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1 Introduction
In the context of linear regression, we compare several
subsampling algorithms in terms of their actual, rather
than theoretical, computational time. The goal is to as-
sess whether relatively sophisticated leverage-based sub-
sampling methods provide as much information as ran-
dom subsampling, when accounting for the time it takes
to both form and analyze the subsample. For a small
simulation, we find that analyzing a small fraction of
the data using leverage-based methods takes as long or
longer than analyzing the entire dataset. Work is ongo-
ing, but this provides initial evidence that leverage-based
subsampling is not currently practically viable.

Society is producing increasingly massive
datasets.One of the most important questions in
the big data era is whether the computational infras-
tructures and analysis methods used to investigate these
large datasets can keep up with the increasing data
volume. Computational efficiency continues to improve,
but is being outpaced by the increase in the size of
data. One intuitive way to handle this disparity is to
take a tractable subsample from large data and analyze
this sample. A uniform random sample is the most
straightforward approach, but under certain conditions
it performs poorly (Ma and Sun, 2015; Ma et al., 2015).
Despite its problems, the uniform sampling approach
has a tremendous advantage over many other sampling
methods: it is very fast.

Other subsampling methods can be used, including
those based upon information criteria (Wang et al., 2019)
and leverages (Ma et al., 2015; Drineas et al., 2012).
Here, we investigate two leverage-based methods and
compare them to the time it takes to compute the full
dataset. If the leverage-based methods are not faster
than the full data analysis, we conclude that with cur-
rent subsampling technology, random sampling will pro-
vide more information per time unit than these more
intricate subsampling approaches.

2 Methods
In this section, we briefly describe the subsampling meth-
ods that we compare, and discuss the measures we’ve
taken to ensure a fair comparison between the methods.

Throughout, we assume an underlying linear regres-
sion model Y = Xβ + ε, where Y is the n× 1 response
vector, X is the n× p model matrix, β is a p× 1 vector

of regression parameters, and ε is a vector of error terms
with distribution N(0, σ2I). Of interest is the least

squares estimate of β, which is β̂OLS = (XTX)−1XTY.

The vector of predictions is Ŷ = Xβ̂OLS = HY where
H = X(XTX)−1XT and is called the hat matrix with
leverages, denoted as h11, . . . , hnn, on its diagonals. For
a diagonal weight matrix W with weights w1, . . . , wn,
the weighted least squares (WLS) estimates are β̂WLS =
(XTWX)−1XTWY.

2.1 Uniform Subsampling (UNIF)
The uniform subsampling algorithm simply subsamples
r observations such that each observation is chosen with
probability πi = 1

n and the OLS estimates, computed
in O(rp2) time, are obtained based on the subsampled
dataset. When leverages are highly skewed and subsam-
ple sizes are relatively small, this method can have high
variance.

2.2 Shrinkage Leverage-Based Subsamples
The basic leveraging subsampling approach constructs
a subsampling distribution based on the hii, the sta-
tistical leverages. Ma et al. (2015) proposed a method
that improves upon the basic leverage-based algorithm
by shrinking the probabilities of high and low leverage
points toward the uniform probabilities. This shrinkage
leverage approach (SLEV) is described as below:

1. Compute the leverages of the full design matrix,
h11, . . . , hnn.

2. Use a convex combination of normalized statistical
leverages and uniform probabilities as the subsam-
pling probability distribution: πi = αhii

p +(1−α) 1
n .

Obtain a subsample of size r from the full dataset.
3. Compute the WLS estimates on the subsample with

weights wi = 1√
rπi

.

Intuitively, this method is more informative than sam-
pling uniformly, because it increases the likelihood of ob-
taining high-leverage points in the sample. However, the
leverages themselves are of the same order to compute—
O(np2)—as obtaining the least squares estimates of the
full data.

2.3 Approximate Leverage-Based Subsamples
Drineas et al. (2012) obtained an approximation to the
leverages in o(np2) time. The approximate leverage-
based subsampling algorithm, called BFSLEV, is:



1. Compute the approximate leverage scores of the de-
sign matrix, denoted by h̃11, . . . h̃nn.

(a) Construct a random p × n matrix Π1 as well
as a random p× r2 matrix Π2, each element of
each matrix a 1 or −1 with probability 0.5.

(b) Let R be from a QR decomposition of Π1X.

(c) Calculate and report h̃ii, the leverages of U =
XR−1Π2.

2. Same as SLEV step 2, except πi = α h̃ii

p + (1−α) 1
n .

3. Same as SLEV step 3.

2.4 A Fair Comparison

We make no claims that our implementation is fast; in-
deed, we are using the statistical software R to perform
the calculation instead of C, C++, or Fortran. However,
we have endeavored to make the comparisons fair, in the
sense that we are using the same type of calculations
across the methods we are comparing. For instance,
we are using the qr.solve() function for matrix in-
versions, and QR-based methods are used throughout
the calculation of exact as well as approximate leverage
scores. In none of the methods do we use optimized
C-based functions like lm(), since this would unfairly
privilege the full data and exact-leverage methods.

3 Results

In this section we provide results from a small simulation
study to compare runtimes for full data OLS, SLEV, and
BFSLEV.

3.1 Simulation Design

In the simulation study, we tried combinations of n =
10,000, 100,000, and 1,000,000, and p = 10 and 100. For
each pair of (n, p), we generated X from the standard
multivariate normal distribution, which results in lever-
age scores that are relatively uniform. Y is taken as a
sample from the standard normal distribution. For all
SLEV and BFSLEV algorithms, we took α = 0.9 as sug-
gested in Ma et al. (2015). We performed 100 simulations
for each method and scenario.

To our end of comparing the running time, we treat
β̂OLS calculated from the full sample as the condition-
ally true beta. The simulated model here still follows
from section 2, except that we do not need to know the
unconditionally true β.

3.2 Simulation Results

Figure 1 demonstrates that for the range of simulations
we performed, the full analysis consistently takes less
time than either of the leverage-based methods. Also,
BFSLEV appears to generally outpace the method based
upon exact leverages.
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Figure 1: A comparison of running times using different
methods

4 Discussion and Future Work
This work is ongoing and has built upon the contri-
butions of several other people1. We will be increas-
ing the number of simulation repetitions, expanding the
number of scenarios we consider, and considering other
subsampling methods for comparison. For instance,
IBOSS (Wang et al., 2019) subsamples based upon an
information-based criterion, though it is limited to only
simple, first-order regression models.

Based on this work, we find the leverage-based meth-
ods computationally impractical. For large n, uniform
subsampling seems to be better than leverage-based ap-
proaches.
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