1 -1 0 0 1
23 -1 -1 0 1 0
24 -1 -1 1 0 0
25 -1 -1 0 1 0
26 -1 -1 0.5 0.5 0
27 -1 -1 0 0 1
28 -1 -1 1 0 0

Table H.14. F1-maximin model-robust design, for the example in §6.4.2.

175

Run z1 z2 x1 x2 x3

1 -1 -1 0 0.5 0.5
2 -1 -1 0 1 0
3 -1 -1 0 0 1
4 -1 -1 1 0 0
5 1 1 0 1 0
6 1 1 0 0 1
7 1 1 1 0 0
8 1 1 0 0 1
9 -1 1 0.5 0 0.5
10 -1 1 0 0 1
11 -1 1 1 0 0
12 -1 1 0 1 0
13 -1 -1 0 1 0
14 -1 -1 0.5 0.5 0
15 -1 -1 0 0 1
16 -1 -1 1 0 0
17 -1 1 0 0 1
18 -1 1 0 1 0
19 -1 1 0 0.5 0.5
20 -1 1 1 0 0
21 1 -1 0 0 1
22 1 -1 1 0 0
23 1 -1 0.5 0 0.5
24 1 -1 0 1 0
25 1 -1 0 0 1
26 1 -1 0.5 0.5 0
27 1 -1 0 1 0
28 1 -1 1 0 0

Table H.15. (.7, .9, 1, 1, 1, 1)-F1-maximin model-robust design, for the example in
§6.4.2.

176

Run z1 z2 x1 x2 x3

1 1 1 0 0 1
2 1 1 1 0 0
3 1 1 0.5 0 0.5
4 1 1 0 1 0
5 -1 1 0.5 0.5 0
6 -1 1 0 1 0
7 -1 1 0 0 1
8 -1 1 1 0 0
9 1 1 1 0 0
10 1 1 0 1 0
11 1 1 0 0.5 0.5
12 1 1 0 0 1
13 0 -1 0.5 0.5 0
14 0 -1 0.5 0 0.5
15 0 -1 0 1 0
16 0 -1 0 0 1
17 1 -1 1 0 0
18 1 -1 0 1 0
19 1 -1 1 0 0
20 1 -1 0 0 1
21 -1 -1 1 0 0
22 -1 -1 2/3 1/6 1/6
23 -1 -1 0 0 1
24 -1 -1 0 1 0
25 -1 0 0 0.5 0.5
26 -1 0 0 0 1
27 -1 0 1 0 0
28 -1 0 0 1 0

Table H.16. (1, 1, 1, 1, 1, 1, .5, .5, .5, .5, .5, .5)-F2-maximin design, for the example in
§6.4.2.

177

Run z1 z2 x1 x2 x3

1 -1 1 1 0 0
2 -1 1 0 1 0
3 -1 1 0 0 1
4 -1 1 1/3 1/3 1/3
5 1 -1 1 0 0
6 1 -1 0 1 0
7 1 -1 0 0 1
8 1 -1 1/3 1/3 1/3
9 1 1 0.5 0.5 0
10 1 1 0.5 0 0.5
11 1 1 0 0.5 0.5
12 1 1 1/3 1/3 1/3
13 -1 -1 0.5 0.5 0
14 -1 -1 0.5 0 0.5
15 -1 -1 0 0.5 0.5
16 -1 -1 1/3 1/3 1/3
17 0 0 1/3 1/3 1/3
18 0 0 1/3 1/3 1/3
19 0 0 1/3 1/3 1/3
20 0 0 1/3 1/3 1/3
21 0 0 1/3 1/3 1/3
22 0 0 1/3 1/3 1/3
23 0 0 1/3 1/3 1/3
24 0 0 1/3 1/3 1/3
25 0 0 1/3 1/3 1/3
26 0 0 1/3 1/3 1/3
27 0 0 1/3 1/3 1/3
28 0 0 1/3 1/3 1/3

Table H.17. Design from Kowalski et al. [68], for the example in §6.4.2.

178

Run z1 z2 x1 x2 x3

1 1 0 0.5 0.5 0
2 1 0 0.5 0 0.5
3 1 0 0 0 1
4 1 0 0 1 0
5 1 1 0 0 1
6 1 1 0 0.5 0.5
7 1 1 0 1 0
8 1 1 1 0 0
9 0 1 0 1 0
10 0 1 1/3 1/3 1/3
11 0 1 0 0 1
12 0 1 1 0 0
13 -1 -1 0 1 0
14 -1 -1 0.5 0 0.5
15 -1 -1 1 0 0
16 -1 -1 0 0 1
17 1 -1 0 0.5 0.5
18 1 -1 0 1 0
19 1 -1 0 0 1
20 1 -1 1 0 0
21 -1 -1 0 1 0
22 -1 -1 0.5 0.5 0
23 -1 -1 0 0 1
24 -1 -1 1 0 0
25 -1 1 0 0 1
26 -1 1 0 0.5 0.5
27 -1 1 1 0 0
28 -1 1 0 1 0

Table H.18. F2-maximin model-robust design, for the example in §6.4.2.

179

Run z1 z2 x1 x2 x3

1 1 -1 0 0 1
2 1 -1 0 1 0
3 1 -1 1 0 0
4 1 -1 1 0 0
5 1 1 1 0 0
6 1 1 1/3 1/3 1/3
7 1 1 0 1 0
8 1 1 0 0 1
9 1 1 0 1 0
10 1 1 0.5 0 0.5
11 1 1 1 0 0
12 1 1 0 0 1
13 -1 0 0 0.5 0.5
14 -1 0 0 0 1
15 -1 0 0 1 0
16 -1 0 1 0 0
17 -1 1 0 0.5 0.5
18 -1 1 0 1 0
19 -1 1 1 0 0
20 -1 1 0 0 1
21 -1 -1 1 0 0
22 -1 -1 0.5 0.5 0
23 -1 -1 0 1 0
24 -1 -1 0 0 1
25 0 -1 0.5 0 0.5
26 0 -1 0.5 0.5 0
27 0 -1 0 1 0
28 0 -1 0 0 1

Table H.19. (1, 1, 1, 1, 1, 1, .9, .9, .9, .9, .9, .9)-F2-maximin design, for the example in
§6.4.2.

180

Run z1 z2 x1 x2 x3

1 1 0 0.5 0 0.5
2 1 0 1 0 0
3 1 0 0 0 1
4 1 0 0 1 0
5 -1 -1 0 0 1
6 -1 -1 0 0.5 0.5
7 -1 -1 1 0 0
8 -1 -1 0 1 0
9 -1 1 0 0.5 0.5
10 -1 1 0 0 1
11 -1 1 1 0 0
12 -1 1 0 1 0
13 -1 -1 0.5 0 0.5
14 -1 -1 0 1 0
15 -1 -1 1 0 0
16 -1 -1 0 0 1
17 1 1 0 1 0
18 1 1 1/3 1/3 1/3
19 1 1 1 0 0
20 1 1 0 0 1
21 1 -1 0.5 0.5 0
22 1 -1 1 0 0
23 1 -1 0 0 1
24 1 -1 0 1 0
25 0 1 1 0 0
26 0 1 0 1 0
27 0 1 0.5 0.5 0
28 0 1 0 0 1

Table H.20. F3-maximin model-robust design, for the example in §6.4.2.

181

Run z1 z2 x1 x2 x3

1 -1 -1 1 0 0
2 -1 -1 0 0 1
3 -1 -1 0.5 0 0.5
4 -1 -1 0 1 0
5 -1 1 0 1 0
6 -1 1 0 0.5 0.5
7 -1 1 0 0 1
8 -1 1 1 0 0
9 1 -1 0.5 0 0.5
10 1 -1 1 0 0
11 1 -1 0 0 1
12 1 -1 0 1 0
13 0 1 0 0.5 0.5
14 0 1 0.5 0.5 0
15 0 1 0.5 0 0.5
16 0 1 0 1 0
17 1 1 1 0 0
18 1 1 0 0 1
19 1 1 1/3 1/3 1/3
20 1 1 0 1 0
21 1 0 0.5 0.5 0
22 1 0 0 0 1
23 1 0 0 0.5 0.5
24 1 0 1 0 0
25 -1 -1 1 0 0
26 -1 -1 0 0 1
27 -1 -1 0.5 0.5 0
28 -1 -1 0 1 0

Table H.21. (.7, 1, .9)-F3-maximin model-robust design, for the example in §6.4.2.

182

Run z1 z2 x1 x2 x3

1 -1 1 0 0 1
2 -1 1 1 0 0
3 -1 1 1 0 0
4 -1 1 0 1 0
5 0 1 0 0 1
6 0 1 1 0 0
7 0 1 0 0 1
8 0 1 0 1 0
9 -1 0 1 0 0
10 -1 0 0 0 1
11 -1 0 1 0 0
12 -1 0 0 1 0
13 -1 0 1 0 0
14 -1 0 0 0 1
15 -1 0 0 1 0
16 -1 0 0 1 0
17 1 -1 1 0 0
18 1 -1 1 0 0
19 1 -1 0 1 0
20 1 -1 0 0 1
21 0 1 0 0 1
22 0 1 0 1 0
23 0 1 1 0 0
24 0 1 0 0 1
25 0 1 0 1 0
26 0 1 1 0 0
27 0 1 0 1 0
28 0 1 0 0 1

Table H.22. Design optimal for model (6.14), for the example in §6.4.2.

183

Run z1 z2 x1 x2 x3

1 -1 -1 0.5 0 0.5
2 -1 -1 0 1 0
3 -1 -1 0 0 1
4 -1 -1 0 0.5 0.5
5 0 -1 0 0.5 0.5
6 0 -1 1 0 0
7 0 -1 0.5 0.5 0
8 0 -1 0 0 1
9 0 1 0.5 0 0.5
10 0 1 1 0 0
11 0 1 0 1 0
12 0 1 0 0.5 0.5
13 1 1 0.5 0 0.5
14 1 1 0 0 1
15 1 1 0.5 0.5 0
16 1 1 0 1 0
17 -1 0 1 0 0
18 -1 0 0 1 0
19 -1 0 0 0.5 0.5
20 -1 0 0 0 1
21 1 0 0.5 0 0.5
22 1 0 0.5 0.5 0
23 1 0 0 1 0
24 1 0 1 0 0
25 -1 1 0.5 0 0.5
26 -1 1 0 0 1
27 -1 1 0 0.5 0.5
28 -1 1 0.5 0.5 0

Table H.23. Design optimal for model (6.15), for the example in §6.4.2.

184

Run z1 z2 x1 x2 x3

1 1 1 1 0 0
2 1 1 0 1 0
3 1 1 0 0 1
4 1 1 0 0 1
5 -1 1 0 0 1
6 -1 1 0 1 0
7 -1 1 1 0 0
8 -1 1 0 0 1
9 1 -1 0 0 1
10 1 -1 1 0 0
11 1 -1 0 1 0
12 1 -1 1 0 0
13 -1 -1 0 1 0
14 -1 -1 0 1 0
15 -1 -1 1 0 0
16 -1 -1 0 0 1
17 1 1 0 0 1
18 1 1 0 1 0
19 1 1 0 1 0
20 1 1 1 0 0
21 -1 1 0 1 0
22 -1 1 0 0 1
23 -1 1 1 0 0
24 -1 1 0 1 0
25 -1 -1 0 1 0
26 -1 -1 0 0 1
27 -1 -1 1 0 0
28 -1 -1 0 0 1

Table H.24. Design optimal for model (6.16), for the example in §6.4.2.

185

Run z1 z2 x1 x2 x3

1 1 1 0 1 0
2 1 1 1 0 0
3 1 1 1 0 0
4 1 1 0 0 1
5 -1 1 0 1 0
6 -1 1 1 0 0
7 -1 1 0 0 1
8 -1 1 1 0 0
9 -1 -1 0 1 0
10 -1 -1 0 1 0
11 -1 -1 1 0 0
12 -1 -1 0 0 1
13 1 1 0 0 1
14 1 1 0 0 1
15 1 1 1 0 0
16 1 1 0 1 0
17 1 -1 0 1 0
18 1 -1 0 0 1
19 1 -1 1 0 0
20 1 -1 1 0 0
21 -1 1 1 0 0
22 -1 1 0 0 1
23 -1 1 0 0 1
24 -1 1 0 1 0
25 1 -1 0 0 1
26 1 -1 0 0 1
27 1 -1 0 1 0
28 1 -1 1 0 0

Table H.25. Design optimal for model (6.17), for the example in §6.4.2.

186

Run z1 z2 x1 x2 x3

1 1 -1 0 1 0
2 1 -1 1 0 0
3 1 -1 0.5 0 0.5
4 1 -1 0 0.5 0.5
5 1 -1 0 0 1
6 1 -1 0 1 0
7 1 -1 0.5 0.5 0
8 1 -1 1 0 0
9 -1 1 0 0 1
10 -1 1 0 1 0
11 -1 1 0.5 0 0.5
12 -1 1 0.5 0.5 0
13 -1 -1 1 0 0
14 -1 -1 0 0 1
15 -1 -1 0.5 0.5 0
16 -1 -1 0 0.5 0.5
17 -1 1 0 0.5 0.5
18 -1 1 1 0 0
19 -1 1 0 1 0
20 -1 1 0 0 1
21 1 1 1 0 0
22 1 1 0 1 0
23 1 1 0 0.5 0.5
24 1 1 0 0 1
25 -1 -1 0.5 0 0.5
26 -1 -1 0 1 0
27 -1 -1 0 0 1
28 -1 -1 1 0 0

Table H.26. Design optimal for model (6.18), for the example in §6.4.2.

187

Run z1 z2 x1 x2 x3

1 1 1 0 0 1
2 1 1 0 1 0
3 1 1 0 0.5 0.5
4 1 1 1 0 0
5 -1 1 1 0 0
6 -1 1 0.5 0 0.5
7 -1 1 0 0.5 0.5
8 -1 1 0 1 0
9 1 -1 0 0 1
10 1 -1 0 0.5 0.5
11 1 -1 0.5 0.5 0
12 1 -1 1 0 0
13 1 1 0.5 0 0.5
14 1 1 0.5 0.5 0
15 1 1 0 1 0
16 1 1 0 0 1
17 -1 1 1 0 0
18 -1 1 0 0 1
19 -1 1 0.5 0.5 0
20 -1 1 0 1 0
21 1 -1 0 0 1
22 1 -1 0 1 0
23 1 -1 0.5 0 0.5
24 1 -1 1 0 0
25 -1 -1 0.5 0.5 0
26 -1 -1 0 1 0
27 -1 -1 0 0 1
28 -1 -1 1 0 0

Table H.27. Design optimal for model (6.19), for the example in §6.4.2.

188

Run z1 z2 x1 x2 x3

1 -1 1 0 0.5 0.5
2 -1 1 1/3 1/3 1/3
3 -1 1 0 1 0
4 -1 1 1 0 0
5 1 1 0 1 0
6 1 1 1/3 1/3 1/3
7 1 1 0.5 0 0.5
8 1 1 0 0 1
9 -1 1 0 0 1
10 -1 1 1 0 0
11 -1 1 0.5 0 0.5
12 -1 1 0 0.5 0.5
13 0 1 0 1 0
14 0 1 1 0 0
15 0 1 0.5 0.5 0
16 0 1 0 0 1
17 -1 0 0.5 0 0.5
18 -1 0 0.5 0.5 0
19 -1 0 0 0.5 0.5
20 -1 0 0 1 0
21 1 1 0 0 1
22 1 1 0.5 0.5 0
23 1 1 0 0.5 0.5
24 1 1 1/3 1/3 1/3
25 -1 0 1 0 0
26 -1 0 0.5 0.5 0
27 -1 0 0.5 0 0.5
28 -1 0 1/3 1/3 1/3

Table H.28. Design optimal for model (6.20), for the example in §6.4.2.

189

Run z1 z2 x1 x2 x3

1 1 -1 1 0 0
2 1 -1 0 0 1
3 1 -1 0 0 1
4 1 -1 0 1 0
5 -1 0 0 0 1
6 -1 0 0 1 0
7 -1 0 0 0 1
8 -1 0 1 0 0
9 1 1 1 0 0
10 1 1 0 0 1
11 1 1 0 0 1
12 1 1 0 1 0
13 1 0 0 1 0
14 1 0 0 0 1
15 1 0 1 0 0
16 1 0 0 1 0
17 0 -1 0 1 0
18 0 -1 1 0 0
19 0 -1 1 0 0
20 0 -1 0 0 1
21 -1 1 1 0 0
22 -1 1 0 1 0
23 -1 1 1 0 0
24 -1 1 0 0 1
25 -1 -1 0 0 1
26 -1 -1 0 1 0
27 -1 -1 1 0 0
28 -1 -1 0 1 0

Table H.29. Design optimal for model (6.21), for the example in §6.4.2.

190

Run z1 z2 x1 x2 x3

1 -1 -1 1 0 0
2 -1 -1 0 1 0
3 -1 -1 0.5 0 0.5
4 -1 -1 0 0.5 0.5
5 1 -1 0 0 1
6 1 -1 0 1 0
7 1 -1 0.5 0.5 0
8 1 -1 0.5 0 0.5
9 1 -1 0 0 1
10 1 -1 0 1 0
11 1 -1 1/3 1/3 1/3
12 1 -1 1 0 0
13 1 1 1 0 0
14 1 1 0 0.5 0.5
15 1 1 0 1 0
16 1 1 0 0 1
17 -1 1 1/3 1/3 1/3
18 -1 1 0 0 1
19 -1 1 0 1 0
20 -1 1 1 0 0
21 -1 -1 1 0 0
22 -1 -1 0 1 0
23 -1 -1 0 0 1
24 -1 -1 0.5 0.5 0
25 -1 1 0 0.5 0.5
26 -1 1 1/3 1/3 1/3
27 -1 1 0.5 0.5 0
28 -1 1 0.5 0 0.5

Table H.30. Design optimal for model (6.22), for the example in §6.4.2.

191

Run z1 z2 x1 x2 x3

1 -1 1 0.5 0 0.5
2 -1 1 0 1 0
3 -1 1 1 0 0
4 -1 1 0 0.5 0.5
5 1 1 1 0 0
6 1 1 0 0 1
7 1 1 0.5 0.5 0
8 1 1 0 0.5 0.5
9 1 1 0.5 0 0.5
10 1 1 0 1 0
11 1 1 0 0 1
12 1 1 1 0 0
13 -1 1 0 1 0
14 -1 1 0 0 1
15 -1 1 1 0 0
16 -1 1 0.5 0.5 0
17 -1 -1 1 0 0
18 -1 -1 1/3 1/3 1/3
19 -1 -1 0 1 0
20 -1 -1 0 0 1
21 1 -1 0 1 0
22 1 -1 1 0 0
23 1 -1 0 0 1
24 1 -1 1/3 1/3 1/3
25 -1 -1 0.5 0 0.5
26 -1 -1 0 0.5 0.5
27 -1 -1 0.5 0.5 0
28 -1 -1 1/3 1/3 1/3

Table H.31. Design optimal for model (6.23), for the example in §6.4.2.

192

Run z1 z2 x1 x2 x3

1 1 -1 1 0 0
2 1 -1 0 0 1
3 1 -1 0 1 0
4 1 -1 0.5 0 0.5
5 1 0 0 1 0
6 1 0 0.5 0 0.5
7 1 0 0 0 1
8 1 0 0.5 0.5 0
9 -1 -1 1 0 0
10 -1 -1 0 1 0
11 -1 -1 0.5 0 0.5
12 -1 -1 0 0 1
13 1 1 0 1 0
14 1 1 0 0.5 0.5
15 1 1 0 0 1
16 1 1 1 0 0
17 -1 1 1 0 0
18 -1 1 0 1 0
19 -1 1 0 0 1
20 -1 1 0.5 0.5 0
21 0 1 0.5 0 0.5
22 0 1 0 1 0
23 0 1 0 0.5 0.5
24 0 1 1 0 0
25 0 -1 1 0 0
26 0 -1 0 0.5 0.5
27 0 -1 0.5 0.5 0
28 0 -1 0 0 1

Table H.32. Design optimal for model (6.24), for the example in §6.4.2.

193

Run z1 z2 x1 x2 x3

1 1 1 1 0 0
2 1 1 0 0 1
3 1 1 0.5 0.5 0
4 1 1 0 1 0
5 0 1 0 0 1
6 0 1 1 0 0
7 0 1 1/3 1/3 1/3
8 0 1 0 0.5 0.5
9 1 0 0 1 0
10 1 0 0 0 1
11 1 0 0.5 0 0.5
12 1 0 1/3 1/3 1/3
13 -1 -1 0.5 0.5 0
14 -1 -1 0 1 0
15 -1 -1 0 0 1
16 -1 -1 1 0 0
17 0 0 1/3 1/3 1/3
18 0 0 0.5 0 0.5
19 0 0 0 0.5 0.5
20 0 0 0.5 0.5 0
21 -1 1 0 1 0
22 -1 1 0.5 0 0.5
23 -1 1 1 0 0
24 -1 1 0 0 1
25 1 -1 0 0.5 0.5
26 1 -1 0 0 1
27 1 -1 0 1 0
28 1 -1 1 0 0

Table H.33. Design optimal for model (6.25), for the example in §6.4.2.

Bibliography

[1] V. K. Agboto and C. J. Nachtsheim. Bayesian model robust designs. Tech-
nical report, University of Minnesota, 2005.

[2] F. T. Anbari and J. M. Lucas. Super-efficient designs: How to run your ex-
periment for higher efficiency and lower cost. In ASQC 48th Annual Quality
Congress Proceedings, 1994.

[3] F. T. Anbari and J. M. Lucas. Design and running super-efficient experi-
ments: Optimum blocking with one hard-to-change factor. Journal of Quality
Technology, 40(1):31–45, 2008.

[4] T. W. Anderson. An Introduction to Multivariate Statistical Analysis. New
York: Wiley, 1984.

[5] H. Arnouts and P. Goos. Update formulas for split-plot and block designs.
Technical Report 2008-022, University of Antwerp, Faculty of Applied Eco-
nomics, Department of Mathematics, Statistics, and Actuarial Sciences, De-
cember 2008.

[6] H. Arnouts, P. Goos, and B. Jones. Design and analysis of industrial strip-
plot experiments. Quality and Reliability Engineering International, 26:127–
136, 2010.

[7] S. P. Aspery and S. Macchietto. Designing robust optimal dynamic experi-
ments. Journal of Process Control, 12(4):545–556, 2002.

[8] A. B. Atashgah and A. Seifi. Application of semi-definite programming to
the design of multi-response experiments. IIE Transactions, 39:7:763–769,
2007.

[9] A. B. Atashgah and A. Seifi. Optimal design of multi-response experiments
using semi-definite programming. Optimization and Engineering, 10(1):75–
90, 2009.

195

[10] A. C. Atkinson, A. N. Donev, and R. D. Tobias. Optimum Experimental
Designs, with SAS. Oxford University Press, 2007.

[11] M. P. F. Berger and F. E. S. Tan. Robust designs for linear mixed effects
models. Journal of the Royal Statistical Society: Series C (Applied Statis-
tics), 53(4):569–581, 2004.

[12] D. Bingham and R. R. Sitter. Minimum-aberration two-level fractional fac-
torial split-plot designs. Technometrics, 41(1):62–70, 1999.

[13] D. R. Bingham and H. A. Chipman. Incorporating prior information in
optimal design for model selection. Technometrics, 49(2):155–163, 2007.

[14] D. R. Bingham and R. R. Sitter. Design issues in fractional factorial split-plot
experiments. Journal of Quality Technology, 33(1):2–15, 2001.

[15] W. Bischoff. On d-optimal designs for linear models under correlated obser-
vations with an application to a linear model with multiple response. Journal
of Statistical Planning and Inference, 37:69–80, 1993.

[16] W. Bischoff. Determinant formulas with applications to designing when the
observations are correlated. Annals of the Institute of Statistical Mathemat-
ics, 47(2):385–399, 1995.

[17] S. Bisgaard. The design and analysis of 2k−p × 2q−r split plot experiments.
Journal of Quality Technology, 32(1):39–56, 2000.

[18] G. E. P. Box and N. R. Draper. A basis for the selection of a response surface
design. Journal of the American Statistical Association, 54(287):622–654,
1959.

[19] G. E. P. Box and N. R. Draper. The bayesian estimation of common param-
eters from several responses. Biometrika, 52(3/4):355–365, 1965.

[20] M. J. Box and N. R. Draper. Estimation and design criteria for multire-
sponse non-linear models with non-homogenous variance. Applied Statistics,
21(1):13–24, 1972.

[21] F. Chang, M. L. Huang, D. K. J. Lin, and H. Yang. Optimal designs for
dual response polynomial regression models. Journal of Statistical Planning
and Inference, 93:309–322, 2001.

[22] S. I. Chang. Some properties of multi-response d-optimal designs. Journal
of Mathematical Analysis and Applications, 184:256–262, 1994.

[23] S. I. Chang. An algorithm to generate near d-optimal designs for multiple-
response surface models. IIE Transactions, 29:1073–1081, 1997.

196

[24] Y.-J. Chang and W. I. Notz. Handbook of Statistics, Vol. 13, chapter Model
Robust Designs, pages 1055–1098. Elsevier Science B. V., 1996.

[25] H. Chipman, M. Hamada, and C. F. J. Wu. A bayesian variable selection
approach for analyzing designed experiments with complex aliasing. Tech-
nometrics, 39:372–381, 1997.

[26] R. D. Cook and C. J. Nachtsheim. A comparison of algorithms for construct-
ing exact d-optimal designs. Technometrics, 22:315–324, 1980.

[27] R. D. Cook and C. J. Nachtsheim. An analysis of the k-exchange algorithm.
Technical report, University of Minnesota, Dept. of Operations and Manage-
ment Science, 1982.

[28] R. D. Cook and C. J. Nachtsheim. Model-robust, linear-optimal designs.
Technometrics, 24:49–54, 1982.

[29] J. Cornell. Experiments with Mixtures: Designs, Models, and the Analysis
of Mixture Data. Wiley-Interscience, 2nd edition, s 1990.

[30] C. Daniel. Parallel fractional replicates. Technometrics, 2(2):263–268, 1960.

[31] H. Dette. A generalization of D- and D1-optimal design in polynomial re-
gression. Annals of Statistics, 18:1784–1804, 1990.

[32] H. Dette and T. Franke. Constrained d- and d1-optimal designs for polyno-
mial regression. The Annals of Statistics, 28(6):1702–1727, 2000.

[33] H. Dette and T. Franke. Robust designs for polynomial regression by max-
imizing a minimum of D- and D1-efficiencies. The Annals of Statistics,
29(4):1024–1049, 2001.

[34] N. R. Draper and W. G. Hunter. Design of experiments for parameter esti-
mation in multiresponse situations. Biometrika, 53:525–533, 1966.

[35] N. R. Draper and W. G. Hunter. The use of prior distributions in the design of
experiments for parameter estimation in non-linear situations: Multiresponse
case. Biometrika, 54(3/4):662–665, 1967.

[36] N. R. Draper and J. A. John. Response surface designs where levels of
some factors are difficult to change. Australian and New Zealand Journal of
Statistics, 40(4):487–495, 1998.

[37] W. DuMouchel and B. Jones. A simple bayesian modification of d-optimal de-
signs to reduce dependence on an assumed model. Technometrics, 36(1):37–
47, 1994.

197

[38] M. Emmett, P. Goos, and E. Stillman. D-optimal designs for multiple poly-
nomial responses. Technical report, University of Sheffield, 2007.

[39] Z. Fang and D. P. Wiens. Integer-valued, minimax robust designs for es-
timation and extrapolation in heteroscedastic, approximate linear models.
Journal of the American Statistical Association, 95(451):807–818, 2000.

[40] Z. Fang and D. P. Wiens. Robust regression designs for approximate poly-
nomial models. Journal of Statistical Planning and Inference, 117:305–321,
2003.

[41] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, New York,
NY, 1972.

[42] S. E. Frisbee and J. W. McGinity. Influence of nonionic surfactants on the
physical and chemical properties of a biodegradable pseudolatex. European
Journal of Pharmaceutics and Biopharmaceutics, 40:355–363, 1994.

[43] J. Ganju and J. M. Lucas. Detecting randomization restrictions caused by
factors. Journal of Statistical Planning and Inference, 81:129–140, 1999.

[44] J. Ganju and J. M. Lucas. Randomized and random run order experiments.
Journal of Statistical Planning and Inference, 133:199–210, 2004.

[45] P. Goos. The Optimal Design of Blocked and Split-plot Experiments.
Springer, 2002.

[46] P. Goos. Optimal versus orthogonal and equivalent-estimation design of
blocked and split-plot experiments. Statistica Neerlandica, 60:361–378, 2006.

[47] P. Goos and A. N. Donev. Tailor-made split-plot designs for mixture and
process variables. Journal of Quality Technology, 39(4):326–339, 2007.

[48] P. Goos, A. Kobilinsky, T. E. O’Brien, and M. Vandebroek. Model-robust
and model-sensitive designs. Computational Statistics & Data Analysis,
49:201–216, 2005.

[49] P. Goos and M. Vandebroek. Optimal split-plot designs. The Journal of
Quality Technology, 33(4):436–450, 2001.

[50] P. Goos and M. Vandebroek. D-optimal split-plot designs with given numbers
and sizes of whole plots. Technometrics, 45(3):235–245, 2003.

[51] P. Goos and M. Vandebroek. Outperforming completely randomized designs.
Journal of Quality Technology, 36(1):12–26, 2004.

198

[52] J. A. Heinsman and D. C. Montgomery. Optimization of a household product
formulation using a mixture experiment. Quality Engineering, 7:583–600,
1995.

[53] G. Heo, B. Schmuland, and D. P. Wiens. Restricted minimax robust de-
signs for misspecified regression models. The Canadian Journal of Statistics,
29(1):117–128, 2001.

[54] A. Heredia-Langner, D. C. Montgomery, W. M. Carlyle, and C. M. Borror.
Model-robust optimal designs: A genetic algorithm approach. Journal of
Quality Technology, 36(3):263–279, 2004.

[55] P. Huang, D. Chen, and J. O. Voelkel. Minimum-aberration two-level split-
plot designs. Technometrics, 40(4):314–326, 1998.

[56] H. M. Huizenga, D. J. Heslenfeld, and P. C. M. Molenaar. Optimal measure-
ment conditions for spatiotemporal eeg/meg source analysis. Psychometrika,
67(2):299–313, 2002.

[57] L. Imhof and W. K. Wong. A graphical method for finding maximin efficiency
designs. Biometrics, 56(1):113–117, 2000.

[58] M. E. Johnson and C. J. Nachtsheim. Some guidelines for constructing exact
d-optimal designs on convex design spaces. Technometrics, 25:271–277, 1983.

[59] B. Jones and P. Goos. A candidate-set-free algorithm for generating d-
optimal split-plot designs. Journal of the Royal Statistical Society, Series
C: Applied Statistics, 56:347–364, 2007.

[60] B. Jones and P. Goos. D-optimal design of split-split-plot experiments.
Biometrika, 96(1):67–82, 2009.

[61] B. Jones and C. J. Nachtsheim. Split-plot designs: What, why, and how.
Journal of Quality Technology, 41(4):340–361, 2009.

[62] H. L. Ju and J. M. Lucas. lk factorial experiments with hard-to-change and
easy-to-change factors. Journal of Quality Technology, 34(4):411–421, 2002.

[63] A. I. Khuri and J. A. Cornell. Response Surfaces: Designs and Analyses. M.
Dekker, 1996.

[64] J. Kiefer. Optimum experimental designs. Journal of the Royal Statistical
Society, Series B, 21:272–304, 1959.

[65] J. Kiefer and J. Wolfowitz. Optimum designs in regression problems. Annals
of Mathematical Statistics, 30:271–294, 1959.

199

[66] J. Kiefer and J. Wolfowitz. The equivalence of two extremum problems.
Canadian Journal of Mathematics, 12:363–366, 1960.

[67] W. B. Kim and N. R. Draper. Choosing a design for straight line fits to two
correlated responses. Statistica Sinica, 4:275–280, 1994.

[68] S. M. Kowalski, J. A. Cornell, and G. G. Vining. Split-plot designs and
estimation methods for mixture experiments with process variables. Tech-
nometrics, 44(1):72–79, 2002.

[69] O. Krafft and M. Schaefer. D-optimal designs for a multivariate regression
model. Journal of Multivariate Analysis, 42:130–140, 1992.

[70] V. G. Kurotschka and R. Schwabe. Madan Puri Festschrift, chapter The
Reduction of Design Problems for Multivariate Experiments to Univariate
Possibilities and their Limitations, pages 193–204. VSP, 1996.

[71] E. Läuter. Experimental design in a class of models. Statistics, 5:379–398,
1974.

[72] J. D. Letsinger, R. H. Myers, and M. Lentner. Response surface methods for
bi-randomization structures. Journal of Quality Technology, 28:4:381–397,
1996.

[73] W. Li and C. J. Nachtsheim. Model-robust factorial designs. Technometrics,
42(4):345–352, 2000.

[74] S. X. Liu and D. P. Wiens. Robust designs for approximate polynomial
regression. Journal of Statistical Planning and Inferences, 64:369–381, 1997.

[75] X. Liu and R. X. Yue. P-optimal robust designs for multiresponse approxi-
mately linear regression. Applied Mathematics - A Journal of Chinese Uni-
versities, 23(2):168–174, 2008.

[76] J. M. Lucas and H. L. Ju. Split plotting and randomization in industrial
experiments. In ASQC Quality Congress Transactions, 1992.

[77] R. K. Meyer and C. J. Nachtsheim. The coordinate-exchange algorithm for
constructing exact optimal experimental designs. Technometrics, 37(1):60–
69, 1995.

[78] K. S. Miller. On the inverse of the sum of matrices. Mathematics Magazine,
54(2):67–72, 1981.

[79] T. J. Mitchell. An algorithm for the construction of d-optimal experimental
designs. Technometrics, 16:203–210, 1974.

200

[80] G. Montepiedra and V. V. Fedorov. Minimum bias designs with constraints.
Journal of Statistical Planning and Inference, 63:97–111, 1997.

[81] G. Montepiedra and A. B. Yeh. A two-stage strategy for the construction of
d-optimal experimental designs. Communications in Statistics - Simulation
and Computations, 27(2):377–401, 1998.

[82] D. C. Montgomery. Design and Analysis of Experiments. John Wiley &
Sons, Inc., 1991.

[83] A. Neff. Bayesian two-stage designs under model uncertainty. PhD thesis,
Virginia Polytechnic Institute and State University, 1996.

[84] P. A. Parker, S. M. Kowalski, and G. G. Vining. Construction of bal-
anced equivalent estimation second-order split-plot designs. Technometrics,
49(1):56–65, 2007.

[85] G. F. Piepel. Programs for generating extreme vertices and centroids of
linearly constrained experimental regions. Journal of Quality Technology,
20:2:125–139, 1988.

[86] G. F. Piepel, S. K. Cooley, and B. Jones. Construction of a 21-component
layered mixture experiment design using a new mixture coordinate-exchange
algorithm. Quality Engineering, 17:579–594, 2005.

[87] F. Pukelsheim. Optimal Design of Experiments. John Wiley & Sons, Inc.,
1993.

[88] F. Pukelsheim and J. L. Rosenberger. Experimental designs for model dis-
crimination. Journal of the American Statistical Association, 88(422):642–
649, 1993.

[89] R. Rajagopal and E. del Castillo. Model-robust process optimization using
bayesian model averaging. Technometrics, 47(2):152–163, 2005.

[90] R. G. Roy, S. N. and J. N. Srivastava. Analysis and Design of Certain
Quantitative Multiresponse Experiments. Pergamon Press, New York, NY,
1971.

[91] A. Ruggoo and M. Vandebroek. Bayesian sequential D-D optimal model-
robust designs. Computational Statistics & Data Analysis, 47:655–673, 2004.

[92] SAS. SAS Institute Inc., Version 9.1.3, Cary, NC, USA, 2000-2004.

[93] J. R. Schott. Matrix Analysis for Statistics. John Wiley & Sons, Inc., 1997.

201

[94] H. K. Shah, D. C. Montgomery, and W. M. Carlyle. Response surface model-
ing and optimization in multiresponse experiments using seemingly unrelated
regressions. Quality Engineering, 16(3):387–397, 2004.

[95] B. J. Smucker, E. del Castillo, and J. L. Rosenberger. Exchange algorithms
for constructing model-robust experimental designs. Technical Report 09-04,
The Pennsylvania State University, 2009.

[96] R. D. Snee. Computer-aided design of experiments–some practical experi-
ences. Journal of Quality Technology, 17:222–236, 1985.

[97] S. M. Stigler. Optimal experimental design for polynomial regression. Journal
of the American Statistical Association, 66(334):311–318, 1971.

[98] D. X. Sun. Estimation capacity and related topics in experimental designs.
PhD thesis, University of Waterloo, 1993.

[99] L. A. Trinca and S. G. Gilmour. Multistratum response surface designs.
Technometrics, 43(1):25–33, 2001.

[100] P.-W. Tsai and S. G. Gilmour. A general criterion for factorial designs under
model uncertainty. Technometrics (to appear), 2010.

[101] C. L. Tseo, J. C. Deng, J. A. Cornell, A. I. Khuri, and R. H. Schmidt. Effect
of washing treatment on quality of minced mullet flesh. Journal of Food
Science, 48:163–167, 1983.

[102] G. G. Vining and S. M. Kowalski. Exact inference for response surface designs
within a split-plot structure. Journal of Quality Technology, 40(4):394–406,
2008.

[103] G. G. Vining, S. M. Kowalski, and D. C. Montgomery. Response surface de-
signs within a split-plot structure. Journal of Quality Technology, 37(2):115–
129, 2005.

[104] D. F. Webb, J. M. Lucas, and J. J. Borkowski. Factorial experiments when
factor levels are not necessarily reset. Journal of Quality Technology, 36(1):1–
11, 2004.

[105] W. J. Welch. A mean squared error criterion for the design of experiments.
Biometrika, 70(1):205–213, 1983.

[106] D. P. Wiens. Robust minimax designs for multiple linear regression. Linear
Algebra Applications, 127:327–340, 1990.

[107] D. P. Wiens. Minimax designs for approximately linear regression. Journal
of Statistical Planning and Inference, 31(3):353–371, 1992.

202

[108] D. P. Wiens. Robust designs for approximately linear regression: M-
estimated parameters. Journal of Statistical Planning and Inference,
40(1):135–160, 1994.

[109] D. P. Wiens. Minimax robust designs and weights for approximately speci-
fied regression models with heteroscedastic errors. Journal of the American
Statistical Association, 93:1440–1450, 1998.

[110] D. P. Wiens. Robust weights and designs for biased regression models: Least
squares and generalized m-estimation. Journal of Statistical Planning and
Inference, 83(2):395–412, 2000.

[111] D. P. Wiens and J. Zhou. Minimax regression designs for approximately
linear models with autocorrelated errors. Journal of Statistical Planning and
Inference, 55(1):95–106, 1996.

[112] M. M. C. Wijesinha. Design of experiments for multiresponse models. PhD
thesis, University of Florida, 1984.

[113] F. Yates. Complex experiments, with discussion. Journal of the Royal Sta-
tistical Society, Series B, 2:181–223, 1935.

[114] R. X. Yue. Model-robust designs in multiresponse situations. Statistics &
Probability Letters, 58:369–379, 2002.

[115] A. Zellner. An efficient method of estimating seemingly unrelated regres-
sions and tests for aggregation bias. Journal of the American Statistical
Association, 57:348–368, 1962.

[116] A. Zellner. Estimators for seemingly unrelated regression equations: Some
exact finite sample results. Journal of the American Statistical Association,
58:977–992, 1963.

[117] A. Zellner and D. S. Huang. Further properties of efficient estimators for
seemingly unrelated regression equations. International Economic Review,
3:300–313, 1962.

Vita

Byran J. Smucker

Byran Jay Smucker was born in Albany, OR on July 13, 1982. He graduated
from Brownsville Mennonite School in 1999, attended Linn-Benton Community
College, and graduated summa cum laude from Oregon State University in 2005
with a B.S. in Industrial Engineering. In August, 2005 he entered the Department
of Statistics at The Pennsylvania State University, acquired an M.S. in Statistics
and Operations Research in 2007, and will graduate in August, 2010 with a Ph.D
in Statistics and Operations Research. The same month, he will begin an assistant
professor position in the Statistics Department at Miami University at Oxford, OH.
Mr. Smucker is the son of Steve and Bonnie Smucker, with five siblings (Randy,
Jessica, Justin, Stephanie, and Trevin). He is married to Amy Smucker, with a
son Xavier.

